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Abstract: Let (C ,E, s) be an extriangulated category with a proper class ξ of E-triangles and X

a resolving subcategory of C . In this paper, we introduce the notion of X-resolution dimension
relative to the subcategory X in C , and then give some descriptions of objects with finite X-resolution
dimension. In particular, we obtain Auslander-Buchweitz approximations for these objects. As
applications, we construct adjoint pairs for two kinds of inclusion functors, and construct a new
resolving subcategory from a given resolving subcategory which reformulates some known results.
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1. Introduction

In classical homological algebra, homological dimensions are important invariants,
and every homological dimension is defined in terms of some certain subcategory. For
example, one can define projective dimension in terms of the subcategory consisting of
projective objects, and define injective dimension in terms of the subcategory of consisiting
injective objects in any abelian category. Resolving subcategories play important roles in
approximation theory (e.g., [1,2]). As an important example of resolving subcategories,
Auslander and Buchweitz [3] studied the approximation theory of the subcategory con-
sisting of maximal Cohen-Macaulay modules over an Artin algebra. Zhu [4] studied
the resolution dimension with respect to a resolving subcategory in an abelian category,
and Huang [5] introduced relative preresolving subcategories in an abelian category and
defined homological dimensions relative to these subcategories. In [6,7], Ma, Zhao, and
Huang investigated homological dimensions relative to (pre)resolving subcategories in
triangulated categories with a proper class of triangles. For more references on resolution
and homological dimension, see [8–11], for example.

Exact and triangulated categories are two important structures in category theory.
In [12], Nakaoka and Palu introduced the notion of extriangulated categories as a simulta-

neous generalization of exact categories and extension-closed subcategories of triangulated
categories. After that, the study of extriangulated categories has become an active topic,
and up to now, many results on exact categories and triangulated categories can be unified
in the same framework, e.g., see [8,12–16]. Recently, Hu, Zhang, Zhou [13] studied a
relative homological algebra in an extriangulated category (C ,E, s) which parallels the
relative homological algebra in triangulated categories and exact categories. By specifying
a class of E-triangles, which is called a proper class ξ of E-triangles, the authors introduced
ξ-projective, ξ-injective, ξ-Gprojective and ξ-Ginjective dimensions, and discussed their
properties. In abelian categories, the subcategory consisting of Gorenstein projective objects
is a resolving subcategory, thus the aim of this paper is to introduce a notion of resolving
subcategories in extriangulated categories, which regards the subcategory consisting of
ξ-Gprojective objects as a special example. After this, we devote to further studying homo-
logical dimensions relative to a resolving subcategory in extriangulated categories which
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recovers lots of known results in abelian and triangulated categories, and is new in exact
categories. The paper is organized as follows.

In Section 2, we give some terminology and some preliminary results. In particular,
we introduce the notion of resolving subcategories in extriangulated categories with a
proper class of E-triangles.

In Section 3, we introduce the notion of X-resolution dimension of objects relative
to a resolving subcategory X, and some homological properties of resolution dimension
are obtained. In particular, we obtain Auslander-Buchweitz approximation E-triangles
(see Proposition 4) for objects with finite X-resolution dimension. Our main result is
the following.

Theorem 1. Let X be a resolving subcategory of an extriangulated category (C ,E, s) with a proper
class of E-triangles ξ, and H a ξ-cogenerator of X with X ⊥ H. Let X̂ be the full subcategory of
C whose objects have finite X-resolution dimension, and let Ωn

X(M) (resp. Ωn(M)) be an nth
X-syzygy (resp. syzygy) of M. Assume that one of the following conditions satisfies:

(a) H is closed under cocones of ξ-deflations.
(b) H is closed under direct summands.

For any M ∈ C , if M ∈ X̂, then the following statements are equivalent:

(1) X- res.dim M ≤ m.
(2) Ωn(M) ∈ X for all n ≥ m.
(3) Ωn

X(M) ∈ X for all n ≥ m.
(4) ξxtn

ξ (M, H) = 0 for all n > m and all H ∈ H.

(5) ξxtn
ξ (M, L) = 0 for all n > m and all L ∈ Ĥ.

(6) M admits a right X-approximation ϕ : X → M, where ϕ is a ξ-defaltion, such that there is

an E-triangle K // X
ϕ // M // satisfying H- res.dim K ≤ m− 1.

(7) There are two E-triangles
WM // XM // M //

and
M // WM // XM //

in ξ such that XM and XM are in X and H- res.dim WM ≤ m − 1, H- res.dim WM =
X- res.dim WM ≤ m.

As applications, in Section 4, we will further study objects with a finite resolution
dimension with respect to a resolving subcategory X. We construct adjoint pairs for two
kinds of inclusion functors (see Theorems 3 and 4). Given a resolving subcategory X

of C , we construct a new resolving subcategory GPX(ξ) with a ξ-cogenerator X ∩ ⊥X
(see Theorem 5), which generalizes the Gorenstein projective subcategory GP(ξ) given by
Hu, Zhang, and Zhou [13] of [Definition 4.8].

Throughout this paper, all subcategories are full, additive and closed under isomorphisms.

2. Preliminaries

We first recall some notions and some needed properties of extriangulated categories
from [12].

Let C be an additive category and E : C op × C → Ab a biadditive functor, where
Ab is the category of abelian groups. Let A, C ∈ C . An element δ ∈ E(C, A) is called an
E-extension. Two sequences of morphisms

A x // B
y // C and A x′ // B′

y′ // C
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are said to be equivalent if there exists an isomorphism b ∈ HomC (B, B′) such that x′ = bx

and y = y′b. We denote by [ A x // B
y // C ] the equivalence class of A x // B

y // C . In

particular, we write 0 := [ A
(

IdA
0 )
// A⊕ C

(0 IdC)// C ].
For an E-extension δ ∈ E(C, A), we briefly write

a∗δ := E(C, a)(δ) and c∗δ := E(c, A)(δ).

For two E-extensions δ ∈ E(C, A) and δ′ ∈ E(C′, A′), a morphism from δ to δ′ is a pair
(a, c) of morphisms with a ∈ HomC (A, A′) and c ∈ HomC (C, C′) such that a∗δ = c∗δ′.

Definition 1. ([12] of [Definition 2.9], [17]) Let s be a correspondence which associates an equiva-

lence class s(δ) = [ A x // B
y // C ] to each E-extension δ ∈ E(C, A). The correspondence s is

called a realization of E provided that it satisfies the following condition.

(R) Let δ ∈ E(C, A) and δ′ ∈ E(C′, A′) be any pair of E-extensions with

s(δ) = [ A x // B
y // C ] and s(δ′) = [ A′ x′ // B′

y′ // C′ ].

Then for any morphism (a, c) : δ → δ′, there exists b ∈ HomC (B, B′) such that the
following diagram

A x //

a
��

B
y //

b
��

C

c
��

A′ x′ // B′
y′ // C′

commutes.

Let s be a realization of E. If s(δ) = [ A x // B
y // C ] for some E-extension δ ∈ E(C, A),

then we say that the sequence A x // B
y // C realizes δ; and in the condition (R), we say that the

triple (a, b, c) realizes the morphism (a, c).

For any two equivalence classes [ A x // B
y // C ] and [ A′ x′ // B′

y′ // C′ ], we define

[ A x // B
y // C ]⊕ [ A′ x′ // B′

y′ // C′ ] := [ A⊕ A′ x⊕x′// B⊕ B′
y⊕y′// C⊕ C′ ].

Definition 2. ([12] of [Definition 2.10], [17]) A realization s of E is called additive if it satisfies
the following conditions.

(1) For any A, C ∈ C , the split E-extension 0 ∈ E(C, A) satisfies s(0) = 0.
(2) For any pair of E-extensions δ ∈ E(C, A) and δ′ ∈ E(C′, A′), we have s(δ ⊕ δ′) =

s(δ)⊕ s(δ′).

Definition 3. ([12] of [Definition 2.12], [17]) The triple (C ,E, s) is called an externally triangu-
lated (or extriangulated for short) category if it satisfies the following conditions.

(ET1)E : C op × C → Ab is a biadditive functor.
(ET2)s is an additive realization of E.
(ET3)Let δ ∈ E(C, A) and δ′ ∈ E(C′, A′) be any pair of E-extensions with

s(δ) = [ A x // B
y // C ] and s(δ′) = [ A′ x′ // B′

y′ // C′ ].

For any commutative diagram
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A x //

a
��

B
y //

b
��

C

A′ x′ // B′
y′ // C′

in C , there exists a morphism (a, c) : δ→ δ′ which is realized by the triple (a, b, c).
(ET3)op Dual of (ET3).
(ET4)Let δ ∈ E(C, A) and ρ ∈ E(F, B) be any pair of E-extensions with

s(δ) = [ A x // B
y // C ] and s(ρ) = [ B u // D v // F ].

Then there exist an object E ∈ C , an E-extension ξ with s(ξ) = [ A z // D w // E ], and a
commutative diagram

A x // B
y //

u
��

C

s
��

A z // D w //

v
��

E

t
��

F F

in C , which satisfy the following compatibilities.

(i) s(y∗ρ) = [ C s // E t // F ].
(ii) s∗ξ = δ.
(iii) x∗ξ = t∗ρ.

(ET4)op Dual of (ET4).

Remark 1. Please note that both exact categories and triangulated categories are extriangulated
categories (see [12] of [Proposition 3.22]) and extension closed subcategories of extriangulated
categories are again extriangulated (see [12] of [Remark 2.18]). Moreover, there exist extriangulated
categories which are neither exact categories nor triangulated categories (see [12] of [Proposition
3.30] and [13] of [Remark 3.3]).

We will use the following terminology.

Definition 4. ([12] of [Definitions 2.15 and 2.19], [17]) Let (C ,E, s) be an extriangulated category.

1. A sequence A x // B
y // C is called a conflation if it realizes some E-extension δ ∈ E(C, A).

In this case, x is called an inflation and y is called a deflation.

2. If a conflation A x // B
y // C realizes δ ∈ E(C, A), we call the pair (A x // B

y // C, δ)

an E-triangle, and write it in the following way.

A x // B
y // C δ //

We usually do not write this “δ" if it is not used in the argument.

