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Abstract: In this paper, we deal with the resolution of a fuzzy multiobjective programming problem
using the level sets optimization. We compare it to other optimization strategies studied until now
and we propose an algorithm to identify possible Pareto efficient optimal solutions.
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1. Introduction

The construction of scientific models to describe real situations represents a significant
advance in the aid for decision-making, especially in complex problems. These models
allow us to select the essential, discard the accessory, apply scientific knowledge, and,
based on them, predict and compare the results of different strategies or decisions. They
have proven especially useful when faced with the needs of optimal allocation of resources,
evaluation of a system’s performance, obtaining quantitative information for the improve-
ment of processes or their limitations. The study of models where it is necessary to find
and identify the best alternative among a collection of possibilities, without having to list
and evaluate each explicitly and every one of them constitutes the Optimization Theory’s
objective. The situations that allow modeling, where the possible alternatives and the
objectives can be expressed and quantified using mathematical functions, constitute a
widely studied and applied line of knowledge, known as Mathematical Programming. In
particular, Multiobjective Mathematical Programming is really useful in order to model
real situations where more than one objective exists.

The growing use of optimization models to help decision-making, in fields as diverse
and complex as Economics, Engineering, Social or Life Sciences, has created a demand
for new tools that allow considering and solving more real situations, which, in general,
do not verify the properties and hypotheses that for classical optimization are essential to
ensure an effective search for solutions.

It is quite common to find a certain degree of incomplete, subjective, vague or inaccu-
rate information in the situations to be modeled. The classic mathematical programming
tools do not adequately reflect this lack of precision in the data that define both the objective
functions and the constraints of the problem. When any of these types of inaccuracies
appear in an optimization problem, it cannot be addressed with the classic mathematical
optimization tools. Thus, the Fuzzy Set Theory was introduced to manage the imprecision
or lack of accurate information that appears in many mathematical models or computations
of some real-world phenomena. A significant and growing field is the Fuzzy Optimization
that deals with the resolution of optimization problems with imprecise or vague data.

Mathematics 2021, 9, 992. https://doi.org/10.3390/math9090992 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7804-9205
https://orcid.org/0000-0003-0639-3776
https://orcid.org/0000-0001-9325-949X
https://orcid.org/0000-0002-1777-2395
https://doi.org/10.3390/math9090992
https://doi.org/10.3390/math9090992
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9090992
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9090992?type=check_update&version=1


Mathematics 2021, 9, 992 2 of 14

Combining fuzzy and multiobjective optimization tools will help model real problems
that cannot be modeled with classic optimization techniques. In the literature, since
the first contribution in that sense (Zimmerman [1]), many works can be found where
multiobjective optimization models are applied using fuzzy logic in general and fuzzy
functions in particular to describe the real information [2–9].

The use of fuzzy logic in real life can be found in the digital display of some electrical
appliances or in the brakes of a vehicle (Figures 1 and 2):

Figure 1. Digital display. Fuzzy logic control.

Figure 2. Fuzzy brake control system.

In [10,11], the author uses the embedding theorem, i.e., the approximation of a fuzzy
set by a crisp number (defuzzification techniques), to define the optimum concept and the
scalarization in vector optimization to solve fuzzy multiobjective programming problems.
However, when we use a defuzzification operator that replaces a fuzzy set by a single
number, we generally lose too much important information.

In [12], an approximation of a fuzzy set by an interval is proposed. In this approach, a
given fuzzy set is substituted by a crisp interval, which is—in some sense—close to the
former one. A new interval approximation operator, the Nearest Interval Approximation
Operator (NIA), is among interval approximation operators of a fuzzy number, the one
that minimizes a certain measure of the distance to the fuzzy number. In [13], the authors
explain how interesting it is to use the Nearest Interval Approximation Operator to solve a
multiobjective programming problem with fuzzy objective functions, to reflect reality and
have excellent computational behavior. They established a sufficient Karush–Kuhn–Tucker
type of Pareto optimality conditions, using continuously gH-differentiable functions where
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the sum of the end-points functions is convex. This idea has been used in the literature
in other works, for example, in [14] for solving fuzzy bilevel programming problems and
in [15] for solving fully fuzzy multiobjective linear programming problems.

