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Abstract: The aim of this paper is twofold. First, we show that the expectation of the absolute value
of the difference between two copies, not necessarily independent, of a random variable is a measure
of its variability in the sense of Bickel and Lehmann (1979). Moreover, if the two copies are negatively
dependent through stochastic ordering, this measure is subadditive. The second purpose of this
paper is to provide sufficient conditions for comparing several distances between pairs of random
variables (with possibly different distribution functions) in terms of various stochastic orderings.
Applications in actuarial and financial risk management are given.
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1. Introduction

Given a bivariate random vector X = (X1, X2) with joint distribution function
KX(x1, x2) = P(X1 ≤ x1, X2 ≤ x2) and marginal distribution functions F1(x) = P[X1 ≤ x]
and F2(x) = P[X2 ≤ x], the random variable |X1 − X2| describes the distance between X1
and X2 in a sense that depends on the dependence structure of the vector. Different struc-
tures assign different meanings to this random variable and lead, obviously, to different
ways of computing the expectation E(|X1 − X2|). The distance can be applied to random
variables with identical and non-identical distribution functions, and we consider both
cases. If F1 = F2 = F, then X1 and X2 are copies of the same random variable X with dis-
tribution function F(x), and E(|X1 − X2|) reveals information about X. An example is the
case of independent and identically distributed random variables, in which E(|X1 − X2|) is
the Gini’s mean difference of X1, a well-known measure of variability (see, for example, [1]).
We show in this work that, when X1 and X2 are dependent copies of the same random
variable X, E(|X1 − X2|) is still a measure of variability of X. A purpose of this paper is
to study the properties of this functional in a general setting, where X1 and X2 are not
necessarily independent.

If X1 and X2 are independent (or, more generally, if they are linked by a symmetric
dependence structure), |X1 − X2| treats symmetrically the events X1 < X2 and X2 < X1.
However, sometimes, it is convenient to use a characteristic of proximity by treating them
differently (in finance, for example, an investor evaluates differently gains and losses). The
random excess of X1 over X2, (X1−X2)

+, where x+ = max{x, 0} denotes the positive part
of x, is useful if we are interested in measuring the extent to which one random variable
exceeds the other, rather than the distance between them in a bidirectional sense. Note that
the absolute value |X1 − X2| can be split into two terms, each describing the excess of one
random variable over the other, as follows:

|X1 − X2| = (X1 − X2)
+ + (X2 − X1)

+.

If X1 and X2 are copies of the same variable X, then E((X1 − X2)
+) also reveals

information about X. For example, if X1 and X2 are independent, E((X1 − X2)
+) is Gini’s

mean semidifference.
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In general, the functional E(φ(|X1 − X2|)), where φ is a non-negative real function,
has been largely studied in mathematics literature, mainly in the context of the Monge–
Kantorovich problem (see [2], and references therein). The interest on this and other
functionals used to measure the degree of difference between two random quantities goes
back at least to the 1930s and the important contributions by Gini (see [3]) and Hoeffding [4].
Given two random vectors X = (X1, X2) and Y = (Y1, Y2), another purpose of this paper
is to find conditions under which

E(Φ(|X1 − X2|)) ≤ E(Φ(|Y1 −Y2|)), for all Φ ∈ Ω, (1)

where Ω is a subset of increasing real functions. Different choices of Ω give rise to dif-
ferent stochastic orderings between |X1 − X2| and |Y1 −Y2|. This problem was addressed
in [5–7] for the case where X and Y have independent components with the same marginal
distribution functions (see Section 2 below for details). Here, we are concerned with two
random vectors X = (X1, X2) and Y = (Y1, Y2), whose components are not necessarily
independent nor are they required to have identical distribution functions. In this case, we
explore conditions under which

|X1 − X2| ≤st,icx |Y1 −Y2| and (X1 − X2)
+ ≤st,icx (Y1 −Y2)

+, (2)

where ≤st and ≤icx are the usual stochastic order and the increasing convex order, respec-
tively (these orders will be defined in Section 2 below).

This work is organized as follows. Section 2 contains preliminaries, such as defi-
nitions and background for the stochastic orders and dependence notions used in this
paper, as well as a review of the properties that a variability measure should satisfy. In
Section 3, given a random variable X with distribution function F, we show that any
functional of the form ν(X) = E(|X1 − X2|), where X1 and X2 are two copies of X with
any type of dependence structure, is a measure of variability of X. More generally, the
distribution function F1 of X1 is allowed to be a distortion of F (we will explain the meaning
of this below). In Section 4, given two random vectors X = (X1, X2) and Y = (Y1, Y2),
we obtain conditions (both in terms of the marginals and the copulas) to make compar-
isons of the form (2). Section 5 contains two applications. In Section 5.1, we define a
general class of premium principles based on the class of variability measures studied in
Section 3. In Section 5.2, in the context of portfolio risk management, we assess the inclusion
of a new asset in a portfolio by using the results obtained in Section 4. Finally, Section 6
contains conclusions.

Throughout this paper, given two random vectors X = (X1, X2) and Y = (Y1, Y2), we
denote by F1, F2 and G1, G2 the respective marginal distribution functions. Given any other
random variable Z, we denote by FZ its distribution function.