3. Let A x // B
y // C δ // and A′ x′ // B′

y′ // C′ δ′ // be any pair of E-triangles. If a triplet
(a, b, c) realizes (a, c) : δ→ δ′, then we write it as

A x //

a ��

B
y //

b ��

C
c ��

δ //

A′ x′ // B′
y′ // C′ δ′ //

and call (a, b, c) a morphism of E-triangles.

If a, b, c above are isomorphisms, then A x // B
y // C δ // and A′ x′ // B′

y′ // C′ δ′ // are said
to be isomorphic.
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Remark 2. We can view the collection of all E-triangles together with morphisms of E-triangles as
an additive category. Indeed,

(i) Let (a, b, c) be a morphism from A x // B
y // C δ // to A′ x′ // B′

y′ // C′ δ′ // , and let

(a′, b′, c′) be a morphism from A′ x′ // B′
y′ // C′ δ′ // to A′′ x′′ // B′′

y′′ // C′′ δ′′ // . The
composition is defined by (a′a, b′b, c′c).
The composition is well defined. In fact, assume that (a, c) : δ → δ′ and (a′, c′) : δ′ → δ′′

define morphisms of E-extensions, then a∗δ = c∗δ′ and a′∗δ′ = c′∗δ′′. Thus,

(a′a)∗δ = (a′∗a∗)δ = a′∗(a∗δ) = a′∗(c∗δ′) = (a′∗c∗)δ′

= (c∗a′∗)δ′ = c∗(a′∗δ′) = c∗(c′∗δ′′) = (c∗c′∗)δ′′ = (c′c)∗δ′′,

that is, (a′a, c′c) : δ→ δ′′ is a morphism of E-extensions.

(ii) For an E-triangle A x // B
y // C δ // , the identity morphism is (IdA, IdB, IdC).

(iii) The associativity of the composition is inherited by the associativity of the composition in C .

(iv) The E-triangle 0 0 // 0 0 // 0 0 // is an initial and terminal object.
(v) For objects X, Y in a category, write ιX : X → X t Y and ιY : Y → X t Y for the

morphisms equipping the coproduct (if it exists), and πX : X uY → X and πY : X uY →
Y for the morphisms equipping the product (if it exists). Now since C is additive, there

is an isomorphism ϕX,Y : X t Y → X u Y. Now fix objects A x // B
y // C δ // and

A′ x′ // B′
y′ // C′ δ′ // . There are isomorphisms

E(C u C′, A u A′)

θ
��

E(C t C′, A t A′)

E(C, A) uE(C, A′) uE(C′, A) uE(C′, A′) E(C, A) tE(C, A′) tE(C′, A) tE(C′, A′)

ψ

OO

where πE(Y,X)θ = E(ϕC,C′ ιY, πX) and ψιE(Y,X) = E(πY ϕC,C′ , ιX) for all X = A, A′

and Y = C, C′. Now let δ t δ′ = ψ(κ) and δ u δ′ = θ−1(κ) where κ = ιE(C,A)(δ) +
ιE(C′ ,A′)(δ

′). Then it is easy to check: that

A t A′ xtx′// B t B′
yty′// C t C′ δtδ′ //

is the coproduct of A x // B
y // C δ // and A′ x′ // B′

y′ // C′ δ′ // ; and that

A u A′ xux′// B u B′
yuy′// C u C′ δuδ′ //

is the product of A x // B
y // C δ // and A′ x′ // B′

y′ // C′ δ′ // ; and that the triple
(ϕA,A′ , ϕB,B′ , ϕC,C′) is the (unique) morphism

A t A′ xtx′//

ϕA,A′
��

B t B′
yty′//

ϕB,B′
��

C t C′

ϕC,C′
��

δtδ′ //

A u A′ xux′// B u B′
yuy′// C u C′ δuδ′ //

induced by the universal property.

The following condition is analogous to the weak idempotent completeness in exact
categories (see [12] of [Condition 5.8]).

Condition (WIC) Consider the following conditions.
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(a) Let f ∈ C (A, B), g ∈ C (B, C) be any composable pair of morphisms. If g f is an
inflation, then so is f .

(b) Let f ∈ C (A, B), g ∈ C (B, C) be any composable pair of morphisms. If g f is a
deflation, then so is g.

Example 1. (1) If C is an exact category, then Condition (WIC) is equivalent to C is weakly
idempotent complete (see [18] of [Proposition 7.6]).

(2) If C is a triangulated category, then Condition (WIC) is automatically satisfied.

Lemma 1. (c.f. [12] of [Proposition 3.15], [17]) Assume that (C ,E, s) is an extriangulated category.

(1) Let C be an object in C , and let A1
x1 // B1

y1 // C
δ1 // and A2

x2 // B2
y2 // C

δ2 //

be any pair of E-triangles. Then there is a commutative diagram in C

A2

m2

��

A2

x2

��
A1

m1 // M

e2

��

e1 // B2

y2

��
A1

x1 // B1
y1 // C

which satisfies s(y∗2δ1) = [A1
m1 // M

e1 // B2] and s(y∗1δ2) = [A2
m2 // M

e2 // B1].

(2) Let A be an object in C , and let A
x1 // B1

y1 // C1
δ1 // and A

x2 // B2
y2 // C2

δ2 //

be any pair of E-triangles. Then there is a commutative diagram in C

A
x1 //

x2
��

B1
y1 //

m2
��

C1

B2
m1 //

y2
��

N
e1 //

e2
��

C1

C2 C2

which satisfies s(x2∗δ1) = [ B2
m1 // N

e1 // C1 ] and s(x1∗δ2) = [ B1
m2 // N

e2 // C2 ].

The following definitions are quoted verbatim from [13] of [Section 3]. A class of
E-triangles ξ is closed under base change if for any E-triangle

A x // B
y // C δ // ∈ ξ

and any morphism c : C′ → C, then any E-triangle A x′ // B′
y′ // C′ c∗δ // belongs to ξ.

Dually, a class of E-triangles ξ is closed under cobase change if for any E-triangle

A x // B
y // C δ // ∈ ξ

and any morphism a : A→ A′, then any E-triangle A′ x′ // B′
y′ // C

a∗δ // belongs to ξ.
A class of E-triangles ξ is called saturated if in the situation of Lemma 1(1), whenever

A2
x2 // B2

y2 // C
δ2 // and A1

m1 // M
e1 // B2

y∗2 δ1 // belong to ξ, then the E-triangle

A1
x1 // B1

y1 // C
δ1 //
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belongs to ξ.

An E-triangle A x // B
y // C δ // is called split if δ = 0. It is easy to see that it is

split if and only if x is section or y is retraction.
The full subcategory consisting of the split E-triangles will be denoted by ∆0.

Definition 5. ([13] of [Definition 3.1], [17]) Let ξ be a class of E-triangles which is closed un-
der isomorphisms. Then ξ is called a proper class ofE-triangles if the following conditions hold:

(a) ξ is closed under finite coproducts and ∆0 ⊆ ξ.
(b) ξ is closed under base change and cobase change.
(c) ξ is saturated.

A proper class is a class which is not a set in general.

Definition 6. ([13] of [Definition 4.1], [17]) An object P ∈ C is called ξ-projective if for
any E-triangle

A x // B
y // C δ //

in ξ, the induced sequence of abelian groups

0 // HomC (P, A) // HomC (P, B) // HomC (P, C) // 0

is exact. Dually, we have the definition of ξ-injective objects.

We denote by P(ξ) (resp., I(ξ)) the full subcategory of C consisting of ξ-projective
(resp., ξ-injective) objects. It follows from the definition thatP(ξ) and I(ξ) are full, additive,
closed under isomorphisms and direct summands.

An extriangulated category (C ,E, s) is said to have enough ξ-projectives (resp., enough
ξ-injectives) provided that for each object A there exists an E-triangle K // P // A //

(resp., A // I // K // ) in ξ with P ∈ P(ξ) (resp., I ∈ I(ξ)).
The ξ-projective dimension ξ-pdA of A ∈ C is defined inductively. If A ∈ P(ξ), then

define ξ-pdA = 0. For a positive integer n, one writes ξ-pdA = n provided

(a) there is an E-triangle K // P // A // with P ∈ P(ξ) and ξ-pdK = n− 1,

(b) there does not exist anE-triangle L // P′ // A // with P′ ∈ P(ξ) and ξ-pdL < n− 1.

Of course we set ξ-pdA = ∞, if ξ-pdA 6= n for all n ≥ 0.
Dually we can define the ξ-injective dimension ξ-idA of an object A ∈ C .

Definition 7. ([13] of [Definition 4.4], [17]) A ξ-exact complex X is a diagram

· · · // X1
d1 // X0

d0 // X−1 // · · ·

in C such that for each integer n, we have dn = gn−1 fn for some E-triangle

Kn+1
gn // Xn

fn // Kn //

in ξ.
In particular, by saying that

Xn
dn // Xn−1 // · · · // X1

d1 // X0

is ξ-exact, it means that there are E-triangles

Xn
dn // Xn−1

fn−1 // Kn−1 // and K2
g1 // X1

d1 // X0 //
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in ξ, and for each integer 1 < i < n− 1, we have di = gi−1 fi for some E-triangle

Ki+1
gi // Xi

fi // Ki //

in ξ.

Definition 8. ([8] of [Definition 3.1], [17]) Let M be an object in C . By a ξ-projective resolution
of M we mean a symbol of the form P→ M where P is a ξ-exact complex, where Pn ∈ P(ξ) for all
n ≥ 0 and where P−1 = M and Pn = 0 for all n < −1.

The notion of ξ-injective coresolution of M is given dually.

Definition 9. ([8] of [Definition 3.2], [17]) Let M and N be objects in C .

(1) If we choose a ξ-projective resolution P // M of M, by applying the functor C (−, N) to
P we have a complex of abelian groups C (P, N). For any integer n ≥ 0, the ξ-cohomology
groups ξxtn

P(ξ)(M, N) are defined as

ξxtn
P(ξ)(M, N) = Hn(C (P, N)).

