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Abstract: With the development of wireless rechargeable sensor networks (WRSNs), many scholars
began to attach attention to network security under the spread of viruses. This paper mainly studies
a novel low-energy-status-based model SISL (Susceptible, Infected, Susceptible, Low-Energy). The
conversion process from low-energy nodes to susceptible nodes is called charging. It is noted that
the time delay of the charging process in WRSNs should be considered. However, the charging
process and its time delay have not been investigated in traditional epidemic models in WRSNs.
Thus, the model SISL is proposed. The basic reproduction number, the disease-free equilibrium
point, and the endemic equilibrium point are discussed here. Meanwhile, local stability and global
stability of the disease-free equilibrium point and the endemic equilibrium point are analyzed. The
addition of the time-delay term needs to be analyzed to determine whether it affects the stability. The
intervention treatment strategy under the optimal control is obtained through the establishment of
the Hamiltonian function and the application of the Pontryagin principle. Finally, the theoretical
results are verified by simulations.

Keywords: wireless rechargeable sensor network; time delay; stability analysis; optimal control

1. Introduction

With the development of science and technology, the research of wireless sensor
networks (WSNs) has attracted scholars’ attention in recent years. By organizing and
combining sensor nodes freely through wireless communication technology, WSNs are
established [1,2]. A WSN is a distributed sensor network, and its end is a sensor that
can sense and check the outside environment. Sensors in WSNs communicate wirelessly,
so the network setting is flexible, and the device position can be changed at any time.
WSNs are widely applied in various fields such as military facilities, home automation, and
the interconnection of transportation systems [3]. Wireless rechargeable sensor network
(WRSN) technology came into being under the wireless power transfer (WPT) technology.
Thus, the research of wireless sensors has been pushed to a new level.

However, WRSNs are usually vulnerable to malware attacks [4–6], such as denial of
service, malicious code distribution, and information exfiltration [7]. WRSNs especially
suffer from the Denial of Charge (DOC) [8]. It is of great significance to study the network
security of WRSNs.

The security of sensor networks has become a hot research field [9,10]. The research
methods here are as follows:

1. Establish a mathematical epidemics model.
2. Analyze the equilibrium point in the system, and study its stability.
3. Achieve the optimal control to make the control of malware propagation more effec-

tive. According to previous studies, the classical mathematical models established
by predecessors mainly include the following: SIS (Susceptible, Infected, Suscepti-
ble), SIR (Susceptible, Infected, Removed), and SIRS (Susceptible, Infected, Removed,
Susceptible).
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There is a class of nodes called low-energy nodes (L) in wireless rechargeable sensor
networks. In the traditional research of wireless sensor network security, the migration
process from low-energy nodes (L) to operational nodes (S or I) is seldom considered.
Since the SILS (Susceptible, Infected, Low-energy, Susceptible) model was put forward in
2021 [11], we began to pay attention to the research on the influence of low-energy nodes.
What is particularly emphasized in the SILS model is the influence of the charging process
on system safety control. What is more, charging will inevitably bring about a time delay
in WRSNs. Thus, the SILS model [11] is modified by adding the time-delay term in this
paper, to study the influence of time delay on WRSNs.

Table 1 shows that predecessors have done much work on time-delay research. A time
delay occurs in the migration behavior of different nodes in epidemic or rumor models. It is
necessary to investigate the stability problem under time delay and Hopf bifurcation [12–21].
It is noted that time delay not only affects the convergence but also affects the control strategy
in different models. Thus, the time-delay-based methods under the Pontryagin’s minimum
principle are adapted to study the optimal control [22].

Table 1. Related research on epidemic models under time delay.

Authors Model Characteristics Bifurcation Enhancements

Zhu, L. et al. [12] SBD
(Susceptible-Believed-Denied)

Time delay of the
rumor spreading 1

Establishment and
analysis of SBD
rumor-spreading model.

Zhu, L. et al. [13] SIRS (Susceptible-Infected-
Recovered-Susceptible)

Time delay of the
immune validity 2

Consideration of
immune validity period
and the analysis of the
optimal control.

Zhang, Z. et al. [14]
SEIRS-V (Susceptible-Exposed-
Infected-Recovered-Susceptible
and Vaccinated)

Time delay of the
immune validity; the

recovery and the
vaccination

2

Introduction of the
vaccinated nodes and the
analysis of double
time delays.

Liu, J. et al. [15] SEIR (Susceptible-Exposed-
Infected-Recovered)

Time delay of the
exposure 2

Consideration of
infectious-disease models
with different
incubation periods.

Wang, C. et al. [16] SEIRS (Susceptible-Exposed-
Infected-Recovered-Susceptible)

Time delay of the
exposure and the
immune validity

2

Consideration of
immune validity period
and the analysis of
double time delays.

Zhang, Z. et al. [17]
SEIRS-V (Susceptible-Exposed-
Infected-Recovered-Susceptible
and Vaccinated)

Time delay of the
immunity and the
immune validity

2

Introduction of the
vaccinated nodes and the
analysis of double
time delays.

