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Abstract: Petri nets are widely used to model concurrent software systems. Currently, there are many
different kinds of Petri net tools that can analyze system properties such as deadlocks, reachability
and liveness. However, most tools are not suitable to analyze data-flow errors of concurrent systems
because they do not formalize data information and lack efficient computing methods for analyzing
data-flows. Especially when a concurrent system has so many concurrent data operations, these Petri
net tools easily suffer from the state–space explosion problem and pseudo-states. To alleviate these
problems, we develop a new model checker DICER 2.0. By using this tool, we can model the control-
flows and data-flows of concurrent software systems. Moreover, the errors of data inconsistency
can be detected based on the unfolding techniques, and some model-checking can be done via the
guard-driven reachability graph (GRG). Furthermore, some case studies and experiments are done to
show the effectiveness and advantage of our tool.

Keywords: petri net; concurrent software systems; model-checking; data-flows

1. Introduction

Presently, concurrent software systems are widely used in our daily life. In particular,
they are successfully applied in so many safety-critical scenarios, e.g., health-care, intel-
ligent traffic, and stock exchange. Thus, how to guarantee the correctness of concurrent
systems has become a bone of contention for people’s lives and properties. In reality,
the correctness of concurrent systems is closely related with control-flows and data-flows.
However, the most existing studies mainly focus on the error detections of control-flows
such as deadlocks, livelocks and compatibility [1–3]. In fact, concurrent systems are
vulnerable to data-flow errors, e.g., missing data, lost data and data inconsistency [4–6].
Although the testing-based methods can detect these errors, they need to design a series
of test cases to cover as many execution paths as possible. Due to the difficulty in the
completeness of test cases, it is hard for these methods to guarantee a concurrent system
error-free.

The Petri net-based model-checking is a prominent method/technique for analyzing
data-flows of concurrent software systems. This is because Petri nets [7–10] have a great
capability of explicitly specifying parallelism, concurrency and synchronization [11,12].
Thus, many different kinds of Petri nets are used to check data-flow errors, such as alge-
braic Petri net (or extended concurrent algebraic nets, ECANets), predicate/transitions
net (PrTNet), and colored Petri nets (CPN), etc. Kheldoun et al. [13] transformed BPMN
(Business Process Model and Notation) models of complex business processes into to
Recursive ECATNets (RECATNets), which combine the expressive power of abstract data
types with recursive Petri nets. Furthermore, they used rewriting logics to check proper ter-
minations and LTL properties. Buchs et al. [14] proposed Concurrent Object-Oriented Petri
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Nets (CO-OPN/2) to ensure the specifications of control/data-flows in a large distributed
system. Barkaoui et al. [15] provided an approach for detecting data consistency with
respect to a multilevel security policy based on ECATNets. He et al. [16] modeled smart
contracts by predicate/transition nets, and then checked their correctness of pre/post-
conditions. Wu et al. [17] developed a model-based method for quantitative safety analysis
of safety-critical systems by Timed Colored Petri Nets (TCPNs). Yu et al. [18] proposed an
E-commerce Business Process Net (EBPN) to verify the rationality and transaction consis-
tency between trading parties. All these methods place emphasis on the formalizations of
data structures and abstract data types. Thus, they are suitable to check data-flow errors
caused by these aspects.

By comparison, some checking methods based on Petri nets focus on the modeling of
conceptual data operations, e.g., read, write and delete. Dual Flow Nets (DFNs) [19] were
proposed to model control- and data-flows of embedded systems. Awad et al. [20] mapped
BPMN models into Petri nets, and then detected and repaired errors based on the work
in [21]. Contextual net (C-net) [22,23] was proposed to model a concurrent read operation.
Furthermore, its unfolding technique was developed to generate a minimal test suite for
multi-threaded programs [24]. Referring to contextual nets, Petri Net with Data Operations
(PN-DO) [5] was given to detect data-flow errors of concurrent software systems. However,
these explicit formalizations of read/write arcs and data places easily increase the scales and
complexity of Petri net models. Fortunately, WFD-net (WorkFlow net with Data) [4,25,26],
as a high-level Petri net [8], is extended with conceptual labeling data operations and
guards. Thus, on the one hand, a WFD-net can greatly model control-flows and data-flows
of concurrent systems. On the other hand, the model scales of WFD-nets are much smaller
than other Petri nets with data-flow arcs (e.g., read arcs, write arcs and delete arcs), such as
C-net and PN-DO. Furthermore, WFD-net has been widely used to do model-checking,
e.g., soundness [25], completion requirements [27] and data consistencies [28], although it
is an easy way to model software systems. In general, these verification/analysis methods
are based on the classical reachability graphs (CRG) [25] of WFD-nets. However, they easily
suffer from the problems of state–space explosion and illegal states (or pseudo-states).
This is because a state may have an exponential number of successor states since they
are produced based on the possible values of all guards. Moreover, the exclusive logical
relations (e.g., multiple choice conditions) between guards easily lead to pseudo-states.
In order to alleviate these problems, we proposed a guard-driven reachability graph (GRG)
of WFD-nets in our previous work [29].