(2) If we choose a ξ-injective coresolution N // I of N, by applying the functor C (M,−) to
I we have a complex of abelian groups C (M, I). For any integer n ≥ 0, the ξ-cohomology
groups ξxtn

I(ξ)(M, N) are defined as

ξxtn
I(ξ)(M, N) = Hn(C (M, I)).

Remark 3. (1) In fact, there is an isomorphism ξxtn
P(ξ)(M, N) ∼= ξxtn

I(ξ)(M, N), which is
denoted by ξxtn

ξ (M, N) (see [8] of [Definition 3.2]).
(2) Assume that C has enough ξ-projective objects. Using a standard argument in homological

algebra, there is a bijection

ξxt1
ξ(M, N)→ {[ N x // Z

y // M ] | N x // Z
y // M δ // ∈ ξ}.

Remark 4. ([8] of [Lemma 3.4]) Let

X // Y // Z //

be an E-triangle in ξ. If C has enough ξ-projective objects and M is an object in C , then there exists
a long exact sequence

0 // ξxt0
ξ(Z, M) // ξxt0

ξ(Y, M) // ξxt0
ξ(X, M) //

ξxt1
ξ(Z, M) // ξxt1

ξ(Y, M) // ξxt1
ξ(X, M) // · · ·

of abelian groups. If C has enough ξ-injective objects and N is an object in C , then there exists a
long exact sequence

0 // ξxt0
ξ(N, X) // ξxt0

ξ(N, Y) // ξxt0
ξ(N, Z) //

ξxt1
ξ(N, X) // ξxt1

ξ(N, Y) // ξxt1
ξ(N, Z) // · · ·

of abelian groups.

Now, we set

X⊥ = {M ∈ C | ξxtn≥1
ξ (X, M) = 0 for all X ∈ X}

⊥X = {M ∈ C | ξxtn≥1
ξ (M, X) = 0 for all X ∈ X}.
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For two subcategories H and X of C , we say H ⊥ X if H ⊆ ⊥X (equivalently, X ⊆ H⊥).

Definition 10. ([13] of [Definition 4.5], [17]) LetW be a class of objects in C . An E-triangle

A // B // C //

in ξ is called to be C (−,W)-exact (resp., C (W ,−)-exact) if for any W ∈ W , the induced sequence
of abelian groups 0 // C (C, W) // C (B, W) // C (A, W) // 0 (resp.,

0 // C (W, A) // C (W, B) // C (W, C) // 0 ) is exact in Ab.

Definition 11. ([13] of [Definition 4.6], [17]) LetW be a class of objects in C . A complex X is
called C (−,W)-exact (resp., C (W ,−)-exact) if it is a ξ-exact complex

· · · // X1
d1 // X0

d0 // X−1 // · · ·

in C such that for each integer n we have dn = gn−1 fn for some C (−,W)-exact (resp., C (W ,−)-
exact) E-triangle

Kn+1
gn // Xn

fn // Kn
δn //

in ξ.
A ξ-exact complex X is called complete P(ξ)-exact (resp., complete I(ξ)-exact) if it is

C (−,P(ξ))-exact (resp., C (I(ξ),−)-exact).

Definition 12. ([13] of [Definition 4.7], [17]) A complete ξ-projective resolution is a complete
P(ξ)-exact complex

P : · · · // P1
d1 // P0

d0 // P−1 // · · ·

in C such that Pn is ξ-projective for each integer n. Dually, a complete ξ-injective coresolution is a
complete I(ξ)-exact complex

I : · · · // I1
d1 // I0

d0 // I−1 // · · ·

in C such that In is ξ-injective for each integer n.

Definition 13. ([13] of [Definition 4.8], [17]) Let P be a complete ξ-projective resolution in C .
Therefore, for each integer n, there exists a C (−,P(ξ))-exact E-triangle

Kn+1
gn // Pn

fn // Kn
δn //

in ξ. The objects Kn are called ξ-Gprojective for each integer n.
Dually if I is a complete ξ-injective coresolution in C , there exists a C (I(ξ),−)-exact

E-triangle

Kn+1
gn // In

fn // Kn
δn //

in ξ for each integer n. The objects Kn are called ξ-Ginjective for each integer n.

We denote by GP(ξ) (resp., GI(ξ)) the class of ξ-Gprojective (resp., ξ-Ginjective)
objects. It is obvious that P(ξ) ⊆ GP(ξ) and I(ξ) ⊆ GI(ξ).

Definition 14. Let H and X be two subcategories of C with H ⊆ X. Then H is called a
ξ-cogenerator of X if for any object X in X, there exists an E-triangle

X // H // Z //
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in ξ with H ∈ H and Z ∈ X.

Definition 15. ([13] of [Definition 3.4]) Let

X u // Y v // Z //

be an E-triangle in ξ. Then the morphism u (resp. v) is called a ξ-infaltion (resp. a ξ-deflation).

Fix some arbitrary E-triangle

X // Y // Z //

in ξ. We say that X is closed under ξ-extensions if, given any such E-triangle in ξ as above, if
X, Z lie in X, then Y lie in X. We say that X is closed under cocones of ξ-deflations (resp. cones
of ξ-inflations) if, given any such E-triangle in ξ as above, if Y, Z lie in X (resp. X, Y lie in
X), the so too does X (resp. Z).

Definition 16. Let C be an extriangulated category with enough ξ-projective objects and X

a subcategory of C . Then X is called a resolving subcategory of C if the following conditions
are satisfied.

(1) P(ξ) ⊆ X.
(2) X is closed under ξ-extensions.
(3) X is closed under cocones of ξ-deflations.

Remark 5. (a) We do not require that a resolving subcategory is closed under direct summands
in the above definition.

(b) P(ξ) is a resolving subcategory and closed under direct summands.
(c) GP(ξ) is a resolving subcategory and closed under direct summands (see [13] of [Theorems

4.16 and 4.17]).

In the following sections, we always assume that C = (C ,E, s) is an extriangulated category
and ξ is a proper class of E-triangles in C . We also assume that the extriangulated category C has
enough ξ-projectives and enough ξ-injectives satisfying Condition (WIC).

3. Resolution Dimension with Respect to a Resolving Subcategory

We first introduce the following definition.

Definition 17. Let X be a subcategory of C and M ∈ C . The X-resolution dimension of M (with
respect to ξ), written X-res.dim M, is defined by

X- res.dim M = inf{n ≥ 0 | there exists a ξ-exact complex

Xn // · · · // X1 // // X0 // M in C with all Xi objects in X}.

For a ξ-exact complex

· · ·
fn+1 // Xn // · · ·

f2 // X1
f1 // X0

f0 // M

with all Xi ∈ X, there are E-triangles K1
g0 // X0

f0 // M // and Ki+1
gi // Xi

hi // Ki //

with fi = gi−1hi for each i > 0. The object Ki are called an ith X-syzygy of M, denoted by Ωi
X(M).

In case X = P(ξ), we have ξ- pd M = X- res.dim M and write Ωi(M) := Ωi
P(ξ)(M). In case

X = GP(ξ), X- res.dim M coincides with ξ-G pd M defined by Hu, Zhang and Zhou [13] as
ξ-Gprojective dimension, the proof is straightforward.
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Lemma 2. Let X be a resolving subcategory of C . For any object M ∈ C , if

Xn
fn // · · · // X1

f1 // X0
f0 // M (1)

and
Yn

gn // · · · // Y1
g1 // Y0

g0 // M (2)

are ξ-exact complexes with all Xi and Yi in X for 0 ≤ i ≤ n − 1, then Xn ∈ X if and only if
Yn ∈ X.

Proof. For M ∈ C , since C has enough ξ-projectives, there exists a ξ-exact complex

Kn
un // Pn−1

hn−1 // · · · // P1
h1 // P0

h0 // M (3)

with Pi ∈ P(ξ) for 0 ≤ i ≤ n− 1.
First of all, by the ξ-exact complex (1) there are E-triangles

KM
1

t1 // X0
f0 // M // and KM

2
t2 // X1

s1 // KM
1

//

in ξ with f1 = t1s1. Moreover, by the ξ-exact complex (3) there is an E-triangle

K1
u1 // P0

h0 // M // in ξ. Consider the following diagram

KM
2

t2��

K1

u1��
X1

(1
0) //

s1��

X1 ⊕ P0
(0 1)// P0

0⊕0 //

h0��
KM

1
t1 //

��

X0
f0 // M

δ0 //

��

It is easy to see that s1∗(0⊕ 0) = 0 = h0
∗(δ0), i.e., (s1, h0) : 0⊕ 0→ δ0 is a morphism of

E-extensions. Thus, by [13] of [Lemma 4.15], there is an E-triangle K̄1
w1// X1 ⊕ P0

q1 // X0 //

such that the following diagram

KM
2

t2��

K̄1

w1��

K1

u1��
X1

(1
0) //

s1��

X1 ⊕ P0
(0 1)//

q1
��

P0
0⊕0 //

h0��
KM

1
t1 //

��

X0
f0 //

��

M
δ0 //

��
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commutes. By [13] of [Lemma 4.14], there exist morphisms k2 : KM
2 → K̄1 and k1 :

K̄1 → K1 such that there is an E-triangle KM
2

k2 // K̄1
k1 // K1 // and meanwhile, the

following diagram

KM
2

t2��

k2 // K̄1

w1��

k1 // K1

u1��

//

X1
(1

0) //

s1��

X1 ⊕ P0
(0 1)//

q1
��

P0
0⊕0 //

h0��
KM

1
t1 //

��

X0
f0 //

��

M
δ0 //

��

commutes. Repeating this process, we can obtain the following ξ-exact complex

Kn
wn // Xn ⊕ Pn−1 // Xn−1 ⊕ Pn−2 // · · · // X2 ⊕ P1 // X1 ⊕ P0

q1 // X0 . (4)

Similarly, we have the following ξ-exact complex

Kn
zn // Yn ⊕ Pn−1 // Yn−1 ⊕ Pn−2 // · · · // Y2 ⊕ P1 // Y1 ⊕ P0

p1 // Y0 . (5)

Decompose the ξ-exact complex (4) as the E-triangle

Kn
wn // Xn ⊕ Pn−1 // X // (6)

in ξ and the ξ-exact complex

X // Xn−1 ⊕ Pn−2 // · · · // X2 ⊕ P1 // X1 ⊕ P0
q1 // X0 . (7)

Decompose the ξ-exact complex (5) as the E-triangle

Kn
zn // Yn ⊕ Pn−1 // Y // (8)

in ξ and the ξ-exact complex

Y // Yn−1 ⊕ Pn−2 // · · · // Y2 ⊕ P1 // Y1 ⊕ P0
p1 // Y0 . (9)

Since X is resolving, we have that X and Y are objects in X by ξ-exact complexes (7)
and (9). Moreover, by E-triangles (6) and (8) we have that Xn ⊕ Pn−1 ∈ X if and only if
Kn ∈ X if and only if Yn ⊕ Pn−1 ∈ X.