Zhu, L. et al. [18] SIS
(Susceptible-Infected-Susceptible)

Time delay of the
incubation 2

Time-delay analysis of
recovery process based
on SIS model.

Zhang, Z. et al. [19]

SEIQRS-V (Susceptible-Exposed-
Infected-Quarantined
-Recovered-Susceptible and
Vaccinated)

Time delay of the
exposure 2

Infectious-disease model
considering the nodes’
distribution area.

Zhu, L. et al. [20] SEIR (Susceptible-Exposed-
Infected-Recovered)

Time delay of the
incubation 1

Time-delay analysis of
infection process based
on SEIR system.

Al-Darabsah, I. et al.
[21]

SEIRS-V (Susceptible-Exposed-
Infected-Recovered-Susceptible
and Vaccinated)

Time delay of the
exposure 1

Time-delay analysis
considering specific
effective contact rate.

1: Hopf bifurcation does not occur under the change of time delay. 2: Hopf bifurcation occurs as the time delay increases to a certain value.
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However, we know that the time delay of the charging process in WRSNs has not
been investigated previously. This paper mainly provides a kind of influence on time
delay based on the SIS model combined with low-energy nodes (L) [23–25]. Thus, a novel
epidemic model (1) of virus spreading in WRSNs is developed.

The virus-propagation rules and the optimal control strategy of the model (1) is
proposed as follows:

1. A novel low-energy-status-based model is introduced to describe the propagation
process of malicious software (virus) in WRSNs.

2. The basic reproduction number is defined by the disease-free equilibrium solution
and the epidemic equilibrium solution. The Routh criterion is applied to prove the
local stability, and the Lyapunov universal function is constructed to prove the global
attraction.

3. Based on Pontryagin’s minimum principle, the optimal control variables satisfying
the minimization of the objective function are obtained.

4. The stability problem under time delay is specially revealed.

The rest of the paper is as follows: the introduction and analysis of the model are
presented in Section 2; the dynamic stability analysis is given in Section 3; the optimal
control theory is presented in Section 4; the analysis of the influence of time delay is
given in Section 5;. the simulation results are given in Section 6; and the conclusions are
summarized in Section 7.

2. Modeling Analysis

As mentioned above, a classical model called SIS can be applied in wireless sensor
networks. However, the SIS model can be modified by increasing the low-energy status L(t)
in WRSNs [11]. The modified model here is shown in Figure 1. Different from the model
in [11], in order to control malware more efficiently, charging low-energy-infected nodes is
neglected. The process of the nodes L(t) converting into S(t) is called charging. The feature
of the charging process is its latency. First, without considering the time delay, the system
(1) is discussed here (with the initial values (0) = ΦS, I(0) = ΦI , L(0) = 0, D(0) = 0, 0 ≤
ΦS,I ≤ ∧d ). Parameters are shown in Table 2.

dS(t)
dt = ∧− α1S(t)I(t) + α2 I(t)− dS(t) + cL(t)− µS(t)

dI(t)
dt = α1S(t)I(t)− α2 I(t)− dI(t)− µI(t)

dL(t)
dt = −dL(t)− cL(t) + µS(t)

dD(t)
dt = dL(t) + dS(t) + dI(t) + µI(t)

(1)
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Table 2. Significance of the model parameters.

S(t) The quantity of the susceptible node
I(t) The quantity of the infected node
L(t) The quantity of the low-energy node
∧ Injection rate of system
α1 Transmission rate of malware
α2 Self-disinfection rate of the infected nodes
c Charging success rate
µ Low-energy-node conversion rate
d Node deactivation rate

In order to further study the dynamic balance of the system, and the propagation law
of malicious programs, the equilibrium solution of the system needs to be found first. By
studying the stability and transformation behavior of each equilibrium solution, the general
law of malware control could be drawn, and intervention for controlling the spreading of
malicious programs could be easily put forward.

From the numerical relationship, the system (1) has two equilibrium solutions (the
disease-free equilibrium solution E0 and the endemic equilibrium solution E+). The
solutions E0 and E+ are depicted as follows:

E0(S0, I0, L0) =

(
∧(d + c)

(d + µ)(d + c)− cµ
, 0 ,

µ∧
(d + µ)(d + c)− cµ

)
; (2)

E+(S+, I+, L+) =

α2 + d + µ

α1
,
∧− α2d2+d3+µd2+α2µd+µd2+µ2d+α2dc+d2c+µdc

α1(d+c)

d + µ
,

µ(α2 + d + µ)

α1(d + c)

 (3)

The basic reproduction number R0 is given as

R0 =
S0

S+
=

∧(d + c)α1

[(d + µ)(d + c)− cµ](α2 + d + µ)
. (4)

If (d + µ)(d + c)− cµ > 0, we can put forth the following theorem:

Theorem 1. If R0 < 1, the system only has a unique disease-free equilibrium solution E0. While
R0 ≥ 1, the system (1) has an endemic equilibrium solution E+ and a disease-free equilibrium
solution E0.