2. Preliminaries

Let X = (X1, X2) be a random vector with joint distribution function KX and marginal
distribution functions F1 and F2, respectively. According to the Sklar theorem, the joint
distribution KX can be written as

KX(x, y) = C(F1(x), F2(y)),

where C is the copula of the random vector (X1, X2), that is, the joint distribution function
of the vector-copula (F1(X1), F2(X2)) (see [8]). If F1 and F2 are continuous, then C is unique.
The copula contains the information about the structure of dependency of the random
vector (X1, X2). For every copula C and every (u, v) on [0, 1]2, it is well-known that

W(u, v) ≤ C(u, v) ≤ M(u, v), (3)
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where the copulas W(u, v) = max(u + v− 1, 0) and M(u, v) = min(u, v) are the Fréchet–
Hoeffding bounds. Random variables with copula M are called comonotonic and random
variables with copula W are called countermonotonic.

The motivation for the study of the properties of E(|X1 − X2|), where X1 and X2
are not necessarily independent, comes from the fact that some probability metrics and
measures of variability that are sometimes better known under other expressions, take this
form for different copulas between X1 and X2. To give some examples, note that

E(|X1 − X2|) =
∫ ∞

−∞
(F1(x) + F2(x)− 2C(F1(x), F2(x)))dx. (4)

If X1 and X2 are two copies of a random variable X with distribution function F(x),
(4) becomes

E(|X1 − X2|) = 2
∫ ∞

−∞
(F(x)− C(F(x), F(x)))dx. (5)

If X1 and X2 are two independent copies of X, then

E(|X1 − X2|) = 2(E(max(X1, X2))− E(X))

is the Gini’s mean difference (GMD) of X, a well-known index of variability (see, for
example, [1]). If X1 and X2 are comonotonic, then (see [9] or [10])

E(|X1 − X2|) =
∫ 1

0
|F−1

1 (u)− F−1
2 (u)|du =

∫ ∞

−∞
|F1(x)− F2(x)|dx, (6)

which is the Wasserstein distance, a well-known characteristic of proximity of two random
variables (see [11]). If X1 and X2 are countermonotonic, then

E(|X1 − X2|) =
∫ 1

0
|F−1

1 (u)− F−1
2 (1− u)|du (7)

(see, for example, [2]). It is easy to see that, if X1 and X2 are two copies of X, (7) can be
rewritten as

E(|X1 − X2|) = 2E(|X−mX |),

where mX is the median of X. This measure is twice the median absolute deviation (MAD),
another popular measure of variability.

In view of the above examples, it is natural to ask whether E(|X1 − X2|), where X1
and X2 are two copies of X with a copula C, fulfills the requirements to be considered as a
measure of variability of X. Recall that a measure of variability ν is a map from the set of
random variables to R, such that given a random variable X, ν(X) quantifies the variability
of X. Next, we list a set of properties that a measure of variability should reasonably satisfy
(see, for example, [12] and references therein):

(P0) Law invariance: if X and Y have the same distribution, then ν(X) = ν(Y).
(P1) Translation invariance: ν(X + k) = ν(X) for all X and all constant k.
(P2) Positive homogeneity: ν(0) = 0 and ν(λX) = λν(X) for all X and all λ > 0.
(P3) Non-negativity: ν(X) ≥ 0 for all X, with ν(X) = 0 if X is degenerated at c ∈ R.

Bickel and Lehmann [13] also require ν(X) to be consistent with the dispersive order.
Recall that two random variables X and Y are ordered in the dispersive order if the
difference between any two quantiles of X is smaller than the corresponding quantiles of Y,
where the quantile function of a random variable X with distribution function F is defined
by F−1(α) = inf{x : F(x) ≥ α}, α ∈ (0, 1). The formal definition is as follows.

Definition 1. Given two random variables X and Y with distribution functions F and G, re-
spectively, we say that X is smaller than Y in the dispersive order (denoted by X ≤disp Y) if
F−1(p)− F−1(q) ≤ G−1(p)− G−1(q) for all 0 ≤ q < p ≤ 1.
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A functional ν satisfying properties (P0) to (P3) is said to be a measure of variability
or spread in the sense of Bickel and Lehmann if it satisfies in addition (see [13]):

(P4) Consistency with dispersive order: if X ≤disp Y, then ν(X) ≤ ν(Y).

A measure of variability in the sense of Bickel and Lehmann considers the variability
or spread of a random variable throughout its distribution. Sometimes, however, there
is an interest in measuring only the variability of X along the right tail of its distribution
(in risk theory, for example, some popular measures focus on the variability of a risk X
beyond the value at risk). When this is the case, the requirement on ν to be consistent with
the dispersive order is too strong. A natural weaker requirement is to be consistent with
the excess wealth order (see [14]), which is defined as follows.

Definition 2. Given two random variables X and Y with distribution functions F and G, re-
spectively, we say that X is smaller than Y in the excess wealth order (denoted by X ≤ew Y) if∫ ∞

F−1(p) F(x)dx ≤
∫ ∞

G−1(p) G(x)dx, ∀p ∈ (0, 1), where F = 1− F and G = 1− G are the tail (or
survival) functions of X and Y, respectively.