Although a GRG of WFD-nets can describe all running information of concurrent
systems and save their state–space compared with CRG, it still likely suffers from the
state–space explosion problem. As shown in Figure 1, it easily leads to a rapid increase of
state–space with the increase of concurrent operations of WFD-nets. This is because the
interleaving semantics of GRG is based on the partial orders of fired transitions, and it
describes the behaviors of concurrent systems only by global states. Thus, a GRG-based
analysis method needs to find out all precedence relations between activities, and gen-
erates their successor states. Compared with the interleaving-semantics-based methods,
some studies are conducted on a concurrency analysis of Petri nets [30,31]. In particular,
the unfolding technique [32] can both alleviate the state space explosion problem and
characterize the concurrency relations due to its true concurrency semantics [33]. Cur-
rently, this technique has been successfully applied in different kinds of model-checking,
e.g., fault diagnosis [34], concurrent planning [35], test case generations [36], deadlock
detection [37], and verifying soundness [38], reachability and coverability [39]. Thus,
in view of these advantages, we proposed an unfolding-based method [5] to check errors
of data inconsistency. Specifically, we use an acyclic net to represent all behaviors of a
Petri net with data (PD-net [5]). On the one hand, all concurrent operations can be directly
recorded in this acyclic net. On the other hand, this formal model can store all states and
save much more space especially when a system has so many concurrent activities.
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Figure 1. The state–space (reachability graphs) of WFD-nets and state–space explosion problems. (f) is the reachability
graph of Σ1 in (a); (g) is the reachability graph of Σ2 in (b); (h) is the reachability graph of Σ3 in (c); (i) is the reachability
graph of Σ4 in (d); and (j) is the reachability graph of Σ5 in (e).

To support and improve the above previous work [5,29], we develop a new model
checker DICER 2.0. Currently, there are many Petri net tools [40–42] such as PIPE, Snoopy,
CPN Tools, Protos, and ProM. These tools can support different kinds of Petri net modeling,
e.g., Place/Transition nets [7], Timed Petri nets [9], Stochastic Petri nets [10] and High-level
Petri net [8]. Furthermore, they can be used to do structural analysis, generate condensed
state spaces, construct reachability graphs, and analyze place/transition invariants. How-
ever, most of these tools fail in unfolding a Petri net. Although Mole, ERVunfold and
Punf can do this work and conduct some model-checking (e.g., deadlocks, reachability and
coverability), they cannot support the modeling and checking of data-flows that have been
considered in some abstracted models, such as WFD-net [43] and PD-net [5]. Therefore,
the most existing Petri net tools are not suitable to analyze data-flow errors of concurrent
systems especially based on the unfolding techniques. The specified comparisons between
some Petri net tools are summarized as Table 1.

In this paper, we develop DICER 2.0 to analyze data-flows of concurrent systems.
Specifically, we can use this tool to model concurrent systems by general Petri nets, WFD-
nets and PD-nets. Meanwhile, we can draw, edit, import and export these models in DICER
2.0. Moreover, the errors of data inconsistency can be detected based on the unfolding
technique of PD-nets, and some GRG-based model-checking can be done in our tool.

This paper is organized as follows. Section 2 presents some basic notations. Section 3
introduces our model checker DICER 2.0. Section 4 gives two case studies on concurrent
systems. Section 5 conducts a group of experiments to show the advantages of our tool.
The last section concludes this paper.
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Table 1. The comparison between some Petri net tools

Tools Petri Nets Functions Branching
Process

The Unfolding
Techniques within

Data-Flows

Data-Flow
Error

Detection

Snoopy Graphical editor
CPN Tools P/T net Reachability graph

ProM Timed Petri net Condensed state spaces × × ×
PIPE2 High-level Petri net P/T invariants

PROTOS Structural analysis

Maude ECATNet Rewriting logic
LTL model-checking

Acceleo+Maude RECATNet Transform RECATNets × × Xinto rewriting logics
PIPE+ PrTNet Modeling & simulating

ERVunfold P/T net Deadlocks
X × ×Tours Test-case generation

PUNF Safe C-net Reachability
X × ×MOLE Coverability

DICER 2.0

WFD-net Detecting

X X X
PD-net data inconsistency
P/T net Deadlocks
WF-net Reachability

2. Basic Notations

A net is a triple N = (P, T, F), where P and T are two finite and disjoint sets, and they
are called place and transition, respectively. F ⊆ (P× T) ∪ (T× P) denotes a flow relation.
A marking of a net is a mapping function m: P → N, where N is a set of non-negative
integers. In details, we use a multi-set to represent a marking. A net N with an initial
marking m0 is called a Petri net Σ [7] , i.e., Σ = (N, m0). Given a node x ∈ P ∪ T, its preset
and postset are respectively denoted by •x and x•, where •x = {y | (y, x) ∈ F} and x• = {y
| (x, y) ∈ F}.

As a particular class of Petri net, workflow net (WF-net) is widely used to model
control-flows of concurrent systems.