3. Dynamic-Stability Analysis

In this section, we focus on analyzing the local stability of the system (1) by using the
linearization technique and the Routh–Herwitz criterion. However, the global stability is
analyzed by constructing a Lyapunov universal function.

3.1. Local Stability Analysis

Theorem 2. If R0 < 1, the disease-free equilibrium point E0 is locally stable.

Proof. First of all, the system is linearized as follows:
dS(t)

dt = J11(S− S∗) + J12(I − I∗) + J13(L− L∗)
dI(t)
dt = J21(S− S∗) + J22(I − I∗) + J23(L− L∗)

dL(t)
dt = J31(S− S∗) + J32(I − I∗) + J33(L− L∗)

(5)

J(E∗) =

 J11 J12 J13
J21 J22 J23
J31 J32 J33

 =

 −α1 I − d− µ −α1S + α2 c
α1 I α1S− α2 − d− µ 0
µ 0 −d− c

 (6)
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J(E∗) is the corresponding Jacobian matrix, in which “*” represents “0” or “+”. The
characteristic equation is constructed using Formula (6):

|λI − J(E0)| =

∣∣∣∣∣∣
λ + d + µ α1S0 − α2 −c

0 λ− α1S0 + α2 + d + µ 0
−µ 0 λ + d + c

∣∣∣∣∣∣ = 0 (7)

which gives the following equation:

(λ + d + µ)(λ− α1S0 + α2 + d + µ)(λ + d + c)− cµ(λ− α1S0 + α2 + d + µ)
= [(λ + d + µ)(λ + d + c)− cµ](λ− α1S0 + α2 + d + µ)
= (λ + d)(λ + d + µ + c)[λ− (α2 + d + µ)(R0 − 1)] = 0

(8)

Thus, if R0 < 1,
λ1 = −d;
λ2 = −d− µ− c;
λ3 = (α2 + d + µ)(R0 − 1) < 0.

(9)

Theorem 2 is valid under the theory of the Hurwitz criterion. �

Theorem 3. If R0 ≥ 1, the endemic equilibrium point E+ is locally stable.

Proof. The analysis method is the same as above. The characteristic equation of J(E+) is
found as follows:

|λI − J(E+)| =

∣∣∣∣∣∣
λ + α1 I+ + d + µ α1S+ − α2 −c

−α1 I+ λ− α1S+ + α2 + d + µ 0
−µ 0 λ + d + c

∣∣∣∣∣∣
=

∣∣∣∣∣∣
λ + α1 I+ + d + µ− α1S+ + α2 α1S+ − α2 −c

0 λ + d + µ −c
−µ 0 λ + d + c

∣∣∣∣∣∣
= 0,

(10)

which donates the following equation:

(λ− α1 I+ + d + µ− α1S+ + α2)(λ + d + µ)(λ + d + c) + (α1S+ − α2)cµ− cµ(λ + d + µ)

= λ3 +
(

α1∧(R0−1)
R0(d+µ)

+ d + µ + c + d
)

λ2

+
[

dα1∧(R0−1)
R0(d+µ)

+ (d + µ + c)
(

α1∧(R0−1)
R0(d+µ)

)
+ (d + µ + c)d

]
+
[
(d+µ+c)dα1∧(R0−1)

R0(d+µ)
+ α1∧(R0−1)cµ

R0(d+µ)

]
= 0.

(11)

Set: 

a3 = 1;
a2 =

(
α1∧(R0−1)

R0(d+µ)
+ d + µ + c + d

)
> 0;

a1 =
[

dα1∧(R0−1)
R0(d+µ)

+ (d + µ + c)
(

α1∧(R0−1)
R0(d+µ)

)
+ (d + µ + c)d

]
> 0;

a0 = (d+µ+c)dα1∧(R0−1)
R0(d+µ)

+ α1∧(R0−1)cµ
R0(d+µ)

> 0.

(12)
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The following results could be obtained:

∆1 = a2 > 0

∆2 =

∣∣∣∣ a2 a0
a3 a1

∣∣∣∣= ( α1∧(R0−1)
R0(d+µ)

+ d
)

∗
(

d α1∧(R0−1)
R0(d+µ)

+ (d + µ + c) α1∧(R0−1)
R0(d+µ)

+ (d + µ + c)d
)

+(d + c)
[
(d + µ)

(
α1∧(R0−1)

R0(d+µ)
+ d
)
+ c α1∧(R0−1)

R0(d+µ)
+ cd

]
+µ
[
(d + µ)

(
α1∧(R0−1)

R0(d+µ)
+ d
)
+ cd

]
> 0;

∆3 =

∣∣∣∣∣∣
a2 a0 0
a3 a1 0
0 a2 a0

∣∣∣∣∣∣= a0∆2 > 0

(13)

Theorem 3 is proved under the theory of the Hurwitz criterion. �

3.2. Global-Stability Analysis

In this section, we discuss the global stability by constructing a suitable Lyapunov
universal function, which is positive definite except for the stable point.