This allows us to consider the following property.

(P5) Consistency with excess wealth order: if X ≤ew Y, then ν(X) ≤ ν(Y).

Measures of variability have received great attention in the actuarial and financial
literature (see [12,15–18], among others). In actuarial science, for example, a variability
measure sometimes is combined with a location measure to build a premium principle
(see [19]). For particular applications in this context, we may wish ν to satisfy the follow-
ing properties:

(P6) Comonotonic additivity: if X and Y are comonotonic, then ν(X + Y) = ν(X) + ν(Y).
(P7) Subadditivity: ν(X + Y) ≤ ν(X) + ν(Y) for all X and Y.

Furman et al. ([12]) say that ν is a coherent measure of variability if it satisfies (P0)–(P3)
and (P7).

Next, we recall some other notions used in this paper. The sequence of inequalities (3)
induces the following definition (see [8]).

Definition 3. Given two copulas C and C′, we say that C is smaller than C′ in the concordance
order (and write C ≺ C′ ) if C(u, v) ≤ C′(u, v) for all u, v ∈ (0, 1).

Obviously, W ≺ C ≺ M for every copula C. The name of this order is due to the
fact that some measures of concordance, such as Kendall’s tau and Spearman’s rho, are
increasing with respect to ≺ .

In Sections 4 and 5, we will make use of the following stochastic orders. The reader
may consult the books [20–22] for properties and applications.

Definition 4. Let X and Y be two random variables with distribution functions F and G and finite
expectations µX and µY, respectively. Then, X is said to be smaller than Y :

(i) in the usual stochastic order (denoted by X ≤st Y) if F̄(t) ≤ Ḡ(t), for all t,
(ii) in the increasing convex order (denoted by X ≤icx Y) if

∫ ∞
t F(x)dx ≤

∫ ∞
t G(x)dx, ∀t,

(iii) in the convex order (denoted by X ≤cx Y) if E(X) = E(Y) and X ≤icx Y,
(iv) in the increasing concave order (denoted by X ≤icv Y)) if

∫ t
−∞ F(x)dx ≥

∫ t
−∞ G(x)dx, ∀t.

It can be shown that X ≤st Y (respectively ≤cx,≤icx,≤icv) if and only if E(φ(X))
≤ E(φ(Y)) for all increasing (respectively convex, increasing convex, increasing concave)
functions φ for which the expectations exist. When X2 and Y2 are independent copies of X1
and Y1, respectively, it is well-known (see [5] and [6]) that

• X1 ≤disp Y1 implies |X1 − X2| ≤st |Y1 −Y2|,
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• X1 ≤ew,cx Y1 implies |X1 − X2| ≤icx |Y1 −Y2|.
The result for the convex order was extended to the so-called s-convex order in [7]. In

Sections 3 and 4, we extend these results to the case where X2 and Y2 are not necessarily
independent from (nor are they required to have identical distribution functions as) X1 and
Y1, respectively. For this, we need the following notions (see [23,24]).

Definition 5. Let X = (X1, X2) be a random vector.

(i) We say that X1 is stochastically increasing in X2, denoted by X1 ↑SI X2, if P[X1 > x1 |
X2 = x2] is a nondecreasing function of x2 for all x1.

(ii) We say that X = (X1, X2) is positively dependent through stochastic ordering (PDS) if
X1 ↑SI X2 and X2 ↑SI X1.

Intuitively, if X = (X1, X2) is PDS, then its components are more likely simultaneously
to have large values, compared with a vector of independent random variables with the
same marginal distributions. For relationships between this and other dependence notions
see, for example, Table 2 in [25]. The negative dependence analog of Definition 5 is as
follows (see [24]).

Definition 6. Let X = (X1, X2) be a random vector.

(i) We say that X1 is stochastically decreasing in X2, denoted by X1 ↓SD X2, if P[X1 > x1 |
X2 = x2] is a nonincreasing function of x2 for all x1.

(ii) We say that X = (X1, X2) is negatively dependent through stochastic ordering (NDS) if
X1 ↓SD X2 and X2 ↓SD X1.

Intuitively, if X = (X1, X2) is NDS, one component of the vector will tend to be
large when the other component is small. It is easy to see that a random vector X with
continuous marginals is PDS (respectively, NDS) if and only if C(u, v) is componentwise
concave (respectively, convex). It is also well-known (see [26]) that a continuous random
vector X with copula C has the property PDS (resp. NDS) if and only if its copula C is PDS
(resp. NDS) .

3. A Family of Measures of Variability

Let X1 and X2 be two random variables with respective continuous distribution
functions F1 and F2 and finite expectations. If X1 and X2 are two independent copies
of X, it is well-known (see [13]) that ν(X) = E(|X1 − X2|) is a measure of variability in
the sense of Bickel and Lehmann (that is, it satisfies properties (P0) to (P4)). Let h be a
distortion function, that is, a non-decreasing function from [0, 1] to [0, 1] such that h(0) = 0
and h(1) = 1 (given two distribution functions F and G, if G = h ◦ F we say that G is a
distortion of F via h). In this section, we show that any functional of the form E(|X1 − X2|),
where F2 = F and F1 = h ◦ F, is a measure of variability of X. In particular, if h is the
identity function (h(t) = t, for all t ∈ [0, 1]) and X1 and X2 have a NDS copula, this
measure satisfies all the properties (P1 to P7) listed above.