However, from the following E-triangles in ξ

Xn
(1

0) // Xn ⊕ Pn−1
(0 1)// Pn−1

0 // and Yn
(1

0) // Yn ⊕ Pn−1
(0 1)// Pn−1

0 // ,

we have that Xn ∈ X if and only if Xn ⊕ Pn−1 ∈ X, and Yn ∈ X if and only if Yn ⊕ Pn−1 ∈ X.
Thus, Xn ∈ X if and only if Yn ∈ X.

Using the above, we can get

Proposition 1. Let X be a resolving subcategory of C and M ∈ C . Then the following statements
are equivalent:

(1) X- res.dim M ≤ m.
(2) Ωn(M) ∈ X for n ≥ m.
(3) Ωn

X(M) ∈ X for n ≥ m.
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Proof. Apply Lemma 2.

Now we can compare resolution dimensions in a given E-triangle in ξ as follows.

Proposition 2. labelprop-resdim Let X be a resolving subcategory of C , and let

A // B // C //

be an E-triangle in ξ. Then we have the following statements for any objects A, B and C in C :

(1) X-res.dim B ≤ max{X- res.dim A,X- res.dim C}.
(2) X-res.dim A ≤ max{X- res.dim B,X- res.dim C− 1}.
(3) X-res.dim C ≤ max{X- res.dim A + 1,X- res.dim B}.

Proof. For any D ∈ C , if X-res.dim D = d < ∞, by Proposition 1, we have the following
ξ-exact complex

PD
d

// PD
d−1

// · · · // PD
1

// PD
0

// D

in C with PD
i ∈ P(ξ) for 0 ≤ i ≤ d− 1 and PD

d ∈ X.
(1) Assume X-res.dim A = m < ∞ and X- res.dim C = n < ∞, We will use induction

on m and n. The case m = n = 0 is trivial. Without loss of generality, we assume m ≤ n,
then we can let PA

i = 0 for i > m. As a similar argument to proof of Lemma 2, we can
obtain the following ξ-exact complex

PA
n ⊕ PC

n
// PA

n−1 ⊕ PC
n−1

// · · · // PA
0 ⊕ PC

0
// B

in C .
Thus, X-res.dim B ≤ n = max{X- res.dim A,X- res.dim C}.
(2) Assume X-res.dim B = m < ∞ and X-res.dim C = n < ∞. We will use induction

on m and n. The case m = n = 0 is trivial. Without loss of generality, we assume m ≤ n− 1,
then we can let PB

i = 0 for i > m. By [14] of [Theorem 1], there exist a ξ-exact complex

PC
n ⊕ PB

n−1
// PC

n−1 ⊕ PB
n−2

// · · · // PC
2 ⊕ PB

1
// K // A

and an E-triangle

K // PC
1 ⊕ PB

0
// PC

0
//

in ξ, it follows that K ∈ P(ξ) by Remark 5. Thus, X-res.dim A ≤ n− 1 and the desired
assertion is obtained.

(3) Assume X-res.dim A = m < ∞ and X-res.dim B = n < ∞. We proceed it by
induction on m and n. The case m = n = 0 is trivial. Without loss of generality, we assume
m + 1 ≤ n, then we can let PA

i = 0 for i > m. By [14] of [Theorem 3], we have the following
ξ-exact complex

PB
n ⊕ PA

n−1
// · · · // PB

2 ⊕ PA
1

// PB
1 ⊕ PA

0
// PB

0
// C

in C , thus X-res.dim A ≤ n and the desired assertion is obtained.

We use X̂ to denote the full subcategory of C whose objects have finite X-resolution
dimension. Following the above, we have the closure properties for the subcategory X̂.

Remark 6. If X is a resolving subcategory of C , then X̂ is closed under cocones of ξ-deflations,
cones of ξ-inflations and ξ-extensions.
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Corollary 1. Let X be a resolving subcategory of C , and let

A // B // C //

be an E-triangle in ξ.

(1) Let C ∈ X. Then X-res.dim A = X-res.dim B.
(2) Let B ∈ X. Then either A ∈ X or else X-res.dim A = X-res.dim C− 1.
(3) Let A ∈ X and B, C /∈ X. Then X-res.dim B = X-res.dim C.

Proposition 3. Let H and X be two subcategories of C with H ⊆ X.

(1) Ĥ ⊆ X̂.
(2) If X is resolving, then for any M ∈ Ĥ, H- res.dim M = X- res.dim M if and only if

Ĥ∩X = H.
In particular, if X ⊥ H, and H is closed under cocones of ξ-deflations or closed under direct
summands, then Ĥ∩X = H.

Proof. (1) Obviously.
(2) The only if part. Clearly, H ⊆ Ĥ ∩ X. Let M ∈ Ĥ ∩ X. By assumption, we have

H- res.dim M = X- res.dim M = 0, then M ∈ H, and so Ĥ∩X ⊆ H. Thus, Ĥ∩X = H.
The if part. Suppose H- res.dim M = n < ∞ and X- res.dim M = m < ∞. Clearly

m ≤ n. Consider the following ξ-exact complexes

Hn // · · · // H0 // M

and
Xm // · · · // X0 // M

with Hi ∈ H and Xj ∈ X for all 0 ≤ i ≤ n and 0 ≤ j ≤ m. Since H ⊆ X, we have
Ωm

H(M) ∈ X by Lemma 2. Then Ωm
H(M) ∈ Ĥ∩X = H, and thus H- res.dim M ≤ m and the

desired equality is obtained.
Now, we assume that X ⊥ H and H is closed under cocones of ξ-deflations or closed

under direct summands. Clearly, H ⊆ Ĥ ∩ X. Conversely, let M ∈ Ĥ ∩ X. There exists a
ξ-exact complex

Hn // Hn−1 // · · · // H0 // M

with each Hi lies in H. Set Ki = Cocone(Hi → Hi−1) for 0 ≤ i ≤ n − 2, where
H−1 = M. Since X is resolving, we have Ki ∈ X, and hence Ki ∈ Ĥ ∩ X. Consider
the following E-triangle

Hn // Hn−1 // Kn−2 // (10)

in ξ. Since ξxt1
ξ(Kn−2, Hn) = 0 by the assumption that X ⊥ H, we have that the E-

triangle (10) is split by Remark 3(2). It follows that Hn−1
∼= Hn ⊕ Kn−2 and there exists an

E-triangle

Kn−2 // Hn−1 // Hn
0 //

in ξ. Since H is closed under cocones of ξ-deflations or closed under direct summands by
assumption, we have Kn−2 ∈ H. Repeating this process, we can obtain each Ki ∈ H, hence
M ∈ H and Ĥ∩X ⊆ H. Thus, Ĥ∩X = H.

Now we give the following definition.

Definition 18. Let X be a subcategory of C and M an object in C . A ξ-deflation X → M with

X ∈ X is said to be a right X-approximation of M if HomC (X̃, X) // HomC (X̃, M) // 0 is

exact for any X̃ ∈ X.
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The notion of a left X-approximation of M is given dually.

We need the following easy and useful observation.

Lemma 3. Let H and X be two subcategories of C .

(1) If X ⊥ H, then X ⊥ Ĥ. In particular, if H ⊥ H, then H ⊥ Ĥ.
(2) If M ∈ ⊥H, then M ∈ ⊥Ĥ.

Proof. let M ∈ Ĥ. Then there is a ξ-exact complex

Hn
hn // Hn−1

hn−1 // · · · // H0
h0 // M

with each Hi ∈ H for some nonnegative integer n. This means that there are E-triangles

Hn
hn // Hn−1

gn−1 // Kn−1 // , K1
w0 // H0

h0 // M // , and Ki+1
wi // Hi

gi // Ki // in ξ

with hi = wi−1gi for any 0 < i < n− 1. Applying Remark 4, we can get ξxti
ξ(X, M) ∼=

ξxti+1
ξ (X, K1) ∼= . . . ∼= ξxti+n

ξ (X, Hn) = 0 for any X ∈ X.

The following is an analogous theory of Auslander-Buchweitz approximations (see [3,6]).

Proposition 4. Let X be a subcategory of C closed under ξ-extensions, and let H be a subcategory
of X such that H is a ξ-cogenerator of X. Then for each M ∈ C with X- res.dim M = n < ∞,
there exist two E-triangles

K
f // X

g // M // (11)

and

M u // W v // X′ // (12)

in ξ, where X, X′ ∈ X, H- res.dim K ≤ n− 1 and H- res.dim W ≤ n.
In particular, if X ⊥ H, then the ξ-deflation g : X → M is a right X-approximation of M, and

the ξ-inflation u : M→W is a left Ĥ-approximation of M.

Proof. We will use induction on n. The case for n = 0 is trivial. If n = 1, there exists
an E-triangle

X1 // X0 // M // (13)

in ξ with X0, X1 ∈ X. Since H is a ξ-cogenerator of X, there is an E-triangle

X1 // H // X′1 //

in ξ with H ∈ H and X′1 ∈ X. By Lemma 1(2), we have the following commutative diagram

X1 //

��

X0 //

��

M //

H u //

α
��

X′0 //

α′
��

M //

X′1

��

X′1

��
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Since ξ is closed under cobase changes, we obtain that the E-triangle

H u // X′0 // M // (14)

is in ξ with H- res.dim H = 0. Notice that α′u = α is a ξ-deflation, so we have that α′ is a
ξ-deflation by [13] of [Proposition 4.13], hence the E-triangle

X0 // X′0
α′ // X′1 //

is in ξ by [12] of [Remark 3.10]. Since X is closed under ξ-extensions by assumption, we
have X′0 ∈ X. Therefore, (14) is the first desired E-triangle.