Theorem 4. If R0 < 1, the disease-free equilibrium point E0 is globally asymptotically stable.

Proof. The Lyapunov function is defined as follows:

VE0(t) =
1
2
(S− S0)

2 +
d + µ

α1
I +

1
2
(L− L0)

2 (14)

If “t” tends to infinity, the disease-free equilibrium solution satisfies the following
condition: S ≤ S0.

Thus:

V′E0
(t) = (S− S0)

dS
dt +

d+µ
α1

dI
dt + (L− L0)

dL
dt

= (S− S0)[−α1SI + α1S0 I − α1S0 I + α2 I − (d + µ)(S− S0) + c(L− L0)]

+ d+µ
α1

[α1SI − (α2 + d + µ)I] + (L− L0)[−(d + c)(L− L0) + µ(S− S0)]

= −(d + µ + α1 I)(S− S0)
2 − α1S0 I(S− S0) + α2 I(S− S0) + c(L− L0)(S− S0)

+ d+µ
α1

(α2 + d + µ)(R0 − 1)I + (d + µ)(S− S0)I − (d + c)(L− L0)
2 + µ(S− S0)(L− L0)

≤ −
(

d + 1
2 µ + α1 I − 1

2 c
)
(S− S0)

2 − (α2 + d + µ)(R0 − 1)I(S− S0)

+ d+µ
α1

(α2 + d + µ)(R0 − 1)I −
(

d + 1
2 c− 1

2 µ
)
(L− L0)

2

(15)

Equation (15) shows V′E0
(t) ≤ 0, i f |µ− c| ≤ 2d and R0 ≤ 1.

What is more, VE0(t) = 0 and V′E0
(t) = 0 if and only if S = S0 and I = 0. Thus,

Theorem 4 is valid. �

Theorem 5. If R0 ≥ 1, the endemic equilibrium point E+ is globally asymptotically stable.

Proof. Considering the conditions:
0 = ∧− α1S+ I+ + α2 I+ − dS+ + cL+ − µS+;
0 = α1S+ I+ − α2 I+ − dI+ − µI+;
0 = −dL+ − cL+ + µS+

(16)

the Lyapunov function is defined as follows:

VE+(t) =
1
2
(S− S+)

2 +
d + µ

α1

(
I − I+ + I+ln

I
I+

)
+

1
2
(L− L+)

2. (17)
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Thus:

V′E+
(t) = (S− S+)

dS
dt +

(d+µ)
α1

(I−I+)
I

dI
dt + (L− L+)

dL
dt

= (S− S+)[−α1SI + α1S+ I+ + α1S+ I − α1S+ I + α2(I − I+)− (d + µ)(S− S+) + c(L− L+)]

+ (d+µ)
α1

(I−I+)
I [α1SI − α1S+ I+ + α1S+ I − α1S+ I − (α2 + d + µ)(I − I+)]

+(L− L+)[−(d + c)(L− L+) + µ(S− S+)]

= −(d + µ + α1 I)(S− S+)
2 − (d + µ)(I − I+)(S− S+) + c(L− L+)(S− S+)

+(d + µ)(S− S+)(I − I+)− (d + c)(L− L+)
2 + µ(S− S+)(L− L+)

≤ −
(

d + 1
2 µ + α1 I − 1

2 c
)
(S− S+)

2 −
(

d + 1
2 c− 1

2 µ
)
(L− L+)

2

(18)

Equation (18) shows V′E+
(t) ≤ 0, i f |µ− c| ≤ 2d.

It is noted that VE+(t) = 0 and V′E+
(t) = 0 if and only if S = S+, I = I+ and L = L+.

Thus, Theorem 5 is confirmed. This means that the spread of malware will continue to exist
in the system (1). �

4. Optimal-Control Analysis

In the practical application of malware control, intervention treatment is usually
added to ensure that the spread of malware will not be epidemic. However, there is a
certain cost due to intervention treatment. The Pontryagin minimum principle is adopted
to solve the cost-minimization problem. Due to the characteristics of rechargeable systems,
our optimization objectives are as follows: First, we must effectively control the spread of
malware. The second objective is to ensure that the number of susceptible nodes in the
system is not too small, and the low-energy nodes should be controlled within a certain
number to ensure the normal operation of the system. Lastly, the cost of control needs to
be feasible economically. Therefore, the system (1) is modified as follows (19):

dS(t)
dt = ∧− α1S(t)I(t) + α2 I(t)− dS(t) + cL(t)− µS(t) + µ(t)I(t)

dI(t)
dt = α1S(t)I(t)− α2 I(t)− dI(t)− µI(t)− µ(t)I(t)

dL(t)
dt = −dL(t)− cL(t) + µS(t)

dD(t)
dt = dL(t) + dS(t) + dI(t) + µI(t)

(19)

We establish an objective function:

G(u) = min
u
{I(t f ) + L(t f ) +

∫ t f

0

[
c1u2(t)I2(t)

]
dt} (20)

where c1 is the cost coefficient of implementing intervention control, which mainly comes
from the identification and removal of malicious software.; and u(t) is the intervention
ratio, which satisfies 0 ≤ u(t) ≤ 1; tf is the end time of intervention.