In [16], sufficient optimality conditions were obtained to solve a fuzzy multiobjective
problem but not necessary conditions. It is well known that, to be sure you can find all the
possible optimums for the optimization problem, the necessary optimality conditions can
be developed since you cannot ensured it only with sufficient ones.

In this paper, we propose to use an optimality concept by levels, which means we will
use the level sets that characterize the fuzzy set entirely to define the optimum [17]. We
demonstrate that this concept is more general than the aforementioned. Undoubtedly, the
optimum notion should be determined by the decider’s interest, so, in some cases, the crisp
optima or interval-optima can be considered more satisfactory than the ones showed here.
However, by including the latter in the previous, the search mechanisms proposed here
will be valid whatever the concept used.

Necessary conditions are introduced to identify the optimal candidates, using more
general hypotheses than those existing in the literature. It is an advantage in the sense
that they can be applied to a more significant number of problems. From a theoretical and
practical point of view, the resolution of a differentiable optimization problem involves
the application of necessary and sufficient optimality conditions, which characterize the
optimality of the problems and serve as a basis for the design of efficient algorithms for the
resolution of these problems. Recently, classical optimality conditions have been extended
to different equilibrium, variational, or control problems in different spaces [18–22].

We obtain a multiobjective necessary optimality condition that, in the particular case,
you have a single objective function that coincides with the one proposed by
Osuna-Gomez et al. [23], and it has specially computational checking advantages. In
addition, an algorithm to examine all possible candidates to be multiobjective optimal
solutions under the only hypothesis in which the fuzzy functions are gH-differentiable
functions is proposed.

This paper is organized as follows. In Section 2, we recall the order and arithmetic
for using intervals and fuzzy numbers on α-level sets. In Section 3, we focus on the
multiobjective problem with fuzzy objective functions, defining the solution concept based
on the α-level sets, obtaining a Pareto-type solution concept and comparing it to the ones
existing in the literature. In Section 4, the fundamental results on gH-differentiability of
fuzzy functions are compiled and used to obtain optimality conditions. In Section 5, we
prove our main results: a necessary optimality condition and an algorithm based on it.
Finally, in Section 6, we present the Conclusions.

We can establish a sequencing of contents (Figure 3):

Figure 3. Sequencing of contents.

2. Preliminaries

We recall the arithmetic and order for intervals we are going to use.
We denote by KC the family of all bounded closed intervals in R, i.e.,
KC = {[a, a] / a, a ∈ R and a ≤ a}.
For A = [a, a], B =

[
b, b
]
∈ KC and ν ∈ R, we consider the following operations:

A + B = [a, a] +
[
b, b
]
=
[

a + b, a + b
]
, νA = ν[a, a] =

{
[νa, νa] if ν ≥ 0,
[νa, νa] if ν < 0,

(1)
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A	gH B = C ⇔
{

(a) A = B + C, or
(b) B = A + (−1)C.

(2)

This difference (2), called generalized Hukuhara difference (gH−difference for short),
has many interesting properties compared to other definitions (Minskowki, Hukuhara
differences) for example A	gH A = {0} = [0, 0]. In addition, the gH-difference of two

intervals A = [a, a] and B =
[
b, b
]

always exists, and it is equal to [24]

A	gH B =
[
min

{
a− b, a− b

}
, max

{
a− b, a− b

}]
.

Given two intervals, we define the distance between A and B by H(A, B) = max{
|a− b|,

∣∣∣a− b
∣∣∣}. It is well-known that (KC, H) is a complete metric space.

We consider the following order relation in KC.

Definition 1. Let A = [a, ā], B = [b, b̄] ∈ KC. It is said that

• A�B⇔ a ≤ b and ā ≤ b̄.
• A � B⇔ A�B and A 6= B, i.e. a ≤ b and ā ≤ b̄, with a strict inequality.
• A ≺ B⇔ a < b and ā < b̄.

It is clear that A ≺ B⇒ A � B⇒ A�B.
A fuzzy set on Rn is a mapping ũ : Rn → [0, 1]. For each fuzzy set ũ, we denote its

α-level set as [ũ]α = {x ∈ Rn | ũ(x) ≥ α} for any α ∈ (0, 1]. The support of ũ is denoted by
supp(ũ) where supp(ũ) = {x ∈ Rn | ũ(x) > 0}. The closure of supp(ũ) is defined by the
0-level of u, .i.e., [ũ]0 = cl(supp(ũ)), where cl(M) means the closure of the subset M ⊂ Rn.
The core of ũ, core(ũ), is defined by core(ũ) = {x ∈ Rn|ũ(x) = 1}.