Definition 1. A net N = (P, T, F) is a WF-net (workflow net) [43,44] if
(1) there exists only one source place i and one sink place o satisfying •i = ∅ and o• = ∅; and
(2) each node x ∈ P ∪ T is on a path from i to o.

Besides modeling control-flows of concurrent systems, we can use a net with some
data information to formalize data-flows.

Definition 2. A 7-tuple N =(P, T, F, D, Read, Write, Delete) is a net with data (D-net) [5], if
(1) (P, T, F) is a net;
(2) D is a finite set of data elements;
(3) Read: T → 2D is a labeling function of reading data;
(4) Write: T → 2D is a labeling function of writing data; and
(5) Delete: T → 2D is a labeling function of deleting data.

Given two nodes x, y ∈ P ∪ T in an acyclic D-net N =(P, T, F, D, Read, Write, Delete),
(1) x and y are in causality relation if the net N contains a path from x to y, which is

denoted by x � y. In particular, x ≺ y if x 6= y;
(2) x and y are in conflict relation if ∃ t1, t2 ∈ T: t1 � x, t2 � y and •t1 ∩ •t2 6= ∅, which

is denoted by x#y;
(3) x and y are in backward-conflict relation if x• ∩ y• 6= ∅, which is denoted by x#̃y ; or
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(4) x and y are in concurrency relation if ¬(x ≺ y ∨ y ≺ x ∨ x#y), which is denoted by
x co y, i.e., x and y are neither in causality relation nor in conflict relation.

OD-net (Occurrence Net with Data) is a simple acyclic net, which can be used in the
unfolding technique of PD-nets [5].

Definition 3. A D-net N = (P, T, F, D, Read, Write, Delete) is an OD-net (Occurrence net
with Data) [5] if

(1) ∀p ∈ P: | •p| ≤ 1;
(2) ∀x, y ∈ P ∪ T: x ≺ y⇒ y ⊀ x; and
(3) no transition is in self-conflict relation, i.e., ∀t ∈ T:¬(t#t).

In an OD-net, places and transitions are called conditions and events, respectively.
In general, we use O = (B, E, G, D, Rd, Wr, De) to denote an occurrence net with data
for convenience. With respect to this formalization, B, E and G are conditions, events and
arcs, respectively. Rd, Wr and De are labeling functions of data operations (read, write and
delete), respectively.

3. DICER 2.0

DICER 2.0 is developed to model and analyze the control-/data-flows of concurrent
systems. It is the derivative version of our model checker for detecting data inconsis-
tency [45]. Currently, we can use it to do many more model checking.

3.1. The Modeling of Concurrent Systems Based on the Petri Net with Data Information

As is well known, we usually use read/write arcs, data places, labeling functions
of data operations and guards to formalize data-flows of concurrent systems [4,19,46].
In these formalizations, Petri nets such as DFN [19], PN-DO [47] and Awad method [20]
mainly use data places and flow relations to model data operations, e.g., read, write and
delete. Although these methods are suitable to accurately model the control structures of
data-flows, it lacks formal semantic descriptions about shared reading and overwriting.
Contextual net [46] can describe the concurrent (shared) reading operation by read arcs,
but it needs extra data places and flow relations to formalize data-flows, and thus may be
much more complex [48].

Compared with the above modeling methods, WFD-net [4,49] has a prominent advan-
tage. It combines the traditional workflow nets with conceptual data operations, and uses
labeling functions and guards to describe data operations and routing conditions, respec-
tively. Thus, it is not only greatly suitable to model the control-flows and data-flows of a
concurrent system but also much smaller than other Petri nets with data-operation arcs
(e.g., contextual net and PN-DO) in the scales of nodes and arcs [48]. Now, this modeling
method has been widely applied to various model-checking, e.g., detecting data-flow
errors [4] and data inconsistency in the migrations of service cases [28], checking data
inaccuracy [50] and completed requirements [27], and verifying may/must soundness of
workflow systems [25].

Definition 4. A workflow net with data (WFD-net) is a 9-tuple N =(P, T, F, D, GD, Read,
Write, Delete, Guard) [25], if

(1) (P, T, F) is a WF-net;
(2) D is a finite set of data elements;
(3) Read: T → 2D is a labeling function of reading data;
(4) Write: T → 2D is a labeling function of writing data;
(5) Delete: T → 2D is a labeling function of deleting data;
(6) GD is a finite set of guards that are related with data elements in D; and
(7) Guard: T → GD is a labeling function of assigning guards to transitions.
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Referring to the labeling functions of data operations in WFD-nets, a Petri net with
data (PD-net) [5] is proposed, i.e., a PD-net Σ is a D-net N with an initial marking m0,
i.e., Σ = (N, m0). Although this modeling method neglects the formalization of guards, it
is much suitable for generating the unfolding of Peri nets with data information due to its
simple structural semantics. For example, Σ is a WFD-net in Figure 2a, while Σ′ is a PD-net
in Figure 2c,d is its unfolding.

Figure 2. (a) A WFD-net Σ; (b) the guard-driven reachability graph (GRG) of Σ; (c) a PD-net Σ′; (d) the unfolding FCP of Σ′.