The following theorem extends a result of [5], stated as Theorem 3.B.42 in the book [20],
in two directions: first, we consider two random vectors with the same copula instead
of two random vectors with independent components; and, second, we allow the first
marginal of each vector to be a distortion of the other (via the same h) instead of taking
two copies of the same random variable.

Theorem 7. Let X and Y be two random variables with distribution functions F and G, respectively
and let h be a distortion function. Let X = (X1, X2) be a random vector with respective marginal
distribution functions F1 = h ◦ F and F2 = F. Similarly, let Y = (Y1, Y2) be a random vector with
marginal distribution functions G1 = h ◦ G and G2 = G, respectively. Suppose that X and Y have
the same copula C. If X ≤disp Y, then |X2 − X1| ≤st |Y2 −Y1|.
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Proof. Since the dispersive order is preserved by distortion functions (Theorem 13 in [27]),
we have X1 ≤disp Y1 and X2 ≤disp Y2. Since X and Y have the same copula, it follows
from Definition 2.1 in [28] and Theorem 1 in [29] that there exists a function Φ that maps
stochastically (X1, X2) into (Y1, Y2), i.e., Φ(X1, X2) =st (Y1, Y2), defined as

Φ(x1, x2) = (Φ1(x1), Φ2(x2)) = (G−1
1 (F1(x1)), G−1

2 (F2(x2))),

where Φi(·), i = 1, 2, is an increasing function that satisfies∣∣Φi(x)−Φi(x′)
∣∣ ≥ ∣∣x− x′

∣∣, ∀x, x′ ∈ R. (8)

It follows from the assumptions that Φ2(x) = Φ1(x) = G−1F(x) for all x. Therefore,

|Y2 −Y1| =st |Φ2(X2)−Φ1(X1)|,
=st |Φ1(X2)−Φ1(X1)|,
≥st |X2 − X1|, (9)

where the first and second equality in (9) follow from the fact that Φ(X1, X2) =st (Y1, Y2)
and Φ2(·) = Φ1(·), respectively. The inequality follows from (8) by using Theorem 1.A.1
in [20].

By taking h(x) = x in Theorem 7, we have the following corollary.

Corollary 8. Let X2 and Y2 be two copies of X1 and Y1, respectively, such that X = (X1, X2) and
Y = (Y1, Y2) have the same copula. If X1 ≤disp Y1, then |X1 − X2| ≤st |Y1 −Y2|.

Remark 9. Given two random vectors X = (X1, X2) and Y = (Y1, Y2) with the same copula, the
condition Xi ≤disp Yi, i = 1, 2 is equivalent to say that the bivariate random vectors X and Y are
ordered in a multivariate dispersion sense, see [30].

Now, we can prove the following result.

Theorem 10. Let X be a random variable with strictly increasing distribution function F and let h
be a strictly increasing distortion function. Let X1 and X2 be two random variables with copula C
and marginal distribution functions F1 and F2, respectively. Let νC(X) = E(|X1 − X2|).
(i) If F1 = h ◦ F and F2 = F, then νC(X) is a comonotonic additive measure of variability in the

sense of Bickel and Lehmann, that is, it satisfies properties (P0)–(P4) and (P6).
(ii) If F1 = F2 = F and the copula C is NDS, then νC(X) satisfies all the properties (P0) to (P7).

Proof. We first prove (i). Let C be the copula of X1 and X2. From (4), we have

νC(X) =
∫ ∞

−∞
(h(F(x)) + F(x)− 2C(h(F(x)), F(x))dx

=
∫ 1

0
(h(u) + u− 2C(h(u), u))dF−1(u). (10)

Clearly, νC(X) = 0 if X is degenerated at c ∈ R. This, together with the fact that
F−1 is non-decreasing, F−1

X+k(x) = F−1
X (x) + k, for all k and F−1

λX (x) = λF−1
X (x), for all

λ > 0 (see [31]), ensures that νC(X) satisfies properties (P0) to (P3). Since, given two
random variables Z1 and Z2, the condition Z1 ≤st Z2 implies that E(Z1) ≤ E(Z2), property
(P4) (consistency of νC(X) with respect to the dispersive order) is a direct consequence of
Theorem 7. Property (P6) follows from the fact that, if Z1 and Z2 are comonotonic, then
F−1

Z1+Z2
(u) = F−1

Z1
(u) + F−1

Z2
(u), for all u ∈ (0, 1) (see [32]). Under the assumptions in (ii),

we have

νC(X) = 2
∫ 1

0
(u− C(u, u))dF−1(u). (11)
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Standard arguments show that

lim
u→i

F−1(u)(u− C(u, u)) = 0, i = 0, 1.

Therefore, integrating (11) by parts, we get

νC(X) = 2
∫ 1

0
F−1(u)d(C(u, u)− u).

Since C is componentwise convex, (P5) follows from Theorem 8. (ii) in [33] and (P7)
follows from Theorem 2.1 in [12].