For X′0, since H is a ξ-cogenerator of X, there is an E-triangle

X′0 // H0 // X′′0 //

in ξ with H0 ∈ H and X′′0 ∈ X. By (ET4), we have the following commutative diagram

H u // X′0 //

β
��

M

��

//

H u′ // H0
v′ //

γ
��

U

γ′
��

//

X′′0

��

X′′0

��

(15)

Notice that u′ = βu is a ξ-inflation by [13] of [Corollary 3.5], so the E-triangle

H u′ // H0
v′ // U // is in ξ. Since γ′v′ = γ is a ξ-deflation, γ′ is a ξ-deflation by [13] of

[Proposition 4.13]. Therefore, the E-triangle

M // U
γ′ // X′′0 //

is in ξ with H- res.dim U ≤ 1 and X′′0 ∈ X, which is the second desired E-triangle.
Now suppose n ≥ 2. Then there is an E-triangle

K′ // X0 // M // (16)

in ξ with X- res.dim K′ ≤ n− 1 and X0 ∈ X. For K′, by the induction hypothesis, we get
an E-triangle

K′ // K // X2 //

in ξ with H- res.dim K ≤ n − 1 and X2 ∈ X. By Lemma 1(2), we have the following
commutative diagram

K′ //

��

X0 //

��

M //

K κ //

λ
��

X //

λ′
��

M //

X2

��

X2

��
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Notice that λ′κ = λ is a ξ-deflation, then λ′ is a ξ-deflation by [13] of [Proposition 4.13],
so the E-triangle

X0 // X // X2 //

is in ξ. It follows that X ∈ X from the assumption that X is closed under ξ-extensions. Since
ξ is closed under cobase changes, we obtain the first desired E-triangle

K // X // M // (17)

in ξ with H- res.dim K ≤ n− 1 and X ∈ X.
For X, since H is a ξ-cogenerator of X, we get the following E-triangle

X // H1 // X′ //

in ξ with H1 ∈ H and X′ ∈ X.
By (ET4), we have the following commutative diagram

K // X //

��

M

��

//

K // H1 //

��

W

��

//

X′

��

X′

��

As a similar argument to that of the diagram (15), we obtain that the E-triangles

K // H1 // W //

and

M // W // X′ // (18)

are in ξ. Thus, (18) is the second desired E-triangle in ξ with H- res.dim W ≤ n and X′ ∈ X.
In particular, suppose X ⊥ H. By Lemma 3, we have X ⊥ Ĥ. Then ξxt1

ξ(X̃, K) = 0

for any X̃ ∈ X, it follows that HomC (X̃, X) // HomC (X̃, M) // 0 is exact. Thus, the

ξ-deflation X // M is a right X-approximation of M. Similarly, we can prove that the
ξ-inflation u : M→W is a left Ĥ-approximation of M.

Proposition 5. Keep the notion as Proposition 4. Assume M ∈ X̂ with X- res.dim M = n < ∞.

(1) If X is resolving, then in the E-triangles (11) and (12), we have H- res.dim K = n− 1 and
H- res.dim W = X- res.dim W = n.
In particular, if X ⊥ H, then the ξ-deflation X → M in the E-triangle (11) is a right
X-approximation of M, such that H- res.dim K = n− 1.

(2) If X ⊥ H and X is resolving, then there is an E-triangle

M // M′ // X //

in ξ with M′ ∈ X⊥, X ∈ X and X- res.dim M = X- res.dim M′.
(3) (a) Let ωH = H⊥ ∩H. If ωH is a ξ-cogenerator of H and H is closed under ξ-extensions,

then X ⊥ ωH if and only if X ⊥ (H⊥ ∩ Ĥ).
(b) If X is a resolving and ωX = X ∩ X⊥ is a ξ-cogenerator of X and M ∈ X⊥, then

X- res.dim M = ωX- res.dim M.
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(4) Suppose that H and X are resolving. If ωH = H∩H⊥ is a ξ-cogenerator of H and X ⊥ ωH,

then M admits a right X-approximation X′ // M such that K′′ // X′ // M // is an
E-triangle in ξ, where H- res.dim K′′ = n− 1. In fact, we have ωH- res.dim K′′ = n− 1.

Proof. (1) If n = 1, then there is an E-triangle X1 // X0 // M // . By setting K = X1
in the E-triangles (11), we have X- res.dim K = 0. If n > 1, then K /∈ X. Applying
Corollary 1(2) to the E-triangle (11) yields that X- res.dim K = n− 1. On the other hand,
since H ⊆ X, we have n− 1 = X- res.dim K ≤ H- res.dim K ≤ n− 1. Thus, H- res.dim K =
n− 1.

Moreover, applying Corollary 1(1) to the E-triangle (12) implies X- res.dim W =
X- res.dim M = n. Therefore, n = X- res.dim W ≤ H- res.dim W ≤ n. Hence H- res.dim W =
X- res.dim W = n.

The last assertion follows from the above argument and Proposition 4.
(2) Since X ⊥ H, we have X ⊥ Ĥ by Lemma 3, and so the result immediately follows

from (1) and Propostion 4.
(3) (a) (⇐) Suppose X ⊥ (H⊥ ∩ Ĥ). Clearly, ωH = H⊥ ∩ H ⊆ H⊥ ∩ Ĥ ⊆ X⊥, i.e.,

X ⊥ ωH.
(⇒) Suppose X ⊥ ωH. Let L ∈ H⊥ ∩ Ĥ. By Proposition 4, there exists an E-triangle

K′ // H0 // L //

in ξ with H0 ∈ H and ωH- res.dim K′ ≤ H- res.dim L− 1 < ∞. Notice that H ⊥ ωH, so
H ⊥ ω̂H by Lemma 3, and hence K′ ∈ H⊥, thus L ∈ H⊥ implies H0 ∈ H⊥. Then H0 ∈ ωH,
and so L ∈ ω̂H. Since X ⊥ ωH, we have L ∈ X⊥ by Lemma 3. Thus, X ⊥ (H⊥ ∩ Ĥ).

(b) Suppose X- res.dim M = n, by (1) and Propostion 4, there exists an E-triangle

K // X0 // M //

in ξ with X0 ∈ X and ωX- res.dim K = n − 1. Notice that X ⊥ ωX, so X ⊥ ω̂X by
Lemma 3, thus M ∈ X⊥ and K ∈ X⊥, so X0 ∈ X⊥ by Remark 4, and hence X0 ∈ ωX. It
follows that ωX- res.dim M ≤ n. However, n = X- res.dim M ≤ ωX- res.dim M ≤ n, thus
X- res.dim M = ωX- res.dim M.

(4) Suppose X- res.dim M = n, by (1), there exists an E-triangle

K // X0 // M // (19)

in ξ with X0 ∈ X and H- res.dim K = n− 1. By (2), there is an E-triangle

K // K′′ // H //

in ξ with H ∈ H, K′′ ∈ H⊥ and H- res.dim K′′ = H- res.dim K. Then K′′ ∈ H⊥ ∩ Ĥ. By
Lemma 1(2), we have the following commutative diagram

K //

��

X0 //

��

M //

K′′ //

��

X′ //

��

M //

H

��

H

��

One can see that the E-triangle

K′′ // X′ // M // (20)
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is in ξ and X′ ∈ X. Notice that X ⊥ ωH, so X ⊥ H⊥ ∩ Ĥ by (3)(a). Then ξxt1
ξ(X̃, K′′) = 0 for

any X̃ ∈ X, and so HomT (X̃, X′) // HomT (X̃, M) // 0 is exact. Thus, the ξ-deflation

X′ // M is a right X-approximation of M and H- res.dim K′′ = n− 1 in the E-triangle (20).
Notice that K′′ ∈ H⊥, so we have ωH- res.dim K′′ = H- res.dim K′′ = n− 1 by (3)(b).

Lemma 4. Let H be a subcategory of C with H ⊥ H. Assume that H is closed under cocones of
ξ-deflations or closed under direct summands. Then H = Ĥ∩ ⊥H.

Proof. Clearly, H ⊆ Ĥ∩ ⊥H.
Conversely, let M ∈ Ĥ∩ ⊥H. Then there is a ξ-exact complex

Hn
hn // Hn−1

hn−1 // · · · // H0
h0 // M

with each Hi ∈ H for some nonnegative integer n. This means that there are E-triangles

Hn
hn // Hn−1

gn−1 // Kn−1 // , K1
w0 // H0

h0 // M // , and Ki+1
wi // Hi

gi // Ki // in ξ

with hi = wi−1gi for any 0 < i < n− 1. Then M ∈ ⊥H yields Ki ∈ ⊥H by Remark 4, and so
the E-triangle

Hn
hn // Hn−1

gn−1 // Kn−2 //

is split. It follows that Hn−1
∼= Hn ⊕ Kn−2 and there exists an E-triangle

Kn−2 // Hn−1 // Hn
0 //

in ξ. Since H is closed under cocones of ξ-deflations or closed under direct summands
by assumption, we have Kn−2 ∈ H. Repeating this process, we can obtain Ki ∈ H, hence
M ∈ H and Ĥ∩ ⊥H ⊆ H. Thus, Ĥ∩ ⊥H = H.

Proposition 6. Let X be a resolving subcategory of C and H a ξ-cogenerator of X with X ⊥ H.
Assume that H is closed under cocones of ξ-deflations or closed under direct summands. Then
X = X̂∩ ⊥Ĥ = X̂∩ ⊥H.

Proof. Clearly, X ⊆ X̂∩ ⊥H and X̂∩ ⊥Ĥ ⊆ X̂∩ ⊥H.
Now, let M ∈ X̂ ∩ ⊥H. Then by Lemma 3(2), we have M ∈ X̂ ∩ ⊥Ĥ, and hence

X̂∩ ⊥H ⊆ X̂∩ ⊥Ĥ.
On the other hand, by Proposition 4, there is an E-triangle

K // X // M // (21)

in ξ with X ∈ X and H- res.dim K < ∞. Notice that M ∈ ⊥H implies K ∈ ⊥H by Remark 4,
and hence K ∈ Ĥ∩ ⊥H = H by Lemma 4. Notice that ξxt1

ξ(M, K) = 0, so the E-triangle (21)
is split, hence X ∼= K⊕M. Consider the following E-triangle

M // X // K 0 //

in ξ. It follows that M ∈ X from the assumption that X is resolving. Thus, X̂∩ ⊥H ⊆ X.