DICER 2.0 supports the modeling of WFD-nets and PD-nets. By this tool, we can
formalize the control-/data-flows of concurrent systems. Furthermore, it provides a series
of model-checking based on the guard-driven methods and unfolding techniques.

3.2. The Model-Checking Based on the GRG of WFD-Nets

The classical reachability graph [25] is a fundamental method for analyzing a WFD-
net. However, this method easily suffers from the problems of state–space explosion and
pseudo-states (or illegal states) due to its guard evaluations and their exclusive relations.
Hence, we proposed a Guard-driven Reachability Graph (GRG) in our previous work [29],
and now achieve this function in DICER 2.0.

To construct a GRG of WFD-nets, we define a state as a weak configuration in DICER
2.0, which includes a marking and some evaluations of data and guards.

Definition 5. (Weak configuration) Given a WFD-net N =(P, T, F, D, GD, Read, Write, Delete,
Guard), c = 〈m, σ, η〉 is a weak configuration, if

(1) (P, T, F) is a WF-net, and m is its marking;
(2) a mapping function σ : D → {>,⊥} assigns a defined value (>) or an undefined value

(⊥) to each data element; and
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(3) a mapping function η : GD → {TRUE, FALSE,⊥,>} assigns the values of TRUE ,
FALSE, ⊥ or > to each guard.

In DICER 2.0, we also define the basic enabling/firing rules of WFD-nets based on
weak configurations.

Definition 6. (Enabling/firing rules) Given a WFD-net N =(P, T, F, D, GD, Read, Write,
Delete, Guard) and its weak configuration c = 〈m, σ, η〉, a transition t is enabled at c and denoted
by c[t〉, if

(1) m[t〉;
(2) ∀v ∈ Read(t) : σ(v) = >; and
(3) ∀v ∈ Varb(Guard(t)): σ(v) 6= ⊥ ∧ η(Guard(t)) ∈ {TRUE,>}, where the function

Varb is to obtain all variables in a guard.
After firing a transition t at the weak configuration c, a new weak configuration c′ =

〈m′, σ′, η′〉 can be generated, i.e., c[t〉c′, where
(1) m[t〉m′;
(2) ∀v ∈Write(t) \ De(t) : σ′(v) = >;
(3) ∀v ∈ Delete(t) : σ′(v) = ⊥;
(4) ∀v ∈ D \ (Write(t) ∪ Delete(t)) : σ′(v) = σ(v);
(5) ∃g ∈ Guard(t) : Write(t) ∩Var(g) = ∅⇒ η′(g) = TRUE; and
(6) ∀g ∈ GD, ∀v ∈ Varb(g) : (σ′(v) = > ⇒ η′(g) = >) ∧ ((Write(t) ∩ Varb(g) =

∅ ∧ g /∈ Guard(t))⇒ η′(g) = η(g)).

Let c1 and c2 be two weak configurations of a WFD-net. c2 is may-reachable from c1,
denoted as c1 →∗may c2, if there exist some weak configurations c(1), c(2), · · · , c(n) such that
c1[t1〉c(1)[t2〉c(2)[t3〉 · · · c(n)[t3〉c2. Furthermore, a set of may-reachable weak configurations
from c1 is denoted by R(c1). Based on may-reachable sets and enabling/firing rules, we
can formalize a GRG in DICER 2.0 as follows.

Definition 7. Given a WFD-net N =(P, T, F, D, GD, Read, Write, Delete, Guard) and its
initial weak configuration c0, GRG(N) = (V+, E+, `+) is a guard-driven reachability graph
(GRG), where

(1) V+ = R(c0), E+ = {(c, c′) | ∃c, c′ ∈ R(c0), ∃t ∈ T : c[t〉c′}, and
(2) `+: E+ → T × GD such that (c, c′) ∈ E+ ∧ c[t〉c′ ∧ `+(c, c′) = 〈t, Guard(t)〉.

For example, Figure 2b shows a guard-driven reachability graph of Figure 2a, where
g1 and ¬g1 are two exclusive guards, c0 = 〈[i],−,−〉 and c1 = 〈[p1 + p2], {v1}, {∗g1}〉 are
two weak configurations such that c0[t0〉c1.

Since a GRG of a WFD-net contains all execution information of a concurrent system,
we can traverse its reachable weak configurations by DICER 2.0 to do some model-checking
such as deadlocks [51] and proper completeness [27], i.e., given a WFD-net N and its
guard-driven reachability graph GRG(N), o is its sink place and c = 〈m, σ, η+〉 is a weak
configuration such that c ∈ R(c0).

• If m(o) = 0 and no transition is enabled at the weak configuration c, then c is a
deadlock. Thus, we can check deadlocks in N according to this formal specification.
For example, the WFD-net in Figure 2a have a deadlock at the weak configuration
c8 : 〈[p3 + p4], {v2}, {¬g1}〉 because t5 cannot read the data v3 and no transition is
enabled at this time.