Example 11. Two functionals satisfying the assumptions of part (i) are νC1(X) = GMD(X) and
νC2(X) =

∫ ∞
−∞|Fh(x)− F(x)|dx, which is the Wasserstein distance between F and its distortion

Fh = h ◦ F, a variability measure introduced by [34]. Note that νC2(X) = E(|X1 − X2|), where
F1 = h ◦ F, F2 = F and C2 is the Fréchet–Hoeffding upper bound copula (see (6)).

Example 12. Using (7), it follows from Theorem 10 (ii) that νC(X) = E(|X−mX |), where mX
is the median of X, satisfies all the properties (P0) to (P7) listed above. This measure can be written
in the form 1

2 E(|X1 − X2|) where F1 = F2 = F and where C is the Fréchet–Hoeffding lower bound
copula (see (7) and the paragraph below it), which is an example of NDS copula (see [35] for this
and other examples of NDS copulas).

4. Other Stochastic Comparisons

To begin this section, we consider two random vectors X = (X1, X2) and Y = (Y1, Y2)
with the same marginals. Denote by R(F1, F2) the space of bidimensional random vectors
with marginal distribution functions F1 and F2.

Theorem 13. Let X = (X1, X2) ∈ R(F1, F2) and Y = (Y1, Y2) ∈ R(F1, F2) be two random
vectors with copulas C and C′, respectively. If C′ ≺ C, then:

(i) |X1 − X2| ≤icx |Y1 −Y2|.
(ii) (X1 − X2)

+ ≤icx (Y1 −Y2)
+.

Proof. Under the assumptions, it follows from Theorem 4 of [36] that X1−X2 ≤icx Y1−Y2.
This means that E(Φ(X1 − X2)) ≤ E(Φ(Y1 −Y2)) for all increasing convex Φ. Since
Φ(t) = Ψ(|t|) is increasing and convex for any increasing convex function Ψ, it follows
that E(Ψ|X1 − X2|) ≤ E(Ψ|Y1 −Y2|) for all increasing and convex Ψ, which proves (i). The
proof of (ii) is similar using the function Φ(t) = Ψ((t)+).

Remark 14. An alternative proof of Theorem 13 can be given by using Theorem 1 in [37], which
provides conditions to ensure, under the above assumptions, that E(k(X1, Y2)) ≥ E(k(Y1, Y2)) for
certain classes of functions k. The proof is based on proving that the functions k(x, y) = φ|x− y|
and k(x, y) = φ(x− y)+, with φ increasing and convex, satisfy those conditions.

A more general type of comparison can be made between two random vectors with
possibly different (but stochastically ordered) marginals. The following two results provide
conditions to compare two random excesses. The first result is given in terms of the usual
stochastic order and the second result in terms of the increasing convex order.

Theorem 15. Let X = (X1, X2) be a random vector with respective marginal distribution func-
tions F1 and F2. Similarly, let Y = (Y1, Y2) be a random vector with marginal distribution functions
G1 and G2, respectively. If X and Y have the same copula C, X1 ≤st Y1 and X2 ≥st Y2, then
(X1 − X2)

+ ≤st (Y1 −Y2)
+.
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Proof. For x ≥ 0,

F̄(X1−X2)
+(x) = 1−

∫ +∞

−∞
P[X1 ≤ F−1

2 (p) + x|X2 = F−1
2 (p)]dp

= 1−
∫ 1

0
∂2C(F1(F−1

2 (p) + x), p)dp, x > 0.

Therefore, given x ≥ 0,

Ḡ(Y1−Y2)+
(x)− F̄(X1−X2)+

(x)

=
∫ 1

0
(∂2C(F1(F−1

2 (p) + x), p)− ∂2C(G1(G−1
2 (p) + x), p))dp ≥ 0,

Since G1(x) ≤ F1(x) for all x, G−1
2 (p) ≤ F−1

2 (p) for all p ∈ (0, 1) and ∂2C increases
in the first argument (since ∂2C(u, p) is the distribution function of the random vari-
able (U|V = p)). Therefore, F̄(X1−X2)+

(x) ≤ Ḡ(Y1−Y2)+
(x) for all x ≥ 0, which ends

the proof.

Theorem 16. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors with copulas C and
C′, and marginal distribution functions F1, F2 and G1, G2, respectively. If C is NDS, C′ ≺ C,
X1 ≤icx Y1 and X2 ≥icv Y2, then (X1 − X2)

+ ≤icx (Y1 −Y2)
+.

Proof. Let us consider a vector Y∗ = (Y∗1 , Y∗2 ) with copula C and such that Y∗i =st Yi for
i = 1, 2. From the assumptions, it follows that X2 ≥icv Y∗2 , which is equivalent to say that
−X2 ≤icx −Y∗2 (Theorem 4.A.1 in [20]). Since X and Y∗ have the same copula C, the random
vectors X̂ = (X1,−X2) and Ŷ = (Y∗1 ,−Y∗2 ) have the same copula Ĉ(u, v) = u−C(u, 1− v).
Moreover, since C is NDS (that is, componentwise convex), then Ĉ(u, v) is PDS (that is,
componentwise concave). It follows from Corollary 2.7 in [38] that X1 − X2 ≤icx Y∗1 −Y∗2 .
Since C′ ≺ C, it follows from Theorem 13 that Y∗1 − Y∗2 ≤icx Y1 − Y2. The result follows
by using the fact that the increasing convex order is transitive and is preserved by the
increasing convex transformation φ(t) = t+ (see Theorem 4.A.8(a) in [20]).