Definition 2. A fuzzy set on R, ũ : R→ [0, 1] is said to be a fuzzy interval or fuzzy number if
the following properties are satisfied:

1. ũ is normal, i.e., there exists x0 ∈ R such that ũ(x0) = 1;
2. ũ is an upper semi-continuous function;
3. ũ(λx + (1− λ)y) ≥ min{ũ(x), ũ(y)}, x, y ∈ R, λ ∈ [0, 1];
4. [ũ]0 is compact.

Let FC denote the family of all fuzzy intervals on R. Thus, for any ũ ∈ FC, we have
that [ũ]α ∈ KC for all α ∈ [0, 1], and we denote its α-levels by [ũ]α = [uα, uα], for all α ∈ [0, 1].
A fuzzy interval is completely determined by [ũ]α = [uα, uα] satisfying certain
conditions, [17].

Triangular fuzzy numbers are a special type of fuzzy numbers which are well deter-
mined by three real numbers a ≤ b ≤ c. We write b̃ = (a, b, c) to denote the triangular
fuzzy number b̃ with core or 1-level given by the singleton {b} and whose α-levels sets are[

b̃
]α

= [a + (b− a)α, c− (c− b)α],

for all α ∈ [0, 1]. A particular case of triangular fuzzy number (or fuzzy number) are the
real numbers a ∈ R with a membership function given by χ{a}, where χA denotes the
characteristic function of the set A. In addition, considering the characteristic function, we
can see that any interval A = [a, a] is a fuzzy interval, i.e., χA is a fuzzy interval (fuzzy
number) such that [χA]

α = A, for all α ∈ [0, 1].
For fuzzy numbers, ũ, ṽ ∈ FC, represented by [uα, uα] and [vα, vα] respectively, and,

for any real number λ, we define the addition ũ + ṽ and scalar multiplication λũ as follows:

(ũ + ṽ)(x) = supy+z=x min{ũ(y), ṽ(z)}, (λũ)(x) =
{

ũ
( x

λ

)
, if λ 6= 0,

0, if λ = 0.
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It is well known that, for every α ∈ [0, 1],

[ũ + ṽ]α = [(u + v)α, (u + v)α] = [uα + vα , uα + vα], (3)

[λũ]α =
[
(λu)α, (λu)α

]
= λ[ũ]α = λ[uα, uα] = [min{λuα, λuα}, max{λuα, λuα}]. (4)

Definition 3 ([25]). Given two fuzzy intervals ũ and ṽ, the generalized Hukuhara difference
(gH-difference for short) is the fuzzy interval w̃, if it exists, such that

ũ	gH ṽ = w̃⇔
{

(i) ũ = ṽ + w̃,
or (ii) ṽ = ũ + (−1)w̃.

It is easy to show that (i) and (ii) are both valid if and only if w is a crisp number. Note
that the case (i) coincides with Hukuhara difference (see [26]), and so the gH-difference
concept is more general than the H-difference one.

If ũ	gH ṽ exists, then, in terms of α-level sets, we have that

[ũ	gH ṽ]α = [ũ]α 	gH [ṽ]α = [min{uα − vα}, max{uα − vα}], (5)

for all α ∈ [0, 1], where [u]α 	gH [v]α denotes the gH-difference between two intervals
(see [25]).

Given ũ, ṽ ∈ FC, the distance between ũ and ṽ is defined by

D(ũ, ṽ) = sup
α∈[0,1]

H([u]α, [v]α) = sup
α∈[0,1]

max{|uα − vα|, |uα − vα|}.

Thus, (FC, D) is a metric space.
Let us now consider the set of all vector fuzzy intervals, Fm

C , i.e., ũ ∈ Fm
C if ũ =

(ũ1, ..., ũm), where each ũi ∈ FC. For any ũ ∈ Fm
C , we have that

[ũ]α = {x = (x1, ..., xm) ∈ Rm|ũi(xi) ≥ α, i = 1, ..., m}.

Geometrically, it would be a Cartesian product of closed intervals in Rm

[ũ]α =
m

∏
i=1

[ũi]
α.