• If ∀c ∈ R(c0) : m(o) > 0 ⇒ m = {o}, then N is properly completed. For example,
the WFD-net in Figure 2a is not properly completed since the final weak configuration
is not reachable from the initial weak configuration and the sink place o has no token
at this time.
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3.3. The Model-Checking Based on the Unfolding Techniques of PD-Nets

Besides the model-checking based on GRGs of WFD-nets, DICER 2.0 can be used to
detect errors of data inconsistency based on the unfolding techniques of PD-nets. We first
define branching processes in DICER 2.0.

Definition 8. Given a PD-net Σ = (N, m0) = (P, T, F, m0, D, Read, Write, Delete) and an
OD-net O = (B, E, G, D, Rd, Wr, De), the mapping h : B ∪ E → P ∪ T is a homomorphism
between Σ and O. (O, h) is a branching process if satisfying:

(1) h(E) ⊆ T and h(B) ⊆ P;
(2) for each event e belonging to E, the restriction of h onto •e (resp., e•) is a bijection between

•e and •h(e) (resp., between e• and h(e)•);
(3) the restriction of h onto Min(O) is a bijection between Min(O) and m0;
(4) ∀e1, e2 ∈ E: (•e1 = •e2) ∧ (h(e1) = h(e2))⇒ e1 = e2; and
(5) ∀e ∈ E : Rd(e) = Read(h(e)) ∧Wr(e) = Write(h(e)) ∧ De(e) = Delete(h(e)).

Given two branching processes (Oi, hi)=(Bi, Ei, Gi, D, Rdi, Wri, Dei, hi) and i ∈ {1, 2},
(O1, h1) is a prefix of (O2, h2) if B1 ⊆ B2 ∧ E1 ⊆ E2. All branching processes of a PD-net
Σ forms a partial order set w.r.t the binary relation of prefix, and its greatest element is
Unfolding [46], which is denoted by Un f (Σ). Please note that the unfolding of a PD-net is
also an occurrence net with data. Although the unfolding of a PD-net records its running
information, it may be infinite if there exists an infinite execution path. Therefore, it needs
to be truncated so as to get a finite complete prefix (FCP) [52]. In DICER 2.0, we refer to the
ERV method [52] to cut off the unfolding of PD-nets, and then generate its FCP.

As a matter of fact, ERV method does not consider the Petri net modeling with data
information. Moreover, it does not specify a highly efficient calculations on configurations,
cuts and cut-off events. This is mainly caused by the following two facts. On the one
hand, the most computing methods of configurations and cuts need a lot of repetitive
calculations. On the other hand, once some new events are added into a given finite prefix,
these methods usually match up them with all existing events and determine whether
they are cut-off events or not. In order to solve these problems, DICER 2.0 uses recursion
formulas and contextual information of events to compute configurations, concurrent
conditions and cuts. Meanwhile, it uses backward conflicts to guide the calculations of
cut-off events.

After generating an FCP of a PD-net Σ in DCIER 2.0, we can use its matrix manip-
ulations to detect data inconsistencies since it contains the same behavioral information
as the reachability graph of Σ (i.e., the completeness property [5] of FCP). In details, we
first get an incidence matrix of this FCP, and then use Warshell algorithm to calculate
its causality matrix J#

un f (Σ). Afterwards, we obtain a conflict matrix J#
un f (Σ) according to

the mathematical definition of conflicts. Then, a concurrency matrix Jco
un f (Σ) is calculated

by J<un f (Σ) and J#
un f (Σ), i.e., two events are in concurrency relation if they are neither in

causality relation nor in conflict relation, i.e., J#
un f (Σ) = [a(i,j)]n×n, Jco

un f (Σ) = [a′(i,j)]n×n and
Jco
un f (Σ) = [a′′(i,j)]n×n, where ei, ej ∈ E (i, j ∈ N), and

a(i,j) =
{

1 i f ei#ej
0 otherwise

a′(i,j) =
{

1 i f ei # ej
0 otherwise

a′′(i,j) =
{

1 i f ei co ej
0 otherwise

Based on the concurrency matrix Jco
un f (Σ), we can check the errors of data inconsistency

in Σ, i.e., there exists an error of data inconsistency if two concurrent events e1 and e2 have
some data operations on a share data element, i.e.,

(Read(e1) ∪Write(e1) ∪ Delete(e1)) ∩ (Write(e2) ∪ Delete(e2)) 6= ∅.
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For example, Figure 2d is an FCP of the PD-net in Figure 2c. Its related matrix
calculations are conducted as shown in Figure 3. From this concurrency matrix, we can
find that e1, e2 and e3 are three concurrent events. Furthermore, they suffer from the errors
of data inconsistency because Write(e1) ∩ Read(e2) ∩Write(e3) 6= ∅.

Figure 3. Some matrix manipulations on the FCP in Figure 2b.

3.4. The Implementations of DICER 2.0

Corresponding to the specified modeling and checking methods, we now introduce
the basic framework and implementations of DICER 2.0.

Figures 4 and 5 show the user interface (UI) and basic functions of DICER 2.0, respec-
tively. Its framework is made up of two modules: graphical user interface (GUI) and model
checker (MC), as shown in Figure 6. These two modules respectively correspond to the
menus of drawing and model-checking in Figure 4.

