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Abstract: Software reliability models (SRMs) are widely used for quantitative evaluation of software
reliability by estimating model parameters from failure data observed in the testing phase. In
particular, non-homogeneous Poisson process (NHPP)-based SRMs are the most popular because of
their mathematical tractability. In this paper, we focus on the parameter estimation algorithm for
NHPP-based SRMs and discuss the EM algorithm for generalized fault count data. The presented
algorithm can be applied for failure time data, failure count data, and their mixture. The paper derives
the EM-step formulas for basic 12 NHPP-based SRMs and demonstrate a numerical experiment to
present the convergence property of our algorithms. The developed algorithms are suitable for an
automatic tool for software reliability evaluation.

Keywords: software reliability model; maximum likelihood estimation; EM algorithm; non-
homogeneous Poisson process; generalized failure count data

1. Introduction

Software reliability models (SRMs) are used to assess quantitative reliability and to
control the quality of software products. Since Jelinski and Moranda [1], and Goel and
Okumoto [2] presented SRMs based on stochastic processes, numerous SRMs have been
proposed [3–8]. In particular, non-homogeneous Poisson process (NHPP)-based SRMs
have become popular in representing the dynamics of failure occurrence processes in a
variety of situations [9–13]. By using an NHPP-based SRM, we predict the future behavior
of software failure, i.e, the number of failures experienced in future, and estimate the
quantitative measure of software reliability.

The advantage of NHPP-based SRMs is simplifying the stochastic analysis. NHPPs
are generally dominated by mean value functions. The mean value function indicates the
expected number of failures experienced at arbitrary testing time. By choosing appropriate
mean value functions, NHPP-based SRMs can fit any observed failure data. The NHPP-
based SRMs and the mean value functions have a one-to-one correspondence.

The Goel–Okumoto model [2]; Goel model [2]; Musa–Okumoto model [14]; Ohba [15,16];
Yamada, Ohba, and Osaki model [17]; Zhao and Xie model [18] are early NHPP-based
SRMs. They were constructed with the deterministic debugging scenarios of mean value
functions. Pham [19] solved a generalized differential equation by which the mean value
function in the NHPP-based SRM is governed and proposed a generalized SRM with many
redundant parameters.

Apart from such a deterministic modeling framework, almost all NHPP-based SRMs
can be characterized as Markov processes. Shantikumar [20] discussed a modeling frame-
work to integrate time-homogeneous Markov processes and NHPPs by using a binomial-
type stochastic point process. Langberg and Singpurwalla [21] presented a unified mod-
eling framework for almost all NHPP-based SRMs. Chen and Singpurwalla [22] also
discussed the framework with a self-exciting point process. Miller [23] introduced the
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concept of exponential order statistics and drastically extended Langberg and Singpur-
walla’s idea. In fact, the realizations of NHPP-based SRM can be described by either the
general order statistics or record value statistics of the underlying software fault data,
where the fault-detection times are assumed to be independent and identically distributed
(i.i.d.) random variables. Specifically, the general order statistics are based on the order
of all the fault detection times, and the record value statistics focus on their maximum
detection time.

In this paper, we focus on the parameter estimation problem of NHPP-based SRMs.
In general, there are three steps to evaluating the software reliability with NHPP-based
SRM. (i) Collect the failure data such as the number of detected bugs in the testing phase, (ii)
estimate the model parameters of NHPP-based SRM to fit it to the collected data, and (iii)
compute reliability measures from the NHPP-based SRM with the estimated parameters.
Based on quantitative measures, we control the software development process. As a typical
usage of NHPP-based SRM, we estimate the number of failures that will be experienced
in the future and decide whether to continue testing the software or the software can be
released. In other words, the parameter estimation of NHPP-based SRM is frequently
executed in the software development phase. The computation cost of the estimation
should be small in practice.

Therefore, many authors have concerns about the parameter estimation problem on
NHPP-based SRMs. Nevertheless, in actual software reliability assessments, a few NHPP-
based SRMs and familiar maximum likelihood (ML) estimation methods are still used
conventionally. The main reason for this is that the practitioners wish to use intuitively sim-
ple statistical methods, which exclude empirically based tuning parameters for a few SRMs
that have survived a long history of software reliability engineering. In fact, the Bayesian
estimation methods are still minor in software engineering practice, although its theoretical
benefit is recognized. On the other hand, ML estimation is based on the maximization of
likelihood function with software failure data and possesses several rational properties
such as asymptotic efficiency. Hossain and Dahiya [24] derived necessary and sufficient
conditions that the maximum likelihood estimates (MLEs), which satisfy the non-linear
likelihood equations, exist in Goel and Okumoto SRM [2]. Knafl and Morgan [25] presented
a method to systematically solve the likelihood equations with two model parameters.
Joe [26] also discussed the confidence interval of MLEs. Zhao and Xie [18] provided the
MLEs for an extended Goel and Okumoto SRM. Jeske and Pham [27] discovered empiri-
cally that the MLEs in Goel and Okumoto SRM are not statistically consistent. It should be
noted, however, that ML estimation is always possible for all NHPP-based SRMs. Even if
the likelihood functions are strictly concave in model parameters, it is difficult to solve the
likelihood equations analytically. For instance, in the cases where the likelihood functions
are not concave and where there exists no solution for the likelihood equations inside the
parameter space, the conventional methods to calculate the MLEs cannot be used. Usually,
the Newton method and the Nelder–Mead method are used to solve the maximization
problem in the existing literature. From the recent development of computational ability, it
is becoming easier to handle a large-scale complex optimization problem.