Remark 17. In particular, Theorem 16 holds when X = (X1, X2) and Y = (Y1, Y2) have the same
NDS copula C. In this case, X1 ≤icx Y1 and X2 ≥icv Y2 imply (X1 − X2)

+ ≤icx (Y1 −Y2)
+.

Lemma 18. Let X and Y be two random variables that are symmetric about 0. Then:

(i) If X+ ≤st Y+, then |X| ≤st |Y|.
(ii) If X+ ≤icx Y+, then |X| ≤icx |Y|.

Proof. Let FX+ and F|X| be the tail functions of X+ and |X|, respectively. If X and Y are
symmetric about 0, it is easy to see that F|X|(t) = h

(
FX+(t)

)
for all t, where h is the concave

distortion function

h(t) =
{

2t if 0 ≤ t ≤ 1/2
1 if 1 < 2t ≤ 1.

Now (i) and (ii) follow, respectively, from Theorem 2.6 (i) and Theorem 2.6 (v)
in [39].

The following result follows immediately from Theorem 15 and Lemma 18.

Corollary 19. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors with the same copula
C and with marginal distribution functions F1, F2 and G1, G2, respectively. If X1 ≤st Y1 and
X2 ≥st Y2, then |X1 − X2| ≤st |Y1 −Y2|.

The following result is also an immediate corollary of Theorem 16 and Lemma 18.
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Corollary 20. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors with symmetric copulas
C and C′, and marginal distribution functions F1, F2 and G1, G2, respectively. If C is NDS, C′ ≺ C,
X1 ≤icx Y1 and X2 ≥icv Y2, then |X1 − X2| ≤icx |Y1 −Y2|.

Remark 21. In particular, Corollary 20 holds when X = (X1, X2) and Y = (Y1, Y2) have
the same symmetric NDS copula C. When this is the case, X1 ≤icx Y1 and X2 ≥icv Y2 imply
|X1 − X2| ≤icx |Y1 −Y2|.

Since the independence copula is both NDS and PDS, a particular case of
Corollaries 19 and 20 is the following.

Corollary 22. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors with independent
components and with marginal distribution functions F1, F2 and G1, G2, respectively.

(i) If X1 ≤st Y1 and X2 ≥st Y2, then |X1 − X2| ≤st |Y1 −Y2|.
(ii) If X1 ≤icx Y1 and X2 ≥icv Y2, then |X1 − X2| ≤icx |Y1 −Y2|.

The following corollaries extend Lemma 2.2 in [6] from the case of two random vectors
with independent components to the case of two random vectors with the same symmetric
NDS copula.

Corollary 23. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors with the same sym-
metric NDS copula C and with marginal distribution functions F1, F2 and G1, G2, respectively. If
X1 ≤cx Y1 and X2 ≤cx Y2, then |X1 − X2| ≤icx |Y1 −Y2|.

Proof. The assumption X1 ≤cx Y1 implies X1 ≤icx Y1. Since X2 ≤cx Y2 holds if and only
if −X2 ≤cx −Y2 (Theorem 3.A.12 in [20]), it follows −X2 ≤icx −Y2. This is equivalent to
write X2 ≥icv Y2; therefore, the result follows from Corollary 20.

Corollary 24. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors with the same sym-
metric NDS copula, such that X2 =st X1 and Y1 =st Y2, all variables having finite means. If
X1 ≤ew Y1, then |X1 − X2| ≤icx |Y1 −Y2|.

Proof. It is well-known (see (3.C.7) in [20]) that X1 ≤ew Y1 implies X1 − E(X1) ≤cx Y1 −
E(Y1). The result follows from Corollary 23.

5. Applications
5.1. An Application in Actuarial Science

In actuarial theory, a premium principle is a decision rule used by the insurer in order
to determine the price for a risk to be insured. More formally, given a random variable X
describing an insurance risk, a premium principle T assigns to X a number T(X) which
is the premium to be charged for accepting the risk X (see [19] for an overview). The
simplest premium principle is the net premium T(X) = E(X), which does not load for risk.
More general premium principles are obtained by adding a load to the net premium that
reflects the danger associated with the risk. Since the danger is often interpreted in terms of
variability, a number of premium principles are obtained by adding to the net premium a
risk load proportional to a specific measure of variability. Examples include the following:

• T1(X) = E(X) + λ
√

Var[X], with λ > 0 (standard deviation premium principle)
• T2(X) = E(X) + λGMD(X), with λ > 0 (Gini’s premium principle)
• T3(X) = E(X) + λE(|X−mX |), with λ > 0 (Denneberg’s premium principle)
• T4(X) = E(X) +

∫ ∞
−∞|Fh(x)− F(x)|pdx, where p ≥ 0 and h is a distortion function

(see [34,40]).

Other examples can be found in [41]. Following this schema, we define a general class
of premium principles based on distances between random variables.