• In the module of graphical user interface, Place/Transition nets, WFD-nets and PD-
nets can be imported, exported, drawn and edited. The labeling functions of data
operations (e.g., read, write and delete) can be added, deleted and modified in DICER
2.0. Moreover, different kinds of Petri nets are imported and exported in the format
of an extended Petri Net Markup Language [53] (ePNML). In fact, ePNML provides
a common interchange format for all types of Petri nets based on XML, and defines
specifications of data operations and guard functions. As shown in Figure 7, the label
〈isData〉 formalizes data-flows of concurrent systems, including labeling functions
of read, write, delete and guards. Since ePNML is an XML-based document, we can
create or parse these Petri nets according to some configuration files, e.g., GenerateOb-
jectList.xsl and GeneratePNML.xsl.

• In the module of model checker, Place/Transition nets and PD-nets can be unfolded,
and then we can get their FCPs. As for the FCPs of PD-nets, we can use their matrix
calculations (e.g., causality matrix, conflict matrix and concurrency matrix) to find
out all concurrent events and then check errors of data inconsistency. Additionally,
both classical reachability graphs and guard-driven reachability graphs of WFD-
nets can be constructed in DICER 2.0. Furthermore, they are used to analyze some
data-flow properties of concurrent systems, e.g., deadlocks, data inconsistency and
soundness [29].
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Figure 4. DICER 2.0 [45]. (a) Software interface; (b) the drawing menu and the model-checking
menu.

Figure 5. The basic functions of DICER 2.0.

Figure 6. The basic framework of DICER 2.0.



Mathematics 2021, 9, 966 11 of 20

Figure 7. An extended PNML [53] (ePNML) document of Petri nets with data operations and guards.

DICER 2.0 is developed-based on Platform Independent Petri Net Editor (PIPE) [40],
which is an open source and graphical tool for drawing and analyzing Petri nets. In details,
it is made up of a series of Java classes. Figure 8 shows the main hierarchy of these classes,
which includes some flow information, inheritance relations, interfaces and methods.

Figure 8. Main class hierarchy.

• The class DataLayer acts on the Petri net modeling of concurrent systems. It can be
used to create, edit (e.g., add, move, or modify), import and export a PD-net or a
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WFD-net. In this class, the method getNewData() is to obtain some information about
the Petri net components of FCPs such as events, conditions and arcs.

• The class Unfolding is developed to unfold a PD-net or a Place/Transition net. Their
FCPs can be generated by the method of unfolding_PDNet(visual, “ERV”, null). In this
Java method, the parameter visual indicates whether an FCP needs to be displayed in
the software interface, and the parameter ERV means a selected unfolding method,
such as ERV, merged process, and directed unfolding.

• The class ReachabilityGraphGenerator is used to construct a guard-driven reachability
graph of WFD-nets, and the methods generateGraph() and run(DataLayer) correspond
to this function.

• The class InconsistentData is developed to check errors of data inconsistencies based on
the unfolding of PD-nets, and the method detectISData() achieves this work in details.

• The classes GuiView and GuiFrame are used to create the front end, and display the
software interface of DICER 2.0.

• A homomorphism from conditions to places (or from events to transitions) is rep-
resented by a hashmap. Its keys and values are in the form of 〈Place, Place〉 or
〈Transition, Transition〉, where Place and Transition are Java classes of Petri net com-
ponents. Additionally, in order to improve the unfolding efficiency of PD-nets, we use
some linked hash tables to store the contextual information of events and concurrent
conditions, e.g., local configurations, pre/post-sets and cuts.

4. Case Study

To show the application scenarios of DICER 2.0, we give the following case studies.

4.1. Case _1: Intelligent Traffic Light System (ITIC)

Our first case study is conducted on an intelligent traffic light controller (ITIC) [54,55]
for a North–South and East–West intersection. In this case study, the North–South (NS)
is a main road, and the East–West (EW) is a rarely used country road. The North–South
traffic light is always GREEN if the sensor of East–West Road is not activated. Otherwise,
the North–South light will change from GREEN to YELLOW so as to give way to the
East–West traffic. Additionally, some emergency vehicles can activate an emergency sensor.
At this time, both the North–South and the East–West traffic lights need to turn RED.

In this case, of ITIC, we first use a WFD-net to model its business process, as shown
in Figure 9. Table 2 shows all places and their meanings. The Boolean functions select
(EmgSensor, EWSensor) and select(EmgSensor, EWSensor) are two exclusive guards on
t2 and t3, respectively. By using DICER 2.0, we can draw and edit this WFD-net. Then,
a guard-driven reachability graph is constructed, as shown in Figure 10. Based on this
GRG, some properties can be verified by traversing each weak configuration (or state).
For example, there is no deadlock in this ITIC system because there always exist enabled
transitions at any weak configurations. Moreover, there is no error of data inconsistency
since all concurrent transitions do not access a shared data element.

Table 2. Places and their meanings.

Place ID Meanings

p2 The yellow light of NS Road
p3 The red light of NS Road
p4 The green light of NS Road
p6 The pre-green light of EW Road
p7 The green light of EW Road
p8 The yellow light of EW Road
p10 The red light of EW Road

p0, p1, p5, p9 (Control places )
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Figure 9. A WFD-net that models an intelligent traffic light system.