On the other hand, it is known that the local convergence property of the Newton
method is a weakness for practical application. The local convergence property means
that the convergence radius of algorithm is limited, and thus, it may fail to obtain a result
if we set unsuitable initial guesses. For example, when we develop the application to
automatically obtain parameter estimates from given data, the local convergence property
becomes troublesome when choosing the initial guesses. Therefore, the Newton method is
not suitable for this purpose. Additionally, the Nelder–Mead method is one of the direct
search methods. The convergence property of the Nelder–Mead method is improved from
the Newton method. However, some design parameters should be provided appropriately
for the Nelder–Mead method. Even if we use the Nelder–Mead algorithm, the convergence
of algorithm is not always guaranteed for any given data.
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From the early 2000s, our research group has developed an alternative parameter
estimation algorithm based on the EM (expectation maximization) principle [28,29] and
applied it to the software reliability assessment based on NHPP-based SRMs [30–40]. As
another examples of EM algorithms in SRMs, Kimura and Yamada [41], Leadoux [42],
and Okamura and Dohi [43] attempted to use EM algorithms to estimate the imperfect
debugging model [44] and architecture-based SRMs [45,46]. Their models were based on
the continuous-time Markov chain and are closely related to Markov-modulated Poisson
processes and/or Markovian arrival processes. Additionally, Zeephongsekul et al. [47] and
Nagaraju et al. [48] proposed ECM (expectaton conditional maximization) algorithms for
NHPP-based SRMs to handle several specific models.

The EM algorithm is an algorithm that finds maximum likelihood estimates for a
statistical model with incomplete data. The idea behind our EM algorithms is to find the
incomplete data structure of NHPP-based SRMs. Concretely, in NHPP-based SRMs, we
assume that the number of failures is finite due to a finite number of software bugs, but all
of them cannot be observed, i.e., the number of reaming software failures can be regarded
as missing data. From this insight, the EM algorithm for an individual NHPP-based SRM
is developed. Although the convergence speed of EM algorithm is generally slower than
other general-purpose numerical methods such as the Newton method, it has a global
convergence property. This property allows us to reduce efforts in choosing good initial
guesses for the model parameters and is suitable for automating the estimation procedure.
In our past work [49], we summarized EM algorithms for 12 NHPP-based SRMs when
the failure data were time data. The failure time data consisted of a set of exact failure
times experienced. In practice, it is difficult to obtain exact failure times. Generally, we
record failure count data consisting of the number of failures experienced for time intervals.
For example, it is reasonable to record the number of failures per working day. From
this reason, this paper presents the EM algorithms for 12 basic NHPP-based SRMs when
the failure count data are given. In particular, we consider the generalized failure count
data that involve both failure time and count data formats, and thus, the developed EM
algorithms can be applied to either failure time data, failure count data, or their mixture.

We highlight our contributions here: (i) we derive the EM-step formula for NHPP-
based SRMs with a finite number of failures under generalized fault count data, (ii) we
derive concrete EM-step formulas for 12 basic NHPP-based SRMs, and (iii) we demon-
strate the performance on the convergence property of the presented algorithms with real
software failure data. To our best knowledge, this is the first paper that presents the EM
algorithm for the generalized fault count data in 12 basic NHPP-based SRMs.

This paper is organized as follows. In Section 2, we introduce NHPP-based SRMs that
are considered in this paper. In particular, NHPP-based SRMs are classified by failure time
distribution and present the relationship between basic 12 NHPP-based SRMs and their
failure time distributions. In Section 3, we derive the EM-step formulas for 12 basic NHPP-
based SRMs. Section 4 is devoted to a numerical example to compare the convergence
properties of EM algorithm, the Nelder–Mead method, and the quasi-Newton method.
Finally, we conclude the paper with remarks in Section 5.

2. NHPP-Based SRMs
2.1. Model Description

Let {X(t), t ≥ 0} denote the number of software failures experienced before time t.
We make the following model assumptions [21]:

• Assumption A: A software failure occurs at a random time. The probability distribu-
tion of all failure times are identical and mutually independent.

• Assumption B: The number of inherent software faults causing failures is finite.

Here, F(t) and N are the cumulative distribution function of the failure time and the
number of inherent faults. Then, the probability mass function of the cumulative number
of failures experienced by time t is
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P(X(t) = n) =
(

N
n

)
F(t)nF(t)N−n, (1)

where F(·) = 1− F(·). This is often called the framework of generalized order statistics [21].
For instance, when the failure distribution is an exponential distribution, the corresponding
SRM, the so-called exponential order statistics model, is the same as the Jelinski–Moranda
SRM [1].