It is obvious that the number of low-energy nodes and infected nodes at tf should
be as few as possible, and the economic cost should be as low as possible. The Pontrya-
gin minimum principle is applied to find the optimal proportion of intervention. The
corresponding Hamiltonian function is as follows:

H = c1u2(t)I2(t) + β1(t)(∧− α1SI + α2 I − (d + µ)S + cL + u(t)I)
+β2(t)[α1SI − (α2 + d + µ + u(t))I]

(21)

in which βi(t) (i = 1, 2, 3) are covariates. The differential equation of covariant is as follows:
dβ1
dt = − ∂H

∂S = β1(α1 I + d + µ)− β2α1 I − µβ3
dβ2
dt = − ∂H

∂I = −2c1u2(t)I(t) + β1(α1S− α2 − u(t)) + β2(α2 + d + µ + u(t)− α1S)
dβ3
dt = − ∂H

∂L = −cβ1 + β3(d + c)

(22)
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The terminal constraints of the co-state variables are as follows:

β1(t f ) = 0;
β2(t f ) = 1;
β3(t f ) = 1.

(23)

The optimal strategies are established by:

∂H
∂u(t)

= 2c1u(t)I2 + β1 I − β2 I = 0. (24)

Then, the optimization variable can be obtained:

u∗(t) = min
{

max
(

0,
β2 − β1

2c1 I

)
, 1
}

. (25)

5. Time-Delay System Analysis

If the number of system nodes is relatively large, the phenomenon of charging delay
cannot be ignored. The time-delay item (t − τ) is considered in this section. In order to
better study the influence of time delay, we need to explore whether the delay term will
affect the stability of the system. The system is established as follows:

dS(t)
dt = ∧− α1S(t)I(t) + α2 I(t)− dS(t) + cL(t− τ)− µS(t)

dI(t)
dt = α1S(t)I(t)− α2 I(t)− dI(t)− µI(t)

dL(t)
dt = −dL(t)− cL(t) + µS(t)

dD(t)
dt = dL(t) + dS(t) + dI(t) + µI(t)

(26)

5.1. Local-Stability Analysis

In this section, the characteristic solutions of the transcendental equations are explored
by the theories in [26].

Theorem 6. If R0 < 1, the local stability at E0 of the system (26) is consistent with the stability of
the system (1).

Suppose that for the characteristic equation of the system (26) at E0, it has a pure
imaginary characteristic solution iω0.

The characteristic equation at E0 is:

|λI − J(E0)| =

∣∣∣∣∣∣
λ + d + µ α1S0 − α2 −ce−λτ

0 λ− α1S0 + α2 + d + µ 0
−µ 0 λ + d + c

∣∣∣∣∣∣ = 0 (27)

The following formula can be obtained:

(λ + d + µ)(λ− α1S0 + α2 + d + µ)(λ + d + c)− µce−λτ(λ− α1S0 + α2 + d + µ)
= (λ− α1S0 + α2 + d + µ)

[
(λ + d + µ)(λ + d + c)− cµe−λτ

]
= 0.

(28)

The root λ = α1S0 − α2 − d− µ = 0 is negative. We set
f1(λ) = (λ + d + µ)(λ + d + c)− cµe−λτ = 0. Then,

f1(iω0) = −ω2
0 + (2d + µ + c)iω0 +

(
d2 + dµ + cd + cµ− cµe−iω0τ

)
= −ω2

0 + (2d + µ + c)iω0
+
[
d2 + dµ + cd + cµ− cµ(cosω0τ − isinω0τ)

]
= 0.

(29)
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Separate the real and imaginary parts of the Equation (29):

−ω2
0 + d2 + dµ + cd + cµ = cµcosω0τ; (30)

(2d + µ + c)ω0 = −cµsinω0τ. (31)

Square and add the two Equations (30) and (31):

c2µ2 = (2d + µ + c)2ω2
0 +

(
ω2

0 + d2 + dµ + cd + cµ
)2

. (32)

Set: 
d2 + dµ + cd + cµ = Q2;
2d + µ + c = Q1;
cµ = Q0;
ω2

0 = v0 > 0.

(33)

Then,
f1(iω0) = v2

0 +
(

Q2
1 − 2Q2

)
v0 + Q2

2 −Q2
0. (34)

We can conclude that:{
Q2

1 − 2Q2 = 2d2 + 2dµ + 2cd + µ2 + c2 > 0;
Q2

2 −Q2
0 =

(
d2 + dµ + cd

)2
+ 2cµ

(
d2 + dµ + cd

)
> 0.

(35)

It can be obtained that Hypothesis 1 is not valid. Thus, Theorem 6 is proved.

Theorem 7. If R0 ≥ 1, the local stability at E+ of the system (26) is consistent with the stability
of the system (1).

Suppose that for the characteristic equation of the system (26) at E+, it has a pure
imaginary characteristic solution iω0.