Lemma 1. It is verified that [ũ]α ⊆ [u]0, for all α ∈ [0, 1], ∀ũ ∈ Fm
C .

Proof. If x ∈ [ũ]α, then ũi(xi) ≥ α ≥ 0, for all i = 1, ...m and then x ∈ [ũ]0.

We recall the usual order for fuzzy intervals based on α-level sets:

Definition 4. For ũ, ṽ ∈ FC, it is said that:

• ũ�ṽ, if for every α ∈ [0, 1], [ũ]α�[ṽ]α.
If ũ�ṽ, ṽ�ũ, then ũ = ṽ.

• ũ � ṽ if ũ�ṽ and ∃α0 ∈ [0, 1], such that [ũ]α0 � [ṽ]α0 .
• ũ ≺ ṽ if [ũ]α ≺ [ṽ]α, ∀α ∈ [0, 1].

For ũ, ṽ ∈ FC if either ũ�ṽ or ṽ�ũ, then it is said that ũ and ṽ are comparable; otherwise,
they are incomparable.

Note that � is a partial order relation on FC. Thus, ṽ�ũ instead of ũ�ṽ can be written.
We observe that, if ũ ≺ ṽ, then ũ � ṽ and then ũ�ṽ.
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Henceforth, S denotes an open subset of R. Let us consider f̃ : S → FC a fuzzy
function or fuzzy mapping. For each α ∈ [0, 1], we associate with f̃ the interval-valued
functions family f̃α : S→ KC given by f̃α(t) = [ f̃ (t)]α. For any α ∈ [0, 1], we denote

f̃α(t) =
[

f
α
(t), f α(t)

]
=
[

f (α, t), f (α, t)
]
.

Here, for each α ∈ [0, 1], the real-valued endpoint functions f
α
, f α : S→ R are called

lower and upper functions of f̃ , respectively.

3. Multiobjective Problem with Fuzzy Objective Functions

In this paper, we consider the following multiobjective fuzzy mathematical program-
ming problem:

(P) Min
(

f̃1(x), ..., f̃p(x)
)

where f̃ j : S→ FC, j = 1, ..., p are fuzzy functions defined on S, an open non-empty subset
in R.

Interpreting the meaning of ”minimize a vector fuzzy function,” we give a similar
solution concept to the non-dominated solution than the one introduced by Pareto, and
usually considered in real-valued multiobjective optimization.

Definition 5. Let f̃ : S→ F p
C be a vector fuzzy function defined on S. It is said that x∗ ∈ S is an

efficient solution or Pareto solution if there exists no x ∈ S such that f̃ j(x)� f̃ j(x∗), ∀j = 1, ..., p
and ∃k such that f̃k(x) ≺ f̃k(x∗).

Notice that the aforementioned definition coincides with the classic one when the
functions are real-valued.

In [10], a defuzzification function, η : FC → R and two order relations are defined

Definition 6. Let ũ and ṽ be fuzzy numbers. We write

• ũ �1 ṽ if the Hukuhara difference ṽ	H ũ exists and η(ṽ	H ũ) ≥ 0.
• ũ �2 ṽ if the Hukuhara difference ṽ	H ũ exists and ṽ	H ũ is nonnegative, where a fuzzy

number ã is said to be nonnegative if aα ≥ 0 for all α ∈ [0, 1].

Notice that these definitions can only be applied to fuzzy numbers such that their
Hukuhara difference exists, i.e., µ([ũ]α) ≤ µ([ṽ]α), ∀α ∈ [0, 1], where µ is the interval range.

Now, we are going to relate those order relations on FC with the one we propose to
use ‘’�”:

Proposition 1. �2 and � coincide when Hukuhara difference does exist.

Proof. If A, B ∈ KC, A�B if and only if A	gH B�[0, 0] because

A	gH B =
[
min

{
a− b, a− b

}
, max

{
a− b, a− b

}]
.

If A�B, then a− b ≤ 0 and a− b ≤ 0. Thus, A	gH B�[0, 0] and reciprocally.
In particular, if the Hukuhara difference does exist, then ṽ	H ũ = ṽ	gH ũ. If ṽ	gH ũ

is nonnegative [0, 0]�[ṽ	gH ũ]α for all α ∈ [0, 1]. From (5), [0, 0]�[ṽ]α 	gH [ũ]α, therefore
[ũ]α�[ṽ]α and ũ�ṽ from Definition 4.