Most NHPP-based SRMs are advanced models of the generalized order statistics
models. We make an additional model assumption [21]:

• Assumption C: The number of inherent faults is unknown, but prior information is
given by a Poisson distribution.

When the expected number of inherent faults is ω, the cumulative number of software
failures at time t has the following probability mass function:

P(X(t) = n) =
(ωF(t))n

n!
e−ωF(t). (2)

Equation (2) is equivalent to the probability mass function of NHPP with mean value
function ωF(t). In this modeling framework, the failure time distribution F(t) specifies an
NHPP-based SRM.

Since the NHPP-based SRM is characterized by the failure time distribution, there
have been a number of NHPP-based SRMs that change the failure time distribution. In this
paper, we propose basic NHPP-based SRMs using well-known statistical distributions as
the failure time distribution. Table 1 shows 11 basic NHPP-based SRMs and their failure
time distributions. In the table, most of the basic NHPP-based SRMs correspond to the
existing traditional NHPP-based SRMs. ‘exp’ is the so-called Goel and Okumoto model [2],
‘gamma’ is a generalized delayed S-shaped model [17,18], ‘pareto‘ is a modified Duane
model [50], ‘tlogis‘ is an inflection S-shaped model [15], and ‘lxvmin‘ is the Goel (Weibull)
model [51].

Table 1. Basic NHPP-based SRMs.

Model Failure Time Distribution

exp Exponential distribution [2]
gamma Gamma distribution [17,18]
pareto Pareto type-II distribution [50]
tnorm Truncated normal distribution [34]
lnorm Log-normal distribution [34]
tlogis Truncated logistic distribution [15]
llogis Log-logistic distribution [52]
txvmax Truncated extreme-value distribution (max) [35]
lxvmax Log-extreme-value distribution (max) [35]
txvmin Truncated extreme-value distribution (min) [35]
lxvmin Log-extreme-value distribution (min) [35,51]

2.2. Parameter Estimation

As mentioned before, the model parameters of NHPP-based SRMs should be esti-
mated from software failure data to predict the future tendency of a software failure. The
most commonly used technique for parameter estimation is maximum likelihood (ML)
estimation. In the context of ML estimation, we found model parameters that maximize the
log-likelihood function (LLF). Since the LLF depends on the failure data experienced, the
ML estimation of NHPP-based SRMs has been discussed for two types of data: failure time
data and count data. The failure time data is a set of exact times in which a software failure
occurs in the testing phase. The count data, equivalently called grouped data, consists of
the number of failures experienced for time intervals. The estimation problems for these
two data structures have been discussed separately.



Mathematics 2021, 9, 985 5 of 18

This paper deals with a generalized data structure to express both failure time and
count data. Our data structure is D := {(t1, x1, ui), . . . , (tk, xk, uk)}, where xi failures that
occur at the ith time interval, (xi−1, xi). In addition, if ui = 1, an additional failure occurs
at the end of the ith time interval, i.e, at time xi. Otherwise, if ui = 0, no failure occurs
at the instant. If ui = 0 for all time intervals, the data turns out the failure count data. If
xi = 0 and ui = 1 for all i, D is the failure time data.

Based on the generalized data, the LLF for NHPP-based SRMs is written in the
following form:

LLF(ω, θ) =
k

∑
i=1

(xi + ui) log ω +
k

∑
i=1

xi log{F(ti; θ)− F(ti−1; θ)}

+ ∑
i=1

ui log f (ti; θ)− log xi!−ωF(tk; θ). (3)

Then, the problem is to find the optimal (ω, θ), so-called maximum likelihood es-
timates (MLEs), maximizing LLF(ω, θ). However, it is noted that we cannot derive the
closed form solution of MLEs. That is, we need to utilize numerical optimization techniques
such as the Newton method, quasi-Newton method, and Nelder–Mead method.

Although conventional methods such as the Newton method and the Nelder–Mead
method may be occasionally useful in computing MLEs of the NHPP-based SRMs, it is
worth noting that these aim to solve unconstrained optimization problems in ML estimation.
However, in many cases, we have to cope with constrained optimization problems because
almost all of the model parameters of NHPP-based SRMs are implicitly constrained, such
as positive constraint.

3. EM Algorithms for NHPP-Based SRMs

This paper develops numerical procedures to compute MLEs for NHPP-based SRMs
with generalized data. The proposed estimation algorithms are based on the EM principle.
The EM algorithm is one of the statistical approaches to compute the MLEs for incomplete
data and is numerically stable because of its global convergence property. Moreover, the
proposed EM algorithms for NHPP-based SRMs are based on the closed forms of MLEs
for an arbitrary fault-detection time distribution and are capable of solving constrained
optimization problems. Although we have already developed EM algorithms for failure
time data and failure count data for several basic NHPP-based SRMs, this paper revisits
their EM algorithm when generalized data are given.

3.1. EM Algorithm

The EM algorithm is an iterative method for computing ML estimates with incomplete
data [28,29]. Let D and U be observable and unobservable data vectors, respectively, and
θ be a model parameter vector θ to be estimated from only the observable data. In the
ML estimation, we find a parameter vector by maximizing the following log-likelihood
function (LLF) L(θ;D):

L(θ;D) = log p(D; θ) = log
∫

p(D,U ; θ)dU , (4)

where p(·) is any probability density or mass function and thus p(D,U ; θ) denotes the
likelihood function for complete data (D,U ).