Our main result is the following

Theorem 2. Let X be a resolving subcategory of C and H a ξ-cogenerator of X with X ⊥ H.
Assume that H is closed under cocones of ξ-deflations or closed under direct summands. For any
M ∈ C , if M ∈ X̂, then the following statements are equivalent:

(1) X- res.dim M ≤ m.
(2) Ωn(M) ∈ X for all n ≥ m.
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(3) Ωn
X(M) ∈ X for all n ≥ m.

(4) ξxtn
ξ (M, H) = 0 for all n > m and all H ∈ H.

(5) ξxtn
ξ (M, L) = 0 for all n > m and all L ∈ Ĥ.

(6) M admits a right X-approximation ϕ : X → M, where ϕ is a ξ-deflation, such that there is

an E-triangle K // X
ϕ // M // satisfying H- res.dim K ≤ m− 1.

(7) There are two E-triangles
WM // XM // M //

and
M // WM // XM //

in ξ such that XM, XM ∈ X and H- res.dim WM ≤ m − 1,
H- res.dim WM = X- res.dim WM ≤ m.

Proof. (1)⇔ (2)⇔ (3) follow from Proposition 1.
(1)⇒ (6) follows from Proposition 5(1), and (6)⇒ (1) is straightforward.
(1)⇒ (7) follows from Proposition 5(1), and (7)⇒ (1) is straightforward.
(1)⇒ (4) Suppose X- res.dim M ≤ m. There is a ξ-exact complex

Xm
xm // · · · // X0

x0 // M

with all Xi in X. This means that there are E-triangles Xm
xm // Xm−1

gm−1// Kn−2 // ,

K1
w0 // X0

x0 // M // , and Ki+1
wi // Xi

gi // Ki // in ξ with xi = wi−1gi for any 0 <

i < m− 1. By assumption, we have ξxtk≥1
ξ (Xi, H) = 0 for all H ∈ H. Thus, by Remark 4,

ξxtn
ξ (M, H) ∼= ξxtn−m

ξ (Xm, H) = 0 for n > m.
(4)⇒ (5) It follows from Lemma 3.
(5)⇒ (4) It is clear.
(4)⇒ (1) Since M ∈ X̂, by Proposition 5(1), there is anE-triangle K // X // M //

in ξ with H- res.dim K < ∞ and X ∈ X. Then ξxti
ξ(K, H) ∼= ξxti+1

ξ (M, H) for H ∈ H

and i ≥ 1 since ξxti≥1
ξ (X, H) = 0. Therefore, ξxti≥m

ξ (K, H) = 0. Please note that
H- res.dim K < ∞, so we have the following ξ-exact complex

Hn // · · · // H0 // K

with all Hi ∈ H. Then by Remark 4,

ξxti
ξ(Ω

m−1
H (K), H) ∼= ξxti+m−1

ξ (K, H) = 0

for i ≥ 1 and all H ∈ H, which means Ωm−1
H (K) ∈ ⊥H. Notice that H- res.dim Ωm−1

H (K) <
∞, hence Ωm−1

H (K) ∈ Ĥ ∩ ⊥H. It follows that Ωm−1
H (K) ∈ H from Lemma 4,

so H- res.dim K ≤ m− 1. Thus, X- res.dim M ≤ m.

4. Applications
4.1. Additive Quotient Categories with Respect to a Resolving Subcategory

In this subsection, we will further study objects with a finite resolution dimension
with respect to a resolving subcategory X. We construct adjoint pairs for two kinds of
inclusion functors, which unifies some results of [6,19].

Suppose that D and X are two subcategories of C . We use [D] to denote the ideal of X
consisting of morphisms which factor through some object in D. Thus, one has a quotient
category X/[D], which is also an additive category.

Throughout this subsection, we always assume that X is a resolving subcategory of C
and H is a ξ-cogenerator of X with X ⊥ H.
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Lemma 5. Let f : X → M be a morphism in C with X ∈ X and M ∈ X̂. Then f ∈ [H] if and
only if f ∈ [Ĥ].

Proof. The only if part is trivial.
For the if part, suppose that f factors through an object L ∈ Ĥ. Then f = gh, where

h : X → L and g : L→ M. Since L ∈ Ĥ, there is an E-triangle

L′ // H // L //

in ξ with H ∈ H and L′ ∈ Ĥ. Notice that X ⊥ H, one has X ⊥ Ĥ by Lemma 3, and thus
ξxt1

ξ(X, L′) = 0. Therefore, h factors through H, it follows that f factors through H.

Now let M ∈ X̂. By Proposition 4, there is an E-triangle

WM
α // XM

p // M // (22)

in ξ with XM ∈ X and WM ∈ Ĥ. Moreover, since we assume that X ⊥ H, the morphism p is
a right X-approximation of M by Proposition 4.

Lemma 6. Let M, N ∈ X̂ and f : M→ N be a morphism in C . Choose two E-triangles

WM
α // XM

p // M // and WN
β // XN

q // N //

in ξ with XM, XN ∈ X and WM, WN ∈ Ĥ, then we have the following statements:

(1) There exists a morphism g : XM → XN such that qg = f p.
(2) If g, g′ : XM → XN are two morphisms such that qg = f p and qg′ = f p, then [g] = [g′] in

HomX/[H](XM, XN).

Proof. (1) Since we assume that X ⊥ H, the morphism p and q are right X-approximation
of M and N respectively by Proposition 4. Then the existence of g is obvious.

(2) Suppose g, g′ : XM → XN are two morphisms such that qg = f p and qg′ = f p,
then q(g′ − g) = qg′ − qg = 0. By [12] of [Proposition 3.3], there exists a morphism
h : XM →WN such that g′ − g = βh, i.e., there is a commutative diagram as follows:

XM

g′−g
��

h

��
WN

β // XN
q // N // .

Notice that WN ∈ Ĥ, so g′ − g : XM → XN factors through an object in H by Lemma 5.
Thus, [g] = [g′] in HomX/[H](XM, XN).

Now let

WM
α // XM

p // M // and W ′M
α′ // X′M

p′ // M //

be two E-triangles in ξ with XM, X′M ∈ X and WM, W ′M ∈ Ĥ. By Lemma 6(1), there
exist morphisms g : XM → X′M and h : X′M → XM such that p′g = IdM p = p and
ph = IdM p′ = p′. Thus, phg = p = pIdM, and so [h][g] = [hg] = [IdM] by Lemma 6(2).
Similarly, [g][h] = [IdM]. Therefore, XM ∼= X′M in X/[H]. Following this and Lemma 6(2),
there exists a well-defined additive functor

F : X̂→ X/[H]
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which maps an object M ∈ X̂ to XM appeared in (22) and a morphism f : M → N ∈
HomX̂(M, N) to [g] ∈ HomX/[H](XM, XN) as described in Lemma 6.

It is obvious that F(H) = 0 for any object H ∈ H. Hence, there exists an additive
functor µ : X̂/[H]→ X/[H] making the following diagram

X̂

π ��

F // X/[H]

X̂/[H],

µ

==

commute, where π is the canonical quotient functor. Clearly, let N ∈ X̂ and

WN
β // XN

q // N //

an E-triangle in ξ with WN ∈ Ĥ and XN ∈ X, then µ(N) = µ(π(N)) = F(N) = XN .
We have the following result.

Theorem 3. The additive functor µ : X̂/[H] → X/[H] defined above is right adjoint to the
inclusion functor X/[H]→ X̂/[H].

Proof. Let X ∈ X and N ∈ X̂. Choose an E-triangle

WN
β // XN

q // N //

in ξ with WN ∈ Ĥ and XN ∈ X. Notice that the additive map

[q]? : HomX/[H](X, µ(N)) // HomX̂/[H](X, N)

is natural in both X and N by Lemma 6. We claim that [q]? is an isomorphism.
Indeed, since X ⊥ H, by Lemma 3, we have ξxt1

ξ(X, WN) = 0, and hence
HomC (X, XN)→ HomC (X, N) is an epimorphism, so [q]? is still an epimorphism.

Now, assume that g : X → XN is a morphism such that [qg] = [q][g] = [q]?[g] =
[0] ∈ HomX̂/[H](X, N). Then there exist an object H ∈ H and morphisms s : X → H and
t : H → N such that qg = ts. Consider the following diagram below

X

g
��

s // H

θ��
t
��

WN
β // XN q

// N // .

Since X ⊥ H by assumption, one has X ⊥ Ĥ by Lemma 3. Moreover, since H ⊆ X, H ⊥ Ĥ,
and hence ξxt1

ξ(H, WN) = 0. Thus, there exists a morphism θ : H → XN such that t = qθ.
Since q(g − θs) = qg − qθs = ts − ts = 0, so g − θs factors through WN . By Lemma 5,
g − θs factors through an object in H. It follows that [g − θs] = 0 ∈ HomX/[H](X, N).
Since θs = 0 ∈ HomX/[H](X, N), we have 0 = [g] ∈ HomX/[H](X, N). Therefore, [q]? is a
monomorphism, and thus [q]? is an isomorphism.

Corollary 2. Assume that H is closed under direct summands. For any N ∈ X̂, the following
statements are equivalent:

(1) N ∈ Ĥ.
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(2) There is an E-triangle

WN // XN
q // N //

in ξ with WN ∈ Ĥ and XN ∈ X such that [q] = [0] ∈ HomX̂/[H](X, N).

Proof. The assertion (1)⇒ (2) follows from Lemma 5. It suffices to show (2)⇒ (1). Notice
that the adjunction isomorphism established in Theorem 3 implies that the additive map

[q]? : HomX/[H](XN , XN) // HomX̂/[H](XN , N)

is an isomorphism. Since [q]?[idXN ] = [q idXN ] = [q] = [0] ∈ HomX̂/[H](XN , N) = 0, so
[idXN ] = [0] ∈ HomX̂/[H](XN , XN), and thus idXN factors through an object H ∈ H. It
follows that XN is a direct summand of H. Since H is closed under direct summands, we
have XN ∈ H. Thus, N ∈ Ĥ.