In [23], it is shown that a minimum based on average index ordering relation is a
minimum for α-level sets ordering relation when η(ũ) =

∫
Y λuα + (1− λ)uαdP(α), where

Y is a subset of the unit interval and P a probability distribution function on Y. In general:

Proposition 2. If η(ã) ≥ 0 when ã is a nonnegative fuzzy number, then �1 is equivalent to �.
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Proof. Let us suppose that ṽ	H ũ exists, then ũ �1 ṽ⇔ η(ṽ	H ũ) ≥ 0⇔ η(ṽ	gH ũ) ≥
0⇔ ṽ	gH ũ is nonnegative⇔ [0, 0]�[ṽ	gH ũ]α = [ṽ]α	gH [ũ]α forall α ∈ [0, 1]⇔ ũ�ṽ.

Definition 7. An interval approximation of a fuzzy number is an operator I : FC → KC such
that, for ũ, ṽ ∈ FC,

(i) I(ũ) ⊂ supp(ũ),
(ii) core(ũ) ⊂ I(ũ),
(iii) ∀ε > 0, ∃δ > 0/D(ũ, ṽ) < δ⇒ H(I(ũ), I(ṽ)) < ε.

Proposition 3 ([12]). The interval

N(ũ) =
[∫ 1

0
u(x, α)dα,

∫ 1

0
u(x, α)dα

]
is an Interval Approximation of fuzzy number ũ such that N(ũ) minimizes D(ũ, I(ũ)) for all I
belonging to the space of interval approximation operators of fuzzy numbers. N(·) is called Nearest
Interval Approximation (NIA).

Notice that D(ũ, I(ũ)) is the distance between fuzzy numbers, defined in FC, and it
can be considered here since each interval is also a fuzzy number with constant α-level sets
for all α ∈ [0, 1].

In [13] to find a solution of (P), the authors have approximated it by the following
interval multiobjective program:

(P1) Min
(

F1(x), ..., Fp(x)
)

where Fj(x) stands for the nearest interval approximation (NIA) of f̃ j(x), i.e., Fj(x) =[∫ 1

0
f

j
(x, α)dα,

∫ 1

0
f j(x, α)dα

]
, x ∈ S that it is among the interval approximation operators

of a fuzzy number, the one that minimizes the distance to the fuzzy number.

Definition 8 ([13]). x∗ ∈ S is called a satisficing solution of (P) if it is a Pareto optimal solution
of (P1), i.e., if there is no x ∈ S such that Fj(x) � Fj(x∗) for all j = 1, ..., p and F(x) 6= F(x∗).

Proposition 4. If x∗ is a satisficing solution of (P), then x∗ is a Pareto solution for (P).

Proof. Let us suppose that there exists x ∈ S such that f̃ j(x)� f̃ j(x∗). Then, it follows that
f

j
(x, α) ≤ f

j
(x∗, α) and f j(x, α) ≤ f j(x∗, α), ∀α and thus Fj(x) ≤ Fj(x∗) and besides there

exists k such that f
k
(x, α) < f

k
(x∗, α) and f k(x, α) < f k(x∗, α), ∀α and thus Fk(x) < Fk(x∗).

It stands in contradiction to the hypothesis.

In this way, it is demonstrated that the Pareto solution concept used in this work
includes as particular cases those existing in the literature.

4. gH-Differentiable Fuzzy Functions

In Optimization Theory, when the functions are differentiable, their gradients al-
low us to find analytical optimality conditions. Different fuzzy differentiability concepts
have been used in fuzzy optimization (H-differentiability, G-differentiability, level-wise
differentiability), but they are more restrictive than the gH-differentiability [27–29].

Next, we present the gH-differentiable fuzzy function concept based on the gH-
difference of fuzzy numbers.

Definition 9 ([30]). The gH-derivative of a fuzzy function f̃ : S→ FC at t0 ∈ S is defined as

f̃ ′(t0) = lim
h→0

1
h
[

f̃ (t0 + h)	gH f̃ (t0)
]
. (6)
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If f̃ ′(t0) ∈ FC satisfying (6) exists, we say that f̃ is generalized Hukuhara differentiable
(gH-differentiable, for short) at t0.