Let Q(θ|θ′) denote the conditional expected LLF with respect to the complete data
vector (D,U ) using the posterior distribution for unobservable data vector with a given
parameter vector θ′:

Q(θ|θ′) = E[log p(D,U ; θ)|D; θ′]

=
∫

p(U|D; θ′) log p(D,U ; θ)dU . (5)
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Then, the EM algorithm consists of an E-step and an M-step. The E-step computes
the conditional expected LLF with respect to the complete data vector (D,U ) using the
posterior distribution for unobservable data vector with provisional parameter vector
θ′, i.e., Q(θ|θ′). In the M-step, we find a new parameter vector θ′′ that maximizes the
expected LLF:

θ′′ := argmax
θ

Q(θ|θ′), (6)

and θ′′ becomes a provisional parameter vector at the next E- and M-steps. These steps
surely increase the marginal LLF. The E- and M-steps are repeatedly executed until the
parameters converge.

3.2. EM Algorithm for NHPP-Based SRMs

Consider the complete data in NHPP-based SRMs, T1 < T2 < . . . < TN , where Ti
is the ith failure time and N is the number of all the failures. It is worth noting that the
number of all the failures in software is unobserved. Since N is the Poisson-distributed
random variable and Ti obeys F(·; θ), the complete LLF is given by

LLF(ω, θ) = N log ω−ω +
N

∑
i=1

log f (Ti; θ). (7)

From the standard argument of MLEs, the MLEs of ω and θ can be derived as

ω = N (8)

and
θ = argmax

θ

N

∑
i=1

log f (Ti; θ) (9)

respectively. These imply that the estimation problem of NHPP-based SRMs under com-
plete data can be decomposed into separate problems for two distribution functions:
Poisson distribution and the failure time distribution.

Since the number of failures and the exact failure time in intervals are unobserved, the
generalized data D := {(t1, x1, u1), . . . , (tk, xk, uk)} are incomplete data. By applying the
EM algorithm, we have the following EM-step formulas for NHPP-based SRMs with the
generalized data:

ω ← E[N|D; ω′, θ′] (10)

and

θ← argmax
θ

E

[
N

∑
i=1

log f (Ti; θ)

∣∣∣∣∣D; ω′, θ′
]

(11)

Additionally, we obtain the following formula to compute the expected values. For
any measurable function h(·), the expected value with the generalized data is expressed as

E

[
N

∑
i=1

h(Ti)

∣∣∣∣∣D; ω′, θ′
]
=

n

∑
i=1

 xi
∫ ti

ti−1
h(z) f (z; θ′)dz∫ ti

ti−1
f (z; θ′)dz

+ uih(ti)


+ ω′

∫ ∞

tk

h(z) f (z; θ′)dz, (12)

where f (z; θ) is a probability density function (p.d.f.) of failure time provided that the
parameter vector is θ. The derivation of this formula is given in Appendix A.

exp: ‘exp’ is the model where the failure time distribution is an exponential distribution.
This model is exactly the same as the Goel–Okumoto model [2]. Define the c.d.f. of failure
time as

F(t; β) = 1− exp(−βt), β > 0. (13)
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Since the MLE of an ordinary exponential distribution is given by a closed from, the
EM-step formulas for exp are directly derived from Equations (10) and (11);

ω ← E[N|D; ω′, β′] (14)

β← E[N|D; ω′, β′]

E[∑N
i=1 Ti|D; ω′, β′]

. (15)

By applying the formula for the expected value, we have

ω ←
k

∑
i=1

(xi + ui) + ω′ exp(−β′tk) (16)

β← ∑k
i=1(xi + ui) + ω′ exp(−β′tk)

∑k
i=1(xiτi + uiti) + ω′(tk + 1/β′) exp(−β′tk)

(17)

where

τi =
(ti−1 + 1/β′) exp(−β′ti−1)− (ti + 1/β′) exp(−β′ti)

exp(−β′ti−1)− exp(−β′ti)
. (18)

gamma: The failure time distribution becomes the following gamma distribution:

F(t; α, β) =
∫ t

0

βαuα−1 exp(−βu)
Γ(α)

du, α > 0, β > 0, (19)

where α and β are shape and scale parameters, respectively. When α = 2 is fixed, the model
reduces the delayed S-shaped SRM [17].