For E+, the solution is the same. Its characteristic equation at E+ is:

|λI − J(E+)| =

∣∣∣∣∣∣
λ + d + µ α1S0 − α2 −ce−λτ

0 λ− α1S0 + α2 + d + µ 0
−µ 0 λ + d + c

∣∣∣∣∣∣ = 0. (36)

We get:
f2(λ) = |λI − E0| = λ3 +(A1 + A2 + A3)λ

2 +(A1 A2 + A1 A3 + A2 A3)λ+ A1 A2 A3−
cµλe−λτ = 0, 

α1∧(R0−1)
R0(d+µ)

= A1 > 0;
d + µ = A2 > 0;
d + c = A3 > 0.

(37)

Similarly, the pure imaginary is substituted into the equation:

f2(iω0) = −iω0
3 − (A1 + A2 + A3)ω0

2 + (A1 A2 + A1 A3 + A2 A3)iω0
+A1 A2 A3 − icµω0e−iω0τ

= −iω0
3 − (A1 + A2 + A3)ω0

2 + (A1 A2 + A1 A3 + A2 A3)iω0
+A1 A2 A3 − icµω0(cosω0τ − isinω0τ)
= 0.

(38)

Separate the real and imaginary parts of Equation (38):

− (A1 + A2 + A3)ω
2
0 + A1 A2 A3 = cµω0sinω0τ; (39)

−ω0
3 + (A1 A2 + A1 A3 + A2 A3)ω0 = cµω0cosω0τ. (40)
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Let ω2
0 = v0 > 0. Square and add the two Equations (39) and (40):

v3
0 +

(
A2

1 + A2
2 + A2

3

)
v2

0 +
(

A2
1 A2

2 + A2
1 A2

3 + A2
2 A2

3 − c2µ2
)

v0 + A2
1 A2

2 A2
3 = 0 (41)

These terms satisfy the following equations:
a3 = 1 > 0;
a2 = A2

1 + A2
2 + A2

3 > 0;
+2cµ

(
d2 + dµ + cd

)
> 0;
a0 = A2

1 A2
2 A2

3 > 0

(42)

and

∆1 = a2 > 0;

∆2 =

∣∣∣∣ a2 a0
a3 a1

∣∣∣∣= (A2
1 + A2

2)[(A2
1 A2

2 + A2
1 A2

3 + (d2 + dµ + cd)2
+ 2cµ(d2 + dµ + cd)]

+A4
3 A2

1 + A2
3(d

2 + dµ + cd)2
+ A2

32cµ(d2 + dµ + cd)
> 0;

∆3 =

∣∣∣∣∣∣
a2 a0 0
a3 a1 0
0 a2 a0

∣∣∣∣∣∣= a0∆2 > 0

(43)

Thus, the solutions of v0 are negative. This contradicts the condition v0 > 0. Therefore,
Hypothesis 2 does not hold, and Theorem 7 can be proved.

5.2. Global-Stability Analysis

In this section, Lyapunov functions are constructed to verify the stability of the
equilibriums of the system (26).

Theorem 8. If R0 < 1, the disease-free equilibrium point E0 is globally asymptotically stable.

Proof. The Lyapunov function is defined as follows:

VE0(t) =
1
2
(S− S0)

2 +
d + µ

α1
I +

1
2
(L− L0)

2 +
1
2

c
∫ t

t−τ
(L(Θ)− L0)

2dΘ. (44)

V′E0
(t) = (S− S0)

dS
dt +

(d+µ)
α1

dI
dt + (L− L0)

dL
dt +

1
2 c(L(t)− L0)

2 − 1
2 c(L(t− τ)− L0)

2

= −(d + µ + α1 I)(S− S0)
2 − α1S0 I(S− S0) + α2 I(S− S0)

+c(L(t− τ)− L0)(S− S0)

+ d+µ
α1

(α2 + d + µ)(R0 − 1)I + (d + µ)(S− S0)I − (d + c)(L− L0)
2

+µ(S− S0)(L− L0) +
1
2 c(L(t)− L0)

2 − 1
2 c(L(t− τ)− L0)

2

≤ −
(

d + 1
2 µ + α1 I − 1

2 c
)
(S− S0)

2 − (α2 + d + µ)(R0 − 1)I(S− S0)

+ d+µ
α1

(α2 + d + µ)(R0 − 1)I −
(

d + 1
2 c− 1

2 µ
)
(L− L0)

2

(45)

Equation (45) shows V′E0
(t) ≤ 0, i f |µ− c| ≤ 2d and R0 ≤ 1.