Figure 10. A guard-driven reachability graph (GRG) of Figure 9. (a) A user interface for generating a GRG; (b) the
visualization of a GRG.

4.2. Case _2: Health-Care Cyber-Physical System (HCPS)

The health-care cyber-physical system (HCPS) [56] consists of a series of devices such
as e-health sensors, ambulance drones and ambulance vehicles. When an e-health sensor
detects a cardiac arrest from patients, they will transmit this information to a controller,
and then some warnings are sent to an emergency center. This center can also directly
receive an emergency call from patients. After receiving these emergency messages, both
drones and ambulances are ordered and sent to the emergency scene according to specific
locations of patients.

In this case, of HCPS, we first use a PD-net to model its business process, as shown in
Figure 11. Table 3 lists all transitions and their meanings. By using DICER 2.0, we can draw
and edit this PD-net. Then, an FCP is generated, and some errors of data inconsistency are
detected, which are respectively shown in Figure 12a,b. From Figure 12b, we can easily
find that 12 concurrent events suffer from the errors of data inconsistency.
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Figure 11. A PD-net that models a health-care cyber-physical system.

Table 3. Transitions and their meanings.

Transition ID Meanings Transition ID Meanings

t0 Receive emergency call t9 Control activity
t1 Receive warning t10 Send warming
t2 Find location t11 Store data
t3 Send ambulance t12 Receive order
t4 Send drone t13 Measure vital signals (E-health)
t5 Supervise Drone t14 Movement of the ambulance
t6 Receive data t15 Movement of the drone
t7 Storage task t16 Install defibrillator
t8 Send data

Mathematics 2021, 1, 0 15 of 20

Figure 12. Detecting errors of data inconsistency based on the unfolding techniques of PD-nets; (a) an FCP of the PD-net in
Figure 11; (b) the detection results.

Figure 12. Cont.
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Figure 12. Detecting errors of data inconsistency based on the unfolding techniques of PD-nets; (a) an FCP of the PD-net in
Figure 11; (b) the detection results.

Figure 12. Detecting errors of data inconsistency based on the unfolding techniques of PD-nets; (a)
an FCP of the PD-net in Figure 11; (b) the detection results.

5. Experiments
5.1. Benchmarks

A group of experiments are done based on the following benchmarks to show the
advantages of DICER 2.0. Please note that all of these experiments are implemented on a
PC with 4.0G memory and Intel Core i5-2400 CPU.

• The Index program [57] is widely used for the experimental evaluation of multi-
threads.

• The Prime benchmark (http://docs.oracle.com/cd/E19205-01/820-0619/gdvwv/
index.html, accessed on 16 April 2021) is a tutorial program for detecting data race.

• The Child_benefit benchmark [58] is an example of transactional payment processes for
child benefits.

• The SystemC benchmark [59] illustrates a SystemC (a modeling language) module.
• The Driver [60] benchmark describes a simplified model of bluetooth drivers.
• AddGlobal [61] gives an example of concurrency bugs.
• The AppLoan benchmark [62] describes a business process of approving property loan.
• The Airport benchmark [63] shows a business process of an airport check-in system.
• Case_1 and Case_2 are two case studies of intelligent traffic light system and health-care

cyber-physical system, respectively.

5.2. Implementation and Results

(1) The experiments on the GRG of WFD-nets

The guard-driven reachability graph (GRG) of WFD-nets is an improved method
for analyzing data-flows of concurrent systems. In this experiment, we use DICER 2.0 to
compare it with the classical reachability graph (CRG) in terms of state–space and runtime.

http://docs.oracle.com/cd/E19205-01/820-0619/gdvwv/index.html
http://docs.oracle.com/cd/E19205-01/820-0619/gdvwv/index.html


Mathematics 2021, 9, 966 16 of 20

We first use some WFD-nets to mode the benchmarks of SystemC, AddGlobal, Approv-
eLoan, AirportCheck, and Driver in DICER 2.0, and then respectively obtain their CRGs and
GRGs. Table 4 shows the results of these experiments. Obviously, the scale of GRG is
much smaller than RG. Meanwhile, our GRG-based method spends less time to produce a
reachability graph than the CRG-based method.

Please note that although the GRGs of WFD-nets in Table 4 can save the state–space
of concurrent systems compared with CRGs, they still likely suffer from the state–space
explosion problem especially with the increase of concurrent (data) operations. In order to
alleviate this problem, we conduct the following experiments based on the unfolding tech-
niques.

(2) The experiments on the unfolding of PD-nets

The errors of data inconsistencies are usually detected based on reachability graphs
(RGs). Thus, all states and arcs of RGs need to be traversed to do this work at worst. In this
experiment, DICER 2.0 are used to detect these errors based on the unfolding techniques of
PD-nets. In details, we compare their FCPs with RGs in terms of state–space, runtime and
detection time.