Mathematics 2021, 9, 981 10 of 14

Definition 25. Given a risk X with distribution function F, let F be the family of premium
principles of the form

TC(X) = E(X) + λE(|X1 − X2|), for some λ > 0,

where X1 and X2 are two copies of X such that X1 and X2 have copula C.

From the results in Section 2, we see that T2, T3 and T4 (for p = 1) are premium
principles that belong to the family F for different choices of the copula C. Moreover, it
follows from Theorem 10 that a premium principle TC ∈ F satisfies the following properties:

(a) Risk loading: TC(X) ≥ E(X).
(b) Non unjustified risk loading: If X = k ≥ 0 (k constant), then TC(X) = k.
(c) Translation invariance: TC(X + k) = T(X) + k for all constant k.
(d) Scale invariance: TC(bX) = bTC(X) for all constant b > 0.
(e) Comonotonic additivity: if X and Y are comonotonic, then TC(X +Y) = TC(X) + TC(Y).
(f) Subadditivity: if C is NDS, then TC(X + Y) ≤ TC(X) + TC(Y) for all X and Y.

A premium principle satisfying the above properties that does not follow the schema
T(X) = E(X) + λD(X), where D is a measure of variability of X, is the distortion premium
principle [32], defined by

Th(X) = −
∫ 0

−∞
(1− h[F̄(x)])dx +

∫ ∞

0
h[F̄(x)]dx,

where h is a concave distortion function. Our next result is related to a property of Th.
Recall that, given a random variable Z with distribution function FZ, the family

ΠZ ≡ {X = µ + σZ : µ ∈ R, σ > 0}

is called a location-scale family of random variables. It is shown in [42] that the distortion
premium principle Th reduces to T1 (the standard deviation premium principle) for location-
scale families of distributions. Next, we give a similar result involving the premium
principle TC given in Definition 25.

Theorem 26. Consider a location scale family ΠZ and let TC ∈ F. Then, TC reduces to T1
(standard deviation premium principle) or, equivalently, to Th (ditortion premium principle) on ΠZ.

Proof. Since T1 is a special case of Th on location-scale families of distributions [42], it
suffices to prove that TC reduces to Th on ΠZ. Let X ∈ ΠZ. Since FX(x) = FZ(

x−µ
σ ) for all

x, if X1 and X2 are two copies of X with copula C, we have

TC(X) = E(X) + λE[|X1 − X2|]

= µ + σE(Z) + 2λ
∫ ∞

−∞
(FX(x)− C(FX(x), FX(x)))dx

= µ + σE(Z) + 2λ
∫ ∞

−∞
(FZ(z)− C(FZ(z), FZ(z)))σdz

= µ + σE(Z) + 2λσE[|Z1 − Z2|],

where Z1 and Z2 are two copies of Z with copula C (here, we have used that copulas are
invariant for strictly monotone transformations of the random variables). Now, we equate
this expression with Th(X) to obtain

λ =
Th(Z)− E(Z)
E[|Z1 − Z2|]
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where we have used that Th(X) = µ + σTh(Z), because Th is scale and translation invariant.
Observe that λ is independent of µ and σ; therefore, we conclude that TC reduces to Th
on C.

5.2. An Application in Portfolio Risk Management

In portfolio risk management, investors diversify portfolios to reduce market risk.
On average, a portfolio with several assets exhibits, unless they are perfectly correlated,
less variability in returns than a portfolio with only one asset. To illustrate the results
in Section 4, let us consider an investor whose portfolio has only one asset A with log-
return X2. During the diversification process, the investor is concerned with the risk of two
assets B and C with log-returns X1 and Y1, respectively, that might be included in her/his
portfolio. Here, the risk of these two assets B and C must be considered in relation to the
asset A, which acts as a hedge. One way to assess the impact of each of these two assets is
by comparing the distances |X1 − X2| and |Y1 − X2| in some stochastic sense. A smaller
distance suggests a higher degree of similarity between the log-returns of the assets when
evaluated jointly. If the assets B and C move in the opposite direction as the hedge A, a
higher degree of similarity with A intuitively reduces the risk of the diversified portfolio.
An alternative method to asses the impact of B and C on the portfolio is by using measures
of contagious (see Section 4 in [43]).

Recall that the log return of an asset at week t is defined by rt = log(pt/pt−1), where
pt is the price of the asset at week t. For our empirical example, we work with log-returns
of three stocks included in Nasdaq Composite index: Zoom Video Communications (X1),
Moderna (Y1) and Booking Holdings Inc (X2 = Y2) (we have selected three companies that
were affected differently at the beginning of the financial crisis of COVID-19). The study is
based on samples of size n = 64 for each financial institution ({x1i}, {y1i} and {x2i = y2i},
for i = 1, ..., 64), measuring the share value from 23 December 2019 until 15 March 2021.
Data were gathered from the public website http://es.finance.yahoo.com, accessed on 22
March 2021, and are related to the weekly close of trading to eliminate the time dependent
effect. Suppose that, initially, the whole portfolio of our investor consists of stocks in only
one company: Booking Holdings, Inc. To reduce risk, the investor plans to invest either in
Zoom or Moderna and faces the problem of which of them should be chosen. A method
that helps to make a decision, as explained above, is to compare the distances between the
components of the random vectors X = (X1, X2) and Y = (Y1, Y2).