Similar to exp, the EM-step formulas are given using Equations (10) and (11):

ω ← E[N|D; ω′, α′, β′] (20)

α←
{

α

∣∣∣∣∣ log α−Ψ(α) = log

(
E[∑N

i=1 Ti|D; ω′, α′, β′]

E[N|D; ω′, α′, β′]

)

− E[∑N
i=1 log Ti|D; ω′, α′, β′]

E[N|D; ω′, α′, β′]

}
(21)

β← αE[N|D; ω′, α′, β′]

E[∑N
i=1 Ti|D; ω′, α′, β′]

, (22)

where ψ(·) is the digamma function, i.e., ψ(α) = d log γ(α)/dα. Additionally, we use
the updated α to compute β. Note that Equation (21) can easily be solved with the non-
linear equation solver such as a bisection method. In addition, E[N|D; ω′, α′, β′] and
E[∑N

i=1 Ti|D; ω′, α′, β′] are obtained as follows:

E[N|D; ω′, α′, β′] =
k

∑
i=1

(xi + ui) + ω′F(tk; α′, β′) (23)

E

[
N

∑
i=1

Ti

∣∣∣∣∣D; ω′, α′, β′
]
=

k

∑
i=1

(xiτi + uiti) + ω′(α′/β′)F(tk; α′ + 1, β′), (24)

τi =
α′

β′
F(ti−1; α′ + 1, β′)− F(ti; α′ + 1, β′)

F(ti−1; α′, β′)− F(ti; α′, β′)
, (25)

where F(t; α, β) is the complementary c.d.f. of gamma distribution with parameters α and β.
On the other hand, we need the numerical integration to obtain E[∑N

i=1 log Ti|D; ω′, α′, β′].
It should be noted that, if the shape parameter α is fixed, then the computation algorithm
becomes simple because we ignore solving the nonlinear equation and computing the
expected value E[∑N

i=1 log Ti|D; ω′, α′, β′].
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pareto: ‘pareto’ is the SRM where the failure time distribution is the Pareto distribution of
the second kind. The Pareto distribution of the second kind is called Lomax distribution:

F(t) = 1− ca

(x + c)a , a > 0, c > 0. (26)

This model was proposed as the modified Duane model [50].
Since the Pareto distribution of the second kind is a mixture of exponential distribution,

the EM algorithm for ‘pareto’ is constructed using this property. In general, the mixture
distribution is defined as a superposition of original statistical distributions with mixture
ratio. Let G(ξ; θ) be the c.d.f. of mixture ratio distribution for the parameter ξ. Then, the
mixture distribution is given by

FM(x; θ) =
∫

F(x; ξ)dG(ξ; θ). (27)

The Pareto distribution of the second kind is a mixture of exponential distribution
when the mixture ratio distribution is a gamma distribution. That is, the failure time
distribution is written in the following form:

F(t; a, c) =
∫ ∞

0
{1− exp(−ξt)} caξa−1 exp(−cξ)

Γ(a)
dξ = 1− ca

(c + t)a . (28)

For the EM algorithm of mixture-type SRMs, we also define the fault detection rate
for each fault as a hidden variable.

Let (T1, Ξ1), . . . , (TN , ΞN) be a set of failure time and its associated fault detection rate
for all the failures. The complete LLF is given by

LLF(ω, a, c) =N log ω−ω +
N

∑
i=1

log Ξi −
N

∑
i=1

ΞiTi

+ aN log c + (a− 1)
N

∑
i=1

log Ξi − c
N

∑
i=1

Ξi − N log Γ(a). (29)

Similar to gamma, we have the following EM-step formula from the MLEs of gamma
distributions:

ω ← E[N|D; ω′, a′, c′], (30)

a←
{

a

∣∣∣∣∣log a− ψ(a) = log

(
E[∑N

i=1 Ξi|D; ω′, a′, c′]
E[N|D; ω′, a′, c′]

)
− E[∑N

i=1 log Ξi|D; ω′, a′, c′]
E[N|D; ω′, a′, c′]

}
(31)

b← aE[N|D; ω′, a′, c′]
E[∑N

i=1 Ξi|D; ω′, a′, c′]
, (32)

On the other hand, the formula for the expected value is given by

E

[
N

∑
i=1

h(Ξi)

∣∣∣∣∣D; ω′, θ′
]
=

k

∑
i=1

 xi
∫ ti

ti−1
h̃(z; θ′)dz∫ ti

ti−1
f̃ (z; θ′)dz

+
ui h̃(ti)

f̃ (ti)

+ ω′
∫ ∞

tk

h̃(z; θ′)dz, (33)

where h(·) is an arbitrary measurable function and

h̃(z; θ′) =
∫

h(ξ) f (z; ξ)dG(ξ; θ′), (34)

f̃ (z; θ′) =
∫

f (z; ξ)dG(ξ; θ′). (35)
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tnorm, lnorm: ‘tnorm’ and ‘lnorm’ are SRMs whose failure time distributions are truncated
and log normal distributions, respectively. The failure time distributions for tnorm and
lnorm are

tnorm: F(t) = Φ
(

t− µ

σ

)
/{1−Φ(−µ/σ)}, (36)

lnorm: F(t) = Φ
(

log t− µ

σ

)
, (37)

where Φ(·) is the c.d.f. of the standard normal distribution. Since the EM algorithms for
both models with failure time and count data were introduced in detail in the literature [34],
this paper provides the EM-step formulas with the generalized data.