Next we compare additive quotients Ĥ/[X] and X̂/[X]. Let M ∈ X̂. By Proposition 4,
there is an E-triangle

M s // WM l // XM // (23)

in ξ with XM ∈ X and WM ∈ Ĥ. Moreover, since we assume that X ⊥ H, the morphism s is
a left Ĥ-approximation of M by Proposition 4.

Lemma 7. Let M, N ∈ X̂ and f : M→ N be a morphism in C . Choose two E-triangles

M s // WM l // XM // and N t // WN r // XN //

in ξ with XM, XN ∈ X and WM, WN ∈ Ĥ. Then we have the following statements:

(1) There exists a morphism g : WM →WN such that gs = t f .
(2) If g, g′ : WM →WN are two morphisms such that gs = t f and g′s = t f , then [g] = [g′] in

HomĤ/[X](XM, XN).

Proof. (1) Since X ⊥ H by assumption, we have ξxt1
ξ(XM, WN) = 0 by Lemma 3. Therefore,

there exists a morphism g : WM // WN such that gs = t f .

(2) Suppose g, g′ : WM → WN are two morphisms such that gs = t f and g′s = t f ,
then (g′ − g)s = g′s− gs = 0, and so there exists a morphism h′ : XM → WN such that
g′ − g = h′l, i.e., there is a commutative diagram as follows:

M s // WM

g′−g
��

l // XM

h��

//

WN

.

Notice that XM ∈ X, so g′ − g : WM → WN factors through an object in X. Thus,
[g] = [g′] in HomĤ/[X](W

M, WN).

As a similar argument to the functor F, by Lemma 7, there exists a well-defined
additive functor

G : X̂→ Ĥ/[X]

which maps an object M ∈ X̂ to WM appeared in (23) and a morphism f : M → N ∈
HomX̂(M, N) to [g] ∈ HomĤ/[X](W

M, WN) as described in Lemma 7.
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Obviously, G(X) = 0 for any object X ∈ X. Hence, there exists an additive functor
η : X̂/[X]→ Ĥ/[X] making the following diagram commute

X̂

π ��

G // Ĥ/[X]

X̂/[X],

η

==

where η is the canonical quotient functor.
We have the following result.

Theorem 4. The additive functor η : X̂/[X]→ Ĥ/[X] defined above is left adjoint to the inclusion
functor Ĥ/[X]→ X̂/[X].

Proof. Let K be an object in Ĥ and M an object in X̂. By Proposition 4, there is an E-triangle

M s // WM l // XM //

in ξ with WM ∈ Ĥ and XM ∈ X. Notice that the additive map

[s]? : HomĤ/[X](η(M), K) // HomX̂/X(M, K)

is natural in both M and K by Lemma 7. We claim that [s]? is an isomorphism.
Indeed, since X ⊥ H, by Lemma 3, we have ξxt1

ξ(XM, K) = 0, and hence
HomC (WM, K)→ HomC (M, K) is an epimorphism, so [s]? is still an epimorphism.

Now, assume that g : WM → K is a morphism such that [gs] = [g][s] = [s]?[g] =
[0] ∈ HomX̂/[X](M, K). Then there exist an object X ∈ X and morphisms v : M→ X and
k : X → K such that gs = kv. Since H is a ξ-cogenerator of X, there exists an E-triangle

X // H // X′ //

in ξ with H ∈ H and X′ ∈ X.
Notice that ξxt1

ξ(XM, H) = 0 and ξxt1
ξ(X′, K) = 0, by Remark 4 we get the following

commutative diagram

M s //

v
��

WM

v′
��

l // XM //

X

k
��

// H

v′′��

// X′ //

K

It follows that [v′′v′] = [0] ∈ HomĤ/X(W
M, K) as H ∈ X. Since v′′v′s = kv = gs ∈

HomĤ/[X](M, K), by Lemma 7(2), we have [g] = [v′′v′] ∈ HomĤ/[X](W
M, K), and hence

[g] = 0. Therefore, [s]? is a monomorphism, and thus [s]? is an isomorphism.

Corollary 3. Assume that X is closed under direct summands. For any N ∈ X̂, the following
statements are equivalent:

(1) N ∈ X.
(2) There is an E-triangle

N s // WN // XN //

in ξ with WN ∈ Ĥ and XN ∈ X such that [s] = [0] ∈ HomX̂/[X](N, WN).
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Proof. The assertion (1) ⇒ (2) is obvious. It suffices to show (2) ⇒ (1). Notice that the
adjunction isomorphism established in Theorem 4 implies that the additive map

[s]? : HomĤ/[X](W
N , WN) // HomX̂/X(N, WN)

is isomorphic. Since [s]?[idWN ] = [idWN s] = [s] = [0] ∈ HomX̂/[X](N, WN) = 0, so

[idWN ] = [0] ∈ HomĤ/[X](W
N , WN), and thus idWN factors through an object X′ ∈ X. It

follows that WN is a direct summand of X′. Since X is closed under direct summands, we
have WN ∈ X. Thus, N ∈ X.

4.2. Construct a New Resolving Subcategory

In this subsection, we will construct a new resolving subcategory from a given resolv-
ing subcategory, which generalizes the notion of ξ-Gorenstein projective objects given by
Hu, Zhang and Zhou [13]. By applying the results of this section to the subcategory of
ξ-Gprojective objects, we reformulate some known results in [8,13].

Definition 19. Let X be a subcategory of C and M ∈ C . A complete P(ξ)X-resolution of M is
a HomC (−,X)-exact ξ-exact complex

· · · // P1 // P0 // X0 // X1 // · · ·

in C with all Pi ∈ P(ξ), Xi ∈ X∩ ⊥X such that both

K1 // P0 // M // and M // X0 // K1 //

are corresponding E-triangles in ξ. The GPX(ξ)-Gorenstein category is defined as

GPX(ξ) = {M ∈ C | M admits a complete P(ξ)X-resolution}.

Throughout this subsection, we always assume that X is a resolving subcategory of C .

Remark 7. (1) Since X is a resolving subcategory of C , we have P(ξ) ⊆ X, so P(ξ) ⊆ X∩ ⊥X.
Then we have K1 ∈ GPX(ξ).

(2) If M ∈ GPX(ξ), then ξxt0
ξ(M, X) ∼= HomC (M, X) and ξxt≥1

ξ (M, X) = 0 for any X ∈ X.
Indeed, let M ∈ GPX(ξ), then there is an E-triangle

K1 // P0 // M //

in ξ with P0 ∈ P(ξ) and K1 ∈ GPX(ξ), which is HomC (−,X)-exact. If X ∈ X, then we
have the following commutative diagram

0 // HomC (M, X) //

α1

��

HomC (P0, X) //

∼= α2

��

HomC (K1, X) //

α3

��

0

0 // ξxt0
ξ(M, X) // ξxt0

ξ(P0, X) // ξxt0
ξ(K1, X) // ξxt1

ξ(M, X) // 0

Using the proof of [8] of [Lemma 3.6], we have ξxt0
ξ(M, X) ∼= HomC (M, X). Moreover,

there is a HomC (−,X)-exact ξ-exact complex

· · · // P1 // P0 // M

which is a ξ-projective resolution of M, thus ξxt≥1
ξ (M, X) = 0 for any X ∈ X.
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Evidently, since C has enough ξ-projectives, M ∈ GPX(ξ) if and only if ξxt0
ξ(M, X) ∼=

HomC (M, X) and ξxt≥1
ξ (M, X) = 0 for any X ∈ X, and M admits a HomC (−,X)-exact

ξ-exact complex

M // X0 // X1 // · · ·

with Xi ∈ X∩ ⊥X.
(3) If X = P(ξ), then clearly X∩ ⊥X = P(ξ), and thus GPX(ξ) coincides with GP(ξ) defined

in [13].

Lemma 8. Assume X ∩ ⊥X ⊆ GPX(ξ). Then X ∩ ⊥X is a ξ-cogenerator of GPX(ξ) and is
closed under cocones of ξ-deflations.

Proof. Let M ∈ GPX(ξ). There is a HomC (−,X)-exact E-triangle

M // X0 // K1 // (24)

in ξ with X0 ∈ X ∩ ⊥X ⊆ GPX(ξ). For any X ∈ X, applying the functor HomC (−, X) to
the E-triangle (24) yields the following commutative diagram

0 // HomC (K1, X) //

��

HomC (X0, X) //

∼=
��

HomC (M, X) //

∼=
��

0

0 // ξxt0
ξ(K

1, X) // ξxt0
ξ(X0, X) // ξxt0

ξ(M, X) // ξxt1
ξ(K

1, X) // 0,

where the two isomorphisms follows from the assumption that X0, M ∈ GPX(ξ) and
Remark 7(2). It follows that ξxt1

ξ(K
1, X) = 0 and ξxt0

ξ(K
1, X) ∼= HomC (K1, X), so K1 ∈

GPX(ξ) by Remark 7(2), then X∩ ⊥X is a ξ-cogenerator of GPX(ξ).
It is obvious that X∩ ⊥X is closed under cocones of ξ-deflations.

We have the following result.

Theorem 5. Assume X∩⊥X ⊆ GPX(ξ). The subcategory GPX(ξ) is a resolving subcategory of C .

Proof. The step 1: Let P be a ξ-projective object. Consider the following ξ-exact complex

· · · // 0 0 // P
idP // P 0 // 0 // · · ·

in C . Clearly, it is HomC (−,X)-exact. In particular,

0 0 // P
idP // P 0 // and P

idP // P 0 // 0 0 //

are correspondingE-triangles in ξ. Since P ∈ X∩⊥X by Remark 7(1), we haveP(ξ) ⊆ GPX(ξ).
The step 2: Given any E-triangle

M1
u // M2

v // M3 // . (25)

in ξ with M1, M3 ∈ GPX(ξ). Then

(i) ξxt0
ξ(M1, X) ∼= HomC (M1, X) and ξxt≥1

ξ (M1, X) = 0 for any X ∈ X, and M1 admits
a HomC (−,X)-exact ξ-exact complex

M1 // X0
1

// X1
1

// · · ·

with Xi
1 ∈ X∩ ⊥X.
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(ii) ξxt0
ξ(M3, X) ∼= HomC (M3, X) and ξxt≥1

ξ (M3, X) = 0 for any X ∈ X, and M3 admits
a HomC (−,X)-exact ξ-exact complex

M3 // X0
3

// X1
3

// · · ·

with Xi
3 ∈ X∩ ⊥X.