The following results establish relationships between gH-differentiability of f̃ and the
gH-differentiability of the interval-valued functions family f̃α, and the differentiability of
its endpoint functions f

α
and f α.

Notation 1. For simplicity, we use the following notation for an interval. If α, β are the end-points
of the interval A ∈ KC (but it is not necessarily α ≤ β), we write A = [α

∨
β].

Theorem 1 ([31]). If f̃ : S→ FC is gH-differentiable at t0 ∈ S, then f̃α is gH-differentiable at t0
uniformly in α ∈ [0, 1] and

f̃ ′α(t0) = [ f̃ ′(t0)]
α,

for all α ∈ [0, 1].

From Theorem 1 and using Theorem 8 given by Qiu [32], it is verified that

Theorem 2. Let f̃ : S → FC be a fuzzy function. If f̃ is gH-differentiable at t0 ∈ S, then
the lateral derivatives of real-valued endpoints functions ( f

α
)′−(t0), ( f

α
)′+(t0), ( f α)

′
−(t0) and

( f α)
′
+(t0) exist, uniformly in α ∈ [0, 1], and satisfy

[ f̃
′
(t0)]

α = f̃ ′α(t0) =
[
( f

α
)
′
+(t0)

∨
( f α)

′
+(t0)

]
.

Remark 1. As a consequence of the aforementioned results, we use the following notation:

[ f̃
′
(t0)]

α = f̃ ′α(t0) =
[
( f̃
′
α(t0))

L, ( f̃
′
α(t0))

U
]

where

( f̃
′
α(t0))

L = min
{
( f

α
)
′
+(t0), ( f α)

′
+(t0)

}
= min

{
( f

α
)
′
−(t0), ( f α)

′
−(t0)

}
,

( f̃
′
α(t0))

U = max
{
( f

α
)
′
+(t0), ( f α)

′
+(t0)

}
= max

{
( f

α
)
′
−(t0), ( f α)

′
−(t0)

}
.

Definition 10. Given a fuzzy vector function f̃ = ( f̃1, ..., f̃p) ∈ F p
C , we say that f̃ is a vector

gH-differentiable fuzzy function at t0 ∈ S if and only if f̃ j is gH-differentiable at t0, for all
j = 1, ..., p.

5. Necessary Conditions for Pareto Solutions

In this section, we prove a necessary optimality condition for Pareto solutions and give
an algorithm based on it, in order to find all the potential candidates to be optimum for our
problem. With the necessary optimality conditions, we can exclude feasible solutions that
are not optimums. In Section 3, we have proved that optimum concepts used until now
in the different strategies to solve a fuzzy multiobjective programming problem are more
restrictive than the Pareto solution concept based on the α-level sets. Thus, the algorithm
we develop here remains valid for the other optimum notions.

In [16], the same Pareto efficiency notion we propose in this paper is used, and a
sufficient optimality conditions for it is proved, but using more restrictive hypotheses on
the functions (level-wise differentiable functions) than the ones we suppose here. Thus, the
necessary optimality condition presented here and the algorithm developed remain valid
in the context of that paper [16].
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Notation 2. For convenience, we introduce the following notations. Let A = (A1, ..., Ap) be with
Aj ∈ KC. Letting Λ ∈ Mp×2, we denote by Λ× A the lineal combination

Λ× A =
p

∑
j=1

λj1aj + λj2aj.

If 0 ∈ Aj for some j = 1, ..., p, then there exists Λ ∈ Mp×2, λji ≥ 0 and not all zero, such
that: Λ× A = 0.

If Λ× A = 0 with λji ≥ 0, but not all zero, there exist λ, λ, (λ, λ) ≥ 0 such that

0 ∈
[
λTa, λ

Ta
]
.

with a = (a1, ..., ap) and a = (a1, ..., ap).

Proposition 5. Let f̃ be a vector gH-differentiable fuzzy function on S. If x∗ ∈ S is an efficient or
Pareto solution for (P), then the following system does not have a solution at y ∈ R:

y
(

f̃ ′j (x∗)
)
≺ 0̃p j = 1, ..., p. (7)

Proof. Arguing by contradiction, let us suppose that ∃y ∈ R such that

y f̃ ′j (x∗) ≺ 0̃ ∀j = 1, ...p.

Then,
y[ f̃ ′j (x∗)]α ≺ [0, 0] ∀α ∈ [0, 1] ∀j = 1, ..., p.