• EM-step formula for tnorm:

ω̃ ← N, µ← T(1)/N, σ←
√

T(2)/N − (T(1)/N)2 (38)

where

N =
k

∑
i=1

(xi + ui) + ω̃{Φ(z0) + Φ(zk)}, (39)

T(1) =
k

∑
i=1

(xiτ
(1)
i + uiti) + ω̃{Φ(1)(z0) + Φ(1)

(zk)} (40)

T(2) =
k

∑
i=1

(xiτ
(2)
i + uit2

i ) + ω̃{Φ(2)(z0) + Φ(2)
(zk)}, (41)

z0 = −µ/σ, zi = (ti − µ)/σ, (42)

τ
(u)
i =

Φ(u)
(zi−1)−Φ(u)

(zi)

Φ(zi−1)−Φ(zi)
, (43)

• EM-step formula for lnorm:

ω ← N, µ← T(1)/N, σ←
√

T(2)/N − (T(1)/N)2 (44)

where

N =
k

∑
i=1

(xi + ui) + ω′Φ(zk), (45)

T(1) =
k

∑
i=1

(xiτ
(1)
i + ui log ti) + ωΦ(1)

(zk), (46)

T(2) =
k

∑
i=1

(xiτ
(2)
i + ui(log ti)

2) + ωΦ(2)
(zk), (47)

z0 → −∞, zi = (log ti − µ)/σ, (48)

τ
(u)
i =

Φ(u)
(zi−1)−Φ(u)

(zi)

Φ(zi−1)−Φ(zi)
. (49)
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In the above formulas, Φ(z) is the complementary c.d.f. of the standard normal

distribution, and Φ(1)
(z) and Φ(2)

(z) are expressed with the p.d.f. of the standard normal
distribution φ(z):

Φ(1)
(z) = σφ(z) + µΦ(z), (50)

Φ(2)
(z) = (σ2z + 2µσ)φ(z) + (σ2 + µ2)Φ(z). (51)

In addition, after the convergence, we take ω = ω̃Φ(z0) to obtain the ML estimate for
ω in the case of tnorm.

tlogis, llogis tlogis and llogis are the SRMs with truncated and log logistic distributions,
respectively. In particular, ‘tlogis‘ is equivalent to the inflection S-shaped model [15]. The
failure time distribution of tlogis is given by

F(t) = Ψ
(

t− µ

ψ

)
/{1−Ψ(−µ/ψ)}, (52)

where Ψ(·) is the c.d.f. of standard logistic distribution

Ψ(t) =
1

1 + exp(−t)
. (53)

By taking into account the exponential of logistic distribution, we have the following
failure time distribution of llogis:

F(t) = Ψ
(

log t− µ

ψ

)
. (54)

Since logistic distribution does not belongs to the exponential family of distributions,
neither expectation nor maximization can be expressed as simple formulas. To construct
the algorithm, we consider only one assumption; the number of all failures is not observed.
Then, the EM-step formulas become

• The EM-step formula for tnorm

ω̃ ←
k

∑
i=1

(xi + ui) + ω̃′F(0; θ′) + ω̃′F(tk; θ′) (55)

θ← argmax
θ

{
k

∑
i=1

(xi log(F(ti; θ)− F(ti−1; θ))− xi log xi! + ui log f (ti; θ))

+ (ω̃′F(0; θ′)) log(F(0; θ)) + (ω̃′F(tk; θ′)) log(F(tk; θ))

}
. (56)

• The EM-step formula for lnorm

ω ←
k

∑
i=1

(xi + ui) + ω′F(tk; θ′) (57)

θ← argmax
θ

{
k

∑
i=1

(xi log(F(ti; θ)− F(ti−1; θ))− xi log xi! + ui log f (ti; θ))

+ (ω′F(tk; θ′)) log(F(tk; θ))

}
. (58)

The second equations in both formulas indicate that θ is updated by the MLEs when
the number of all the failures is given by ω̃′ and ω′. These algorithm are also stable if there
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exists a unique solution maximizing the right-hand side of the second term. Note that,
after the convergence, the model parameter ω in tlogis can be obtained as ω = ω̃F(0; θ).

txvmax, lxvmax, txvmin, lxvmin Suppose that the failure time caused by each failure
follows an extreme value type I distribution. The extreme value type I distribution is called
Gumbel distribution, and its definition is based on the limitation of the maximum value of
random variables. Here, the c.d.f. of a standard Gumbel distribution is defined as

Θ(t) = exp{− exp(−t)}. (59)

Similar to tnorm, lnorm, tlogis, and llogis, we consider the truncation and logarithm
of the extreme value distribution. In addition, since the extreme value distribution is not
symmetric, we also consider the case of negative samples, i.e., the minimum value of
random variables.

The failure time distributions of txvmax and lxvmax are, respectively,

F(t) = Θ
(

t− µ

θ

)
/{1−Θ(−µ/θ)}, (60)

F(t) = Θ
(

log t− µ

θ

)
. (61)

Similarly, the failure time distributions of txvmin and lxvmin are given by

F(t) = Θ
(

t + µ

θ

)
/
{

1−Θ(µ/θ)
}

, (62)

F(t) = Θ
(

log t + µ

θ

)
, (63)

where Θ(t) = 1− Θ(−t) corresponds to the c.d.f. of a standard extreme value type I
distribution of the minimum. From Equation (63), we find that lxvmin is equivalent to the
Weibull distribution.