Applying HomC (−, X) for any X ∈ X, we have a commutative diagram as follows

HomC (M3, X) //

f1 ∼=
��

HomC (M2, X) //

f2
��

HomC (M1, X)

f3 ∼=
��

// 0

0 // ξxt0
ξ(M3, X) // ξxt0

ξ(M2, X) // ξxt0
ξ(M1, X)

with exact rows. By (i) and (ii), f1 and f3 are isomorphic, so f2 is isomorphic, i.e.,
ξxt0

ξ(M2, X) ∼= HomC (M2, X). Moreover, by Remark 4, we have ξxt≥1
ξ (M2, X) = 0 for

any X ∈ X. Finally, the E-triangle (26) is HomC (−,X ∩ ⊥X)-exact, so using a similar
argument to that of the Horseshoe Lemma (e.g., [13] of [Theorem 4.16]), we can construct a
HomC (−,X)-exact ξ-exact complex

M2 // X0
2

// X1
2

// · · ·

with Xi
2 ∈ X∩ ⊥X. Thus, M2 ∈ GPX(ξ).

The step 3: Given any E-triangle

M1
u // M2

v // M3 // . (26)

in ξ with M2, M3 ∈ GPX(ξ). As a similar argument to that of the step 2, we can prove
that ξxt0

ξ(M1, X) ∼= HomC (M1, X) and ξxt≥1
ξ (M1, X) = 0 for any X ∈ X. Moreover, since

ξxt0
ξ(M2, X) ∼= HomC (M2, X) and ξxt0

ξ(M3, X) ∼= HomC (M3, X) for any X ∈ X, it follows
from Remark 4 that the E-triangle (26) is HomC (−,X)-exact. By Lemma 8, there is an

E-triangle M2
u // X0

1
v // K1

2
// in ξ with X0

1 ∈ X ∩ ⊥X and K1
2 ∈ GPX(ξ). By (ET4),

we have the following commutative diagram

M1 // M2 //

��

M3

��

//

M1 // X0
1

//

��

W

��

//

K1
2

��

K1
2

��

Since M3, K1
2 ∈ GPX(ξ), we have W ∈ GPX(ξ) by the step 2, and the E-triangle

M1 // X0
1

// W // in ξ is HomC (−,X)-exact. Thus, we can get a HomC (−,X)-exact
ξ-exact complex

M1 // X0
1

// X1
1

// · · ·

with Xi
1 ∈ X∩ ⊥X. Thus, M1 ∈ GPX(ξ).

Therefore, GPX(ξ) is a resolving subcategory of C .

As an application of Theorem 2, we have
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Proposition 7. Assume X ∩ ⊥X ⊆ GPX(ξ). If M ∈ ̂GPX(ξ), then the following statements
are equivalent:

(1) GPX(ξ)- res.dim M ≤ m.
(2) Ωn(M) ∈ GPX(ξ) for all n ≥ m.
(3) Ωn

GPX(ξ)
(M) ∈ GPX(ξ) for all n ≥ m.

(4) ξxtn
ξ (M, H) = 0 for all n > m and all H ∈ X∩ ⊥X.

(5) ξxtn
ξ (M, L) = 0 for all n > m and all L ∈ X̂∩ ⊥X.

(6) M admits a right GPX(ξ)-approximation ϕ : X → M, where ϕ is a ξ-deflation, such that

there is an E-triangle K // X
ϕ // M // satisfying H- res.dim K ≤ m− 1.

(7) There are two E-triangles
WM // XM // M //

and
M // WM // XM //

in ξ such that XM, XM ∈ GPX(ξ) and X∩ ⊥X- res.dim WM ≤ m − 1,
X∩ ⊥X- res.dim WM = GPX(ξ)- res.dim WM ≤ m.

Putting X = P(ξ), we have the following corollary immediately, which reformulates
and generalizes [13] of [Proposition 5.9] and [8] of [Theorem 3.9].

Corollary 4. Let M ∈ C . If M ∈ ĜP(ξ), then the following statements are equivalent:

(1) GP(ξ)- res.dim M ≤ m.
(2) Ωn(M) ∈ GP(ξ) for all n ≥ m.
(3) Ωn

GP(ξ)(M) ∈ GP(ξ) for all n ≥ m.

(4) ξxtn
ξ (M, H) = 0 for all n > m and all P ∈ P(ξ).

(5) ξxtn
ξ (M, L) = 0 for all n > m and all L ∈ P̂(ξ).

(6) M admits a GP(ξ)-approximation ϕ : X → M, where ϕ is a ξ-defaltion, such that there is

an E-triangle K // X
ϕ // M // satisfying ξ- pd K ≤ m− 1.

(7) There are two E-triangles
WM // XM // M //

and
M // WM // XM //

in ξ such that XM and XM are in X, ξ- pd WM = GP(ξ)- res.dim WM ≤ m and ξ- pd WM ≤
m− 1.

Author Contributions: Writing—original draft preparation, L.T.; writing—review and editing, L.T.
and L.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the project ZR2019QA015 supported by Shandong Provincial
Natural Science Foundation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the referees for the helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2021, 9, 980 29 of 29

References
1. Auslander, M.; Bridger, M. Stable Module Theory; American Mathematical Society: Providence, RI, USA, 1969.
2. Auslander, M.; Reiten, I. Applications of Contravariantly finite subcategories. Adv. Math. 1991, 86, 111–152. [CrossRef]
3. Auslander, M.; Buchweitz, R.O. The homological theory of maximal Cohen-Macaulay approximations. Mem. Soc. Math. France

1989, 38, 5–37. [CrossRef]
4. Zhu, X. Resolving resolution dimensions. Algebr. Represent. Theor. 2013, 16, 1165–1191. [CrossRef]
5. Huang, Z. Homological dimensions relative to preresolving subcategories. Kyoto J. Math. 2014, 54, 727–757. [CrossRef]
6. Ma, X.; Zhao, T. Resolving resolution dimensions in triangulated categories. Open Math. Available online: http://web.qfnu.edu.

cn/tiweizhao/zh_CN/zdylm/29102/list/index.htm (accessed on 27 April 2021).
7. Ma, X.; Zhao, T.; Huang, Z. Resolving subcategories of triangulated categories and relative homological dimension.

Acta Math. Sin. Engl. Ser. 2017, 33, 1513–1535. [CrossRef]
8. Hu, J.; Zhang, D.; Zhou, P. Gorenstein homological dimensions for extriangulated categories. Bull. Malays. Math. Sci. Soc. 2021,

1–18. [CrossRef]
9. Huang, Z. Proper resolutions and Gorenstein categories. J. Algebra 2013, 393, 142–169. [CrossRef]
10. Song, W.; Zhao, T.; Huang, Z. Homological dimensions relative to special subcategories. Algebra Colloq. 2021, 28, 131–142.

[CrossRef]
11. Zhang, H.; Zhu, X. Resolving resolution dimension of recollements of abelian categories. J. Algebra Appl. 2020, 2150179. [CrossRef]
12. Nakaoka, H.; Palu, Y. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Geom. Differ. Categ.

2019, LX-2, 117–193.
13. Hu, J.; Zhang, D.; Zhou, P. Proper classes and Gorensteinness in extriangulated categories. J. Algebra 2020, 551, 23–60. [CrossRef]
14. Hu, J.; Zhang, D.; Zhou, P. Proper resolutions and Gorensteinness in extriangulated categories. Front. Math. China 2021, 16,

95–117. [CrossRef]
15. Zhao, T.; Huang, Z. Phantom ideals and cotorsion pairs in extriangulated categories. Taiwanese J. Math. 2019, 23, 29–61. [CrossRef]
16. Zhao, T.; Tan, L.; Huang, Z. A bijection triangle in extriangulated categories. J. Algebra 2021, 574, 117–153. [CrossRef]
17. Available online: https://arxiv.org/abs/1605.05607v4 (accessed on 27 April 2021).
18. Bühler, T. Exact categories. Expo. Math. 2010, 28, 1–69. [CrossRef]
19. Di, Z.; Wang, P. On finite resolutions in triangulated categories. Bull. Malays. Math. Sci. Soc. 2020, 43, 619–640. [CrossRef]

http://doi.org/10.1016/0001-8708(91)90037-8
http://dx.doi.org/10.24033/msmf.339
http://dx.doi.org/10.1007/s10468-012-9351-5
http://dx.doi.org/10.1215/21562261-2801795
http://web.qfnu.edu.cn/tiweizhao/zh_CN/zdylm/29102/list/index.htm
http://web.qfnu.edu.cn/tiweizhao/zh_CN/zdylm/29102/list/index.htm
http://dx.doi.org/10.1007/s10114-017-6416-8
http://dx.doi.org/10.1007/s40840-020-01057-9
http://dx.doi.org/10.1016/j.jalgebra.2013.07.008
http://dx.doi.org/10.1142/S1005386721000122
http://dx.doi.org/10.1142/S0219498821501796
http://dx.doi.org/10.1016/j.jalgebra.2019.12.028
http://dx.doi.org/10.1007/s11464-021-0887-8
http://dx.doi.org/10.11650/tjm/180504
http://dx.doi.org/10.1016/j.jalgebra.2020.12.043
https://arxiv.org/abs/1605.05607v4
http://dx.doi.org/10.1016/j.exmath.2009.04.004
http://dx.doi.org/10.1007/s40840-018-00704-6

	Introduction
	Preliminaries
	Resolution Dimension with Respect to a Resolving Subcategory
	Applications
	Additive Quotient Categories with Respect to a Resolving Subcategory
	Construct a New Resolving Subcategory

	References