From Theorem 2, for each j, there exist ( f j(α, (x∗))′+ and ( f j(α, x∗))′+, uniformly in
α ∈ [0, 1], and they satisfy

[ f̃ ′j (x∗)]α =
[
min

{
( f j(α, x∗))′+, ( f j(α, x∗))′+

}
, max

{
( f j(α, x∗))′+, ( f j(α, x∗))′+

}]
Since

y
[

f ′j (x∗)
]α
≺ [0, 0]⇔

{
y( f j(α, x∗))′+ < 0
y( f j(α, x∗))′+ < 0 , ∀α ∈ [0, 1].

From
y( f j(α, x∗))′+ = lim

t→0+

1
t
( f j(α, x∗ + yt)− f j(α, x∗)) < 0

Thus, it follows that there exist ε+j > 0, such that, for all t, with 0 < t < ε+j

f j(α, x∗ + yt)− f j(α, x∗) < 0 ∀α ∈ [0, 1],

f j(α, x∗)− f j(α, x∗) < 0, ∀α ∈ [0, 1]. (8)

In addition, analogously there exists ε+j > 0 such that, for all t, with 0 < t < ε+j

f j(α, x∗ + yt)− f j(α, x∗) < 0 ∀α ∈ [0, 1],

f j(α, x∗)− f j(α, x∗) < 0, ∀α ∈ [0, 1]. (9)

Taking ε = min{ε+j , ε+j : j = 1, ..., p} , t ∈ (0, ε) and from (8) and (9):

f (α, x)− f (α, x∗) < 0 and f (α, x)− f (α, x∗) < 0, ∀α ∈ [0, 1],
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where we suppose that x ∈ S. Hence, ∃x ∈ S and f̃ (x) ≺ f̃ (x∗), and this is a contradiction
to x∗ is an efficient solution for f̃ .

Now, we prove the main result of this section.

Theorem 3. Let f̃ : S → F p
C be a vector gH-differentiable fuzzy function at x∗ ∈ S. If x∗ is an

efficient or Pareto solution for (P), then there exists a non-negative matrix Λ ∈ Mp×2 such that

Λ×
[

f̃ ′(x∗)
]0

= 0. (10)

Proof. If x∗ is a Pareto solution for f̃ , then (7) does not have a solution. From Lemma 1,

y
[

f̃ ′(x∗)
]α ≺ [0, 0], ∀α ∈ [0, 1] ∀j = 1, ..., p⇔

y
[

f̃ ′j (x∗)
]0
≺ [0, 0] ∀j = 1, ..., p.

Now, let us consider the following lineal system and let us prove it has no solution:{
yA < 0
yB < 0

(11)

where A, B ∈ Mp×1 and

A =


(
( f̃ ′1)0(x∗)

)L

...(
( f̃ ′p)0(x∗)

)L

, B =


(
( f̃ ′1)0(x∗)

)U

...(
( f̃ ′p)0(x∗)

)U

.

If (11) has a solution, then the system (7) also would have a solution, and this is
impossible by Proposition 5.

Since (11) is a system of linear inequalities and it does not have solution, from Gordan’s
alternative theorem, there exist α, β ∈ Rp with α = 0, β = 0 but not all zero, such that

ATα + BT β = 0⇔
p

∑
j=1

αj

(
( f̃ j
′
)0(x∗)

)L
+ β j

(
( f̃ ′j )0(x∗)

)U
= 0. (12)

Redefining Λ = (αj, β j), we obtain that there exists Λ ∈ Mp×2 such that

Λ×
[

f̃ ′(x∗)
]0

= 0.

In addition, the proof is completed.

Remark 2. If there exists j = 1, ..., p such that 0 ∈ [ f̃ ′j (x∗)]0, (12) is verified, and then, to identify
possible candidates for Pareto solutions, is reduced to identify those feasible solutions whose 0-level
set of the derivative contains the zero element. This coincides with the result for a unique objective
function given by Osuna-Gómez et al. [23].

Remark 3. Expression (12) is equivalent to the existence of a positive linear combination of

{( f ′
j
)+(x∗, 0), ( f ′ j)+(x∗, 0), j = 1, ..., p}

equal to zero. This means that (12) is equivalent to the existence of λ, λ ∈ Rp, λ, λ = 0 not both
zero such that

λT( f̃ ′)L
0 (x∗) + λ

T
( f̃ ′)U

0 (x∗) = 0.