Since the extreme value distribution is not an exponential family, we consider only
one assumption; the number of all the failures is not observed. Then, the EM-step formulas
are given by

• The EM-step formula for txvmax and txvmin

ω̃ ←
k

∑
i=1

(xi + ui) + ω̃′F(0; θ′) + ω̃′F(tk; θ′) (64)

θ← argmax
θ

{
k

∑
i=1

(xi log(F(ti; θ)− F(ti−1; θ))− xi log xi! + ui log f (ti; θ))

+ (ω̃′F(0; θ′)) log(F(0; θ)) + (ω̃′F(tk; θ′)) log(F(tk; θ))

}
. (65)

• The EM-step formula for lxvmax and lxvmin

ω ←
k

∑
i=1

(xi + ui) + ω′F(tk; θ′) (66)

θ← argmax
θ

{
k

∑
i=1

(xi log(F(ti; θ)− F(ti−1; θ))− xi log xi! + ui log f (ti; θ))

+ (ω′F(tk; θ′)) log(F(tk; θ))

}
. (67)
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4. Numerical Example

We investigated the numerical characteristics of the presented EM algorithms. Here,
we compare the convergence property with the Nelder–Mead method and the quasi-
Newton method (BFGS method). First, we check the trace of model parameters until they
converge to MLE for the proposed method (EM algorithm), the Nelder–Mead method, and
the BFGS method. In this experiment, we used the fault count data, which were collected
from real software projects [53]. The statistics of fault count data are given as follow.

• Data label: SS1A
• Working days: 151
• The number of failures: 112
• LOC: Hundreds of thousands
• Software type: Operations

For the above failure count data, we estimated the parameters of ‘exp’. The MLEs of
exp are ω̂ = 354.75 and β̂ = 0.00251, and the maximum LLF is LLF(ω̂, β̂) = −180.79.

Figures 1–3 show the trace of model parameters for EM algorithm, the Nelder–Mead
method, and the BFGS method when the initial guesses are ω = 100 and β = 0.1. We use
the ‘optim’ function in R for the Nelder–Mead and BFGS methods. From these figures, we
find that the EM algorithm stably updates the model parameters and converges to close
parameters to the MLEs. However, the convergence speed is not fast, since the update
becomes smaller as the parameters are close to the MLEs. The Nelder–Mead method
provides the MLEs, but the trace of the algorithm is not stable. In particular, this algorithm
sometimes takes invalid values that violate the parameter constraints, i.e., ω < 0 or β < 0,
while searching for the parameters. Figure 3 depicts the trace of parameters for the BFGS
method. The convergence property is the worst among the three methods. Additionally,
the algorithm fails to obtain the MLE.

150 200 250 300

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

0
.0

1
2

0
.0

1
4

150 200 250 300

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

0
.0

1
2

0
.0

1
4

omega

b
e
ta

Figure 1. Trace of parameters in the EM algorithm.
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Figure 2. Trace of parameters in the Nelder–Mead method.
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Figure 3. Trace of parameters in the BFGS method.

Next, we present the convergence properties for the proposed EM algorithm, the
Nelder–Mead method, and the BFGS method quantitatively. Here, we use two additional
fault count data that were collected from real software projects [53] as well as SS1A.

• Data label: SS1B
• Working days: 663
• The number of failures: 375
• LOC: Hundreds of thousands
• Software type: Operations

• Data label: SS1C
• Working days: 472
• The number of failures: 277
• LOC: Hundreds of thousands
• Software type: Operations

For three data sets—SS1A, SS1B, and SS1C—we applied the proposed EM algorithm,
the Nelder–Mead method, and the BFGS method for 12 basic NHPP-based SRMs with
100 different initial parameters. In the experiment, the initial parameters were selected by
random numbers. Tables 2–4 present the number of converged estimations, i.e., the number
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of times that the model parameters are successfully estimated for each NHPP-based SRMs
and methods. If this value is 100, the method succeeded in obtaining the MLE for all of
the initial parameters. On the other hand, if this value is 0, the estimation method fails to
obtain the MLE for all of the initial parameters due to numerical computation errors such
as overflow and underflow.

Table 2. The number of converged estimations (SS1A).

Model EM Nelder-Mead BFGS

exp 100 19 19
gamma 100 34 34
pareto 100 57 57
tnorm 100 88 88
lnorm 100 98 98
tlogis 100 100 100
llogis 100 100 100
txvmax 100 100 100
lxvmax 99 99 99
txvmin 64 65 65
lxvmin 92 92 92

Table 3. The number of converged estimations (SS1B).

Model EM Nelder-Mead BFGS

exp 100 7 7
gamma 100 7 6
pareto 100 18 18
tnorm 100 98 98
lnorm 87 87 87
tlogis 100 100 100
llogis 87 87 87
txvmax 99 99 99
lxvmax 0 0 0
txvmin 89 89 89
lxvmin 100 41 41

Table 4. The number of converged estimations (SS1C).