What is more, VE0(t) = 0 and V′E0
(t) = 0 if and only if S = S0 and I = 0. Thus,

Theorem 8 is valid. The spread of malware will not prevail.
However, for the epidemic-spreading equilibrium point, the Lyapunov function is

constructed as follows:

VE+(t) =
1
2
(S− S+)

2 +
d + µ

α1

(
I − I+ + I+ln

I
I+

)
+

1
2
(L− L+)

2 +
1
2

c
∫ t

t−τ
(L(Θ)− L+)

2dΘ. (46)
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V′E+
(t) = (S− S+)

dS
dt +

(d+µ)
α1

(I−I+)
I

dI
dt + (L− L+)

dL
dt +

1
2 c(L(t)− L+)

2

− 1
2 c(L(t− τ)− L+)

2

= (S− S+)[−α1SI + α1S+ I+ + α2(I − I+)− (d + µ)(S− S+) + c(L(t− τ)− L+)]

+ (d+µ)
α1

(I−I+)
I [α1SI − α1S+ I+ + α1S+ I − α1S+ I − (α2 + d + µ)(I − I+)]

+(L− L+)[−(d + c)(L− L+) + µ(S− S+)] +
1
2 c(L− L+)

2 − 1
2 c(L(t− τ)− L+)

2

= −(d + µ + α1 I)(S− S+)
2 − (d + µ)(I − I+)(S− S+) + c(L− L+)(S− S+)

+(d + µ)(S− S+)(I − I+)− (d + c)(L− L+)
2 + µ(S− S+)(L− L+) +

1
2 c(L− L+)

2

− 1
2 c(L(t− τ)− L+)

2

≤ −(d + µ + α1 I)(S− S+)
2 + 1

2 c(L(t− τ)− L+)
2 + 1

2 c(S− S+)
2 − (d + c)(L− L+)

2

+ 1
2 µ(S− S+)

2 + 1
2 µ(L− L+)

2 + 1
2 c(L− L+)

2 − 1
2 c(L(t− τ)− L+)

2

= −
(

d + 1
2 µ + α1 I − 1

2 c
)
(S− S+)

2 −
(

d + 1
2 c− 1

2 µ
)
(L− L+)

2.

(47)

Equation (47) shows V′E+
(t) ≤ 0 if |µ− c| ≤ 2d. Therefore, the following Theorem 9

is proved. �

Theorem 9. If R0 ≥ 1, the endemic equilibrium point E+ is globally asymptotically stable.

6. Simulation
6.1. Parameter Dependence of R0 and I(∞)

In this section, some possible prevention schemes are provided to analyze the influence
of different parameters in the system (1) on R0 and I(∞). R0 determines whether the spread
of malware is prevalent or not. Meanwhile, I(∞) reflects the seriousness of malware spread.

The parameter settings are given as follows in Figure 2a: ∧ = 10, d = 0.05, µ = c =
0.02 and α1 ∈ [0, 0.1], α2 ∈ [0, 1]. The phenomenon could be found that if the infection
rate α1 is at a very low level, the spread of malware will not prevail. If α2 increases, the
virus will break out. The self-recovery rate can hardly inhibit the spread of the virus if α1 is
larger than 0.006.

The parameter settings are given as follows in Figure 2b: ∧ = 2, d = 0.05, µ = c =
0.02 and α1 ∈ [0, 0.1], α2 ∈ [0, 1]. From the enlarged picture in the upper right corner, a
slight increase of α1 may lead to the prevalence of the viruses. If α1 ≥ 0.34, α2 can hardly
adjust the spread of the viruses. Moreover, if α2 is not large enough, viruses are extremely
prone to outbreak.

The parameter settings are given as follows in Figure 2c: α1 = 0.002, α2 = 0.03, µ =
c = 0.02 and ∧ ∈ [0, 10], d ∈ [0, 0.1]; and in Figure 2d: α1 = 0.002, α2 = 0.03, µ = c =
0.02, ∧ ∈ [5, 30], d ∈ [0.05, 0.3]. ∧ and d are analyzed in Figure 2c,d to reveal the influence
on the prevalence of the virus. Figure 2c shows that if d is small enough, ∧ is more likely to
cause a virus outbreak. As shown in Figure 2d, to keep the virus from spreading, the larger
the node mortality rate d is, the wider the allowable range of injection rate ∧ is.

The parameter settings are given as follows in Figure 2e: ∧ = 2, d = 0.05, α1 =
0.002, α2 = 0.03, and c ∈ [0, 1], µ ∈ [0, 1]. The charging rate c and the conversion rate of
low-energy nodes µ have no decisive effect on whether the virus breaks out or not.
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6.2. Stability of Equilibrium Point

The parameter settings are given as follows in Figure 3: ∧ = 10, d = 0.12, α1 =
0.002, α2 = 0.03, µ = c = 0.02 and S(0) ∈ [30, 84], I(0) ∈ [30, 39], L(0) = 0. It can be found
that the initial values of states will not change the convergence of the system. It is noted
that S(∞), I(∞), L(∞) = 72.9167, 0, 10.4167. Even if the number of initial infected nodes is
relatively large, the system virus will eventually disappear as long as R0 ≤ 1. The results
shown in Figure 3 confirm Theorem 4.
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The parameter settings are given as follows in Figure 4:∧ = 10, d = 0.05, α1 =
0.002, α2 = 0.03, µ = c = 0.02 and S(0) ∈ [30, 93], I(0) ∈ [1, 10], L(0) = 0. It can be found
that the initial values of states will not change the convergence of the system. It is noted
that S(∞), I(∞), L(∞)= (50.0000, 96.9388, 14.2857). This shows that if infected nodes appear
in the system (1), the virus will prevail and persist if R0 > 1. The results in Figure 4 confirm
Theorem 5.
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6.3. Influence of Time Delay on Malware Propagation