Mathematics 2021, 9, 992 11 of 14

From Theorems 2, 3 and Remark 3, an algorithm to identify the Pareto solutions
candidates can be designed, in the same form as in classical Mathematical Programming.
We solve the equations where the gradients are equal to zero in order to identify the
possible optima.

The corresponding flow chart is (Figure 4):

Figure 4. Flow chart.

The algorithm can be described as:

Step 1. Start and input p (Objective function ( f̃1(x), ..., f̃p(x)))
Step 2. Put j = 1, P = ∅, P+ = ∅, P− = ∅
Step 3. While j ≤ p
Step 3.1 P+(j) = P−(j) = ∅.
Step 3.2 Calculate f ′

j
(x, 0)+, f

′
j(x, 0)+

Step 3.3 Define and find lj(x) = min{ f ′
j
(x, 0)+, f

′
j(x, 0)+},

uj(x) = max{ f ′
j
(x, 0)+, f

′
j(x, 0)+}
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Step 3.4 Put [lj(x), uj(x)]
Step 3.5 For x such that lj(x) ≤ 0 ≤ uj(x), then x ∈ P.
Step 3.6 For x such that lj(x) ≥ 0, then x ∈ P+(j)
Step 3.7 For x such that uj(x) ≤ 0, then x ∈ P−(j)
Step 3.8 j = j + 1
Step 4. Set P+ =

⋃p
j=1 P+(j) and P− =

⋃p
j=1 P−(j). If x ∈ P+

⋂
P− then x ∈ P

Step 5. Print P= possible Pareto solutions set and stop.

Example 1. We look for the Pareto optimal solutions for

(P) Min
(

f̃1(x), f̃2(x)
)
, x ∈ R

• In step 1, let us consider two fuzzy functions f̃1, f̃2 : R→ FC, whose α-level sets are given by

[ f̃1(x)]α = [(x− 2 + α, (x− α)2], [ f̃2(x)]α = [1 + α, 2(3− α)]x, α ∈ [0, 1]

, respectively, because f̃2(x) = Cx, where C is a fuzzy interval.
• In step 2, for j = 1, we begin with P = ∅, P+ = ∅ and P− = ∅.
• In step 3, for j = 1, [ f̃ ′1(x)]0 = [min{2x− 4, 2x}, max{2x− 4, 2x}].

Then, l1(x) = 2x − 4 ≤ 0 ≤ u1(x) = 2x, so we get that P = [0, 2] is a possible Pareto
efficient solution for (P), P+(1) = [2,+∞) and P−(1) = (−∞, 0]
For j = 2, [ f̃ ′2(x)]0 = [1, 6] and so P = ∅, P+(2) = R and P−(2) = ∅

• In Step 4, P+ = P+(1)
⋃

P+(2) = R and P− = P−(1)
⋃

P−(2) = (−∞, 0]
• In step 5, in summary, we get that x ∈ (−∞, 2] is a possible Pareto efficient solution for (P).

It is represented in the following Figure 5:

Figure 5. Pareto solutions set.

6. Conclusions

In this paper, we have addressed the resolution of a fuzzy multiobjective programming
problem using the α-level sets optimization. We have obtained a necessary condition for
Pareto-type solutions from the α-level sets and have provided an algorithm and an example
based on it.

The advantages of our method are focused on: the solution concept used, based on
the α-level sets, encompassing those previously presented in the literature; the algorithm
proposed, that locates the optimal candidates easily and comfortably; the generalization
to multiobjective fuzzy case of results obtained for fuzzy scalar problems and real-valued
multiobjective problems.
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The disadvantages or limitations are the necessity of gH-differentiability for the
involved functions, and the proposed algorithm does not allow for identifying the points
that are not solutions.

In our opinion, future work should be based, on the one hand, on obtaining sufficient
conditions that can identify optimal solutions to multiobjective problems, not only candi-
dates for optimal solutions and that are generalizable to control and variational problems.
On the other hand, future work should focus on exploring more complete algorithms
(such as the bisection search method, Newton’s method, the cyclic coordinate method,
Rosenbrock’s method, and others) based on the obtained optimality conditions that allow
for the effective and practical search of the solutions.
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