Model EM Nelder-Mead BFGS

exp 100 9 8
gamma 100 13 12
pareto 100 47 47
tnorm 100 98 98
lnorm 96 97 97
tlogis 100 100 100
llogis 96 96 96
txvmax 99 99 99
lxvmax 0 0 0
txvmin 89 89 89
lxvmin 100 43 43

From these results, we find that the convergence rates of the proposed EM algorithms
are 100% in the cases of exp, gamma, pareto, tnorm, and tlogis. Since the number of
converged estimations of the Nelder–Mead is almost the same as that of BFGS for all cases,
the convergence properties of their methods are the same if we use the ‘optim’ function in
R. Additionally, since lxvmax did not fit SS1B and SS1C, all of the estimation methods failed
to obtain the MLE. Furthermore, it was found that the numbers of converged estimates in
the Nelder–Mead and BFGS methods are worse than that of the EM algorithm, specifically
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in the cases of exp, gamma, and pareto. Additionally, in the cases of tnorm and lnorm, the
convergence property of EM is slightly superior to the other two methods. In exp, gamma,
pareto, tnorm, and lnorm, the failure time distributions belong to the exponential family,
and thus, their EM-step formulas do not include the numerical optimization step. That is,
these EM-step formulas are ‘pure’ EM-step formulas. Therefore, the convergence properties
outperform those of the Nelder–Mead and BFGS methods. On the other hand, in the cases
of tlogis, llogis, txvmax, lxvmax, txvmin, and lvxmin, the failure time distributions are
not in the exponential family, and we should use the numerical optimization step in their
EM-step formulas. This is the reason why the convergence property of the presented EM
algorithm is same as that in the Nelder–Mead and BFGS methods.

5. Conclusions

This paper derived EM-step formulas for 12 basic NHPP-based SRMs when the
generalized failure count data are given. Since the generalized fault count data involve
both time and count data formats, the presented EM algorithms can be applied to failure
data experienced in practice. In addition, the convergence property of EM algorithm is
better than or equivalent to other ordinary methods such as the Nelder–Mead and BFGS
methods for practical software fault data. Thus, the presented algorithms are suitable for
implementation in the automatic tool for software reliability evaluation. In fact, our research
group has developed an AddIn of Microsoft Excel to estimate software reliability [54].

In the future, we will develop a reliability assessment tool by integrating a software
repository such as GitHub, a bug tracking system, and a continuous integration system,
and the tool will continuously monitor the reliability of software.
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Appendix A. Derivation of Equation (12)

For convenient, ω′ and θ′ are written as ω and θ, respectively, and E[·|D; ω′, θ′] is
simplified as E[·|D]. Here we have

E

[
N

∑
i=1

h(Ti)

∣∣∣∣∣D
]
=

n

∑
i=1

E

 si−1+xi

∑
j=si−1+1

h(Tj)

∣∣∣∣∣∣D
+ biE[ h(Tsi )|D]

+ E

[
N

∑
i=sn+1

h(Ti)

∣∣∣∣∣D
]

, (A1)

where si = ∑i
j=1(xj + bj).

According to the order statistics of failure times, the first term of the right-hand side
of the above can be rewritten as follows.

E

[
si−1+xi

∑
j=si−1+1

h(Tj)

∣∣∣∣∣D
]
=

∫ ti
ti−1

∫ ti
z1
· · ·
∫ ti

zxi
∑xi

j=1 h(zj)∏xi
j=1 f (zj)dzxi · · · dz1∫ ti

ti−1

∫ ti
z1
· · ·
∫ ti

zxi
∏xi

j=1 f (zj)dzxi · · · dz1
. (A2)
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Since Tsi−1+1, . . . , Tsi−1+xi are i.i.d. random variables, the multiple integrals of denominator
in Equation (A2) is given by

∫ ti

ti−1

∫ ti

z1

· · ·
∫ ti

zxi

xi

∏
j=1

f (zj)dzxi · · · dz1 =
1

xi!

(∫ ti

ti−1

f (z)dz
)xi

. (A3)

Similarly, the numerator becomes

∫ ti

ti−1

∫ ti

z1

· · ·
∫ ti

zxi

xi

∑
j=1

h(zj)
xi

∏
j=1

f (zj)dzxi · · · dz1 =
xi
xi!

∫ ti

ti−1

h(z) f (z)dz
(∫ ti

ti−1

f (z)dz
)xi−1

. (A4)

Henceforth we have

E

[
si−1+xi

∑
j=si−1+1

h(Tj)

∣∣∣∣∣D
]
=

xi
∫ ti

ti−1
h(z) f (z)dz∫ ti

ti−1
f (z)dz

. (A5)

The second term of the right-hand side of Equation (A1) is straightforwardly given by h(ti).
The third term can be derived by a similar way to the first term. Taking account of the
condition N = ν, we have

E

[
N

∑
i=sn+1

h(Ti)

∣∣∣∣∣D
]
=

∑∞
ν=sk

e−ω ων

ν!
ν!(ν−sk)
(ν−sk)!

∫ ∞
tk

h(z) f (z)dzF(tk)
ν−sk−1

∑∞
ν=sk

e−ω ων

ν!
ν!

(ν−sk)!
F(tk)ν−sk

= ω
∫ ∞

tk

h(z) f (z)dz, (A6)

where F(t) = 1− F(t).
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