In this section, the influence of time delay on the convergence is discussed.
The parameter settings are given as follows in Figure 5: ∧ = 10, d = 0.05, α1 =

0.002, α2 = 0.03, µ = c = 0.02 and S(0) ∈ [30, 84], I(0) ∈ [1, 10], L(0) = 0, τ = 10. The delay
term will not affect the convergence of the system in Figure 5b. Because of the introduction
of τ, the convergence values will have a very small wave, as shown in Figures 4a and 5a.
Two groups of convergence values from the system (1) and the system (26) will get closer
and closer as time passes. As shown in Figure 5b, different delay values only affect the
convergence speed.
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As shown in Figure 6, with the small delay item τ(0.1–0.8), the delay of the S nodes’
convergence is not obvious. However, it is concerning that if R0 < 1 in Figure 6a, the S
nodes will be in the zero-quantity state for a period under the effect of large time delay
item τ(100–800), which should be avoided by increasing charging power to reduce the
time delay. If R0 > 1 in Figure 6b, the delay term will only introduce the speed influence
of convergence.
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Figure 6. Convergence situations of S nodes. (a) R0 = 0.7719; the convergence of S nodes under time delay. (b) R0 = 1.5439;
the convergence of S nodes under time delay.

As shown in Figure 7a, the different time-delay terms have little effect on the conver-
gence of the I node if R0 < 1. As shown in Figure 7b, I nodes will go through a sudden
explosion period in the process of convergence under the influence of a large time delay
τ(200–800) if R0 > 1.
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6.4. Realization of Optimal Control 
The flowchart of simulation implementation is shown in Figure 9. It shows that the 
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the convergence of I nodes under time delay.

As shown in Figure 8, similarly, the delay term does not affect the convergence value
but delays the convergence process obviously. It is worth noticing that the time-delay term
will bring a fluctuation of the convergence process in Figure 8b if R0 > 1.
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6.4. Realization of Optimal Control

The flowchart of simulation implementation is shown in Figure 9. It shows that the

objective function converges through iterations: (G(u) = J
(

uk
)

,
∣∣∣∣ J(uk+1)−J(uk)

J(uk)

∣∣∣∣< ε, ε >0).

The intervention treatment ratio uk (t) is obtained.
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Figure 9. Flowchart of optimal control.

Optimal-control simulation parameters are shown as follows: ∧ = 1, d = 0.05, α1 =
0.02, α2 = 0.03, µ = c = 0.02 and S(0) = 40, I(0) = 20, L(0) = 0.

Figure 10 shows the convergence of the system without intervention treatment. It
can be seen that systemic viruses are always prevalent. Figure 11 presents the optimal
intervention-treatment proportion. The optimal intervention-treatment curve is zero at the
beginning, and gradually increases to a value of 1.

To better compare the economic utility brought by the optimal control, state variable
values at the terminal time (tf = 200) in Figure 12a are adjusted to be close to the state
variable values in Figure 12b. The fixed treatment coefficient in Figure 12a is u(t) = 0.3.
Comparing the size of J calculated by the objective function (20), the cost J in Figure 13b
is 32.0104. However, the cost J in Figure 13a is 1901.5. Combined with the state variable
values at the terminal time of Figure 12b, the strategy under optimal control not only stops
the spread of the virus, but also greatly reduces the cost required by the security policy.
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Figure 12. Comparison of economic utility between fixed intervention treatment and intervention treatment under optimal
control. (a) SIL curve under the fixed proportion of intervention treatment. (b) SIL curve under the optimal control
intervention treatment.
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7. Conclusions

To better inhibit the spread of viruses, a novel epidemic model of virus spreading in
WRSNs was developed after taking the time delay of the charging process into considera-
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tion. The local stability and global stability of the disease-free equilibrium point and the
epidemic equilibrium point were proved by defining the basic regeneration number and
the application of the Routh criterion. In addition, we concluded that the time-delay term
would not change the convergence of the system, but would only affect the convergence
speed. It is worth noting that Figure 6a shows that if R0 < 1, the time delays will make the
S nodes zero for a while, which will greatly affect the normal operation of the network. In
terms of parameter relationships, they can reflect the benefits of the modified SILS model
in Figure 2e. It shows that the increase of charging power will not make the virus spread
out of control, which is different from the SILS model. The asymptotic stability of the SISL
model was strictly verified in simulation. At the same time, we verified the effectiveness
of the proposed optimal control strategy, which not only effectively controlled the spread
of the virus, but also greatly reduced the maintenance cost. The SISL model considers the
influence of time delay and provides a new research perspective. We hope the results of
this paper can provide some reference for related researchers.
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