Figure 1 plots the empirical distribution function of sample absolute differences
|x1i − x2i| between Zoom and Booking (green curve) and |y1i − y2i| between Moderna and
Booking (blue curve), for i = 1, ..., 64. The blue curve starts above; at some point around
x = 0.005, it crosses from above to below the green curve and, after that point, it seems
to be everywhere below. The graphic is consistent with a model where |X1 − X2| and
|Y1 −Y2| are ordered in the increasing convex order. Next, we give statistical significance
to this conclusion.

We first perform some tests to study the marginal distributions of X1, X2 and Y1.
In order to check randomness, the classical runs test is performed with p-values 0.6143,
0.3134 and 0.2077, respectively. Symmetry is tested using the symmetry test by [44],
obtaining p-values 0.388, 0.81, and 0.174, respectively. The Kolmogorov–Smirnov test for
normality gives, respectively, the p-values 0.5424, 0.9154, and 0.3486. Therefore, there is
not significant evidence to reject the hypothesis that the three log return distributions are
random, symmetric, and normal.

A unilateral F-test for paired data, performed for testing the hypothesis of equality of
variances against σX1 < σY1 , gives a p-value of 0.000493, showing significant evidence that
σX1 < σY1 . The p-value of the t-test for testing µX1 = µY1 against µX1 6= µY1 is 0.7124, so we
can not reject the equality of means. From the assumptions of normality, µX1 = µY1 and
σX1 < σY1 , it follows X1 ≤icx Y1 (see Table 2.2 in [22]).

http://es.finance.yahoo.com


Mathematics 2021, 9, 981 12 of 14

Figure 1. Distribution functions of empirical absolute differences. The green curve corresponds to
Fn,|X1−X2|(x) and the blue curve to Fn,|Y1−Y2|(x).

The copulas C and C′ are adjusted by using the goodness of fit test based on Kendall’s
process [45,46]. Considering a bivariate normal (BN) copula, we obtain p-values 0.74 and
0.79, respectively; therefore, there is not statistical evidence to reject that C and C′ are
BN. Since the bivariate normal copula parameter is the Pearson correlation coefficient
ρX, we perform the Williams’s Test (bilateral) [47,48] for testing the hypothesis ρX = ρY
against ρX 6= ρY when the vectors share one component (X2 = Y2). The p-value, 0.4622,
indicates that we cannot reject the equality, which leads us to admit that C = C′ ∼ BN(ρ).
Since the sample estimate of the Pearson’s correlation coefficient is negative, we test ρ = 0
against ρ < 0 by running the test for association between paired samples using Pearson’s
correlation coefficient for the vector X. The p-value, 0.0442, suggests that ρ < 0, which
means that the copulas are NDS (see Example 4.1 in [24]).

To conclude: the assumptions (1) X1 ≤icx Y1 and that (2) the copulas C and C′ are
equal and are NDS, are supported by statistical significance. It follows from Corollary 20
that |X1 − X2| ≤icx |Y1 − Y2|, which indicates that Zoom leads to a less risky portfolio
than Moderna.

6. Conclusions

Given two random variables X1 and X2 that are not necessarily independent, we
have provided several results concerning the distances |X1 − X2|, (X1 − X2)

+ and their
expectations. The most remarkable results of this study can be summarized as follows:

(a) If X is a random variable with strictly increasing distribution function F and X1 and
X2 are two random variables with a NDS (negative dependent through stochastic
ordering) copula C and with marginal distribution functions F1 = F2 = F, then
ν(X) = E(|X1 − X2|) is a variability measure satisfying the following properties:
law invariance, translation invariance, positive homogeneity, non-negativity, consis-
tency with the dispersive order, consistency with the excess wealth order, comono-
tonic additivity, and subadditivity. An example is the median absolute deviation
ν(X) = E(|X−mX |), where mX is the median of X, which can be written in the form
1
2 E(|X1 − X2|), where C is the Fréchet–Hoeffding lower bound copula.

(b) Given two random vectors (X1, X2) and (Y1, Y2) with possibly different marginals
and copulas, we have given conditions, in terms of several stochastic orders, under
which |X1 − X2| ≤st,icx |Y1 −Y2| and (X1 − X2)

+ ≤st,icx (Y1 −Y2)
+.

Two applications have been provided. In actuarial science, given a risk X, we have pro-
posed a general class of premium principles of the form TC(X) = E(X) + λE(|X1 − X2|),
for some λ > 0, where X1 and X2 are two copies of X with copula C. In portfolio risk
management, we have assessed the inclusion of a new asset in a portfolio by comparing
absolute values of differences. It is a question of future research to determine the circum-
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stances under which the criterion used in Section 5.2 to include a new asset in a portfolio
gives rise to a portfolio with smaller realized variance.

Finally, it is interesting to note that the random excess (X1 − X2)
+ also has an appeal-

ing role in the context of risk management and quantitative finance. If X1(t) and X2(t) are
the prices of two risky assets at time t, the payoff of the option that gives the buyer the right
to exchange the second asset for the first at the expiry time t (called exchange option) is
(X1(t)− X2(t))+. In this context, the results in this paper can be used to compare different
payoffs in a similar manner as in Section 5.2.
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