We first use some PD-nets to model the benchmarks of Child_benefit, Index and Prime
in DICER 2.0. Afterwards, their FCPs are generated, and some errors of data inconsistency
are detected. Table 5 shows the scales (i.e., the numbers of nodes and arcs) of FCPs and
RGs. Obviously, FCPs take up much smaller space than RGs. Meanwhile, this table also
lists the time of generating FCPs and RGs. Thus, we can easily find that the former has a
significant advantage over the latter.

Table 4. The experimental results of GRG and CRG in DICER 2.0.

Benchmarks
CRG GRG

Nos. of Nos. of Time of Nos. of Nos. of Time of
States Arcs Constructing CRGs States Arcs Constructing GRGs

SystemC 33 62 76.6 25 39 62.5

AddGlob 50 101 125.1 30 37 72.8

AppLoan 51 112 149 17 22 63

Airport 15 16 320 12 13 220

Driver(2) 409 864 1987 172 283 532
Driver(4) 4117 14,696 14,863 2215 6094 6793
Driver(6) 22,921 105,988 95,333 13,754 48,346 45,461

CRG: Classical Reachability Graph; GRG: Guard-driven Reachability Graph. Time: (ms).

Table 5. The experimental results of unfolding PD-nets in DICER 2.0.

Benchmarks
FCPs RGs

|E ∪ B| |G| Time of Time of Nos. of Nos. of Nos. of Time of
Unfolding Error Detection Errors States Arcs Constructing RGs

Child_benefit 10 13 22 3 0 37 79 45

Index (5) 45 50 90 18 2 462 1680 557
Index (10) 90 100 180 44 3 7686 38,691 11,104
Index (15) 135 150 270 86 8 39,234 226,459 63,910
Index (20) 180 200 360 150 15 101,341 616,469 178,974

Prime (2) 37 39 75 13 0 82 197 102
Prime (4) 69 73 141 29 1 1369 5829 1795
Prime (6) 101 107 207 54 3 12,380 69,893 19,922
Prime (8) 133 141 273 92 7 75,538 509,004 160,541

Time: (ms).
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(3) The comparison experiments between DICER 2.0 and other Petri net tools.

To further show the advantage of DICER 2.0, we make some comparisons between
DICER 2.0 and other existing Petri net tools, e.g., PIPE, Tina and Punf. We select these
tools based on the following considerations.

• The same or similar runtime environments.
• The same or similar functions and features.
• Available installations.

In these experiments, we first implement the benchmarks of Case_1 and Case_2 into
different Petri net tools, and then we can get their experimental results. Tables 6 and 7
respectively show comparisons on the performance and functions of different Petri net
tools. From these tables, we can find that DICER 2.0 supports the WFD-net modeling of
concurrent systems, constructing GRGs, unfolding PD-nets and detecting errors of data
inconsistency, while other Petri net tools do not. Please note that we must model data
operations by data places and their related flows in Tina, PIPE and Punf because these tools
cannot support the formalizations of labeling functions and guard functions. With respect
to this modeling method, we can find that the model scales of Case_1 and Case_2 by these
tools is much larger than WFD-net by DICER 2.0. Meanwhile, due to the lack of guard
functions, these tools cannot model routing path conditions. Naturally, its reachability
graph (by Tina and PIPE) is smaller than our GRG. Additionally, we cannot get an FCP of
Case_2 by Punf because it cannot support the unfolding of unsafe Petri nets.

Table 6. The comparison experiments on the performance of DICER 2.0 and other Petri net tools.

Tools
Case_1 Case_2

Modeling CRG GRG Modeling RG FCP Detecting Data
(|P ∪ T ∪ F|) (|P ∪ T ∪ F|) (|B ∪ E ∪ G|) Inconsistency

DICER 2.0 31 77 68 87 608 137 1.0 (ms)

PunF 87 – – 125 – – –

Improved PIPE 31 77 – 87 608 – –

Tina 87 53 – 125 608 – –

PIPE 87 53 – 125 608 – –

CRG: Classical Reachability Graph; GRG: Guard-driven Reachability Graph; RG: Reachability Graph. Data operations are modeled by data
places and their related flows in Tina, PIPE and Punf because they cannot support the formalizations of labeling functions, guard functions
and data-flow arcs.

Table 7. The comparison experiments on the functions of DICER 2.0 and other Petri net tools.

Functions
Tools

DICER 2.0 Tina PIPE Punf Improved PIPE

Case_1

WFD-net � � � � �
Reachability graph � � � � �

Guard-driven reachability graph � � � � �
Unfolding � � � � �

Unfolding within data-flows � � � � �
Checking data inconsistency � � � � �

Case_2

WFD-net � � � � �
Reachability graph � � � � �

Guard-driven reachability graph � � � � �
Unfolding � � � � �

Unfolding within data-flows � � � � �
Checking data inconsistency � � � � �
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6. Conclusions

Data-flow analysis plays an important role in the correctness verification of concurrent
software systems. Petri net-based model checkings are a prominent method/technique
for analyzing these data-flows. Currently, many different kinds of Petri nets have been
used to do this work such as algebraic Petri net, predicate/transitions net, and colored
Petri nets. WFD-net, as a high-level Petri net, is extended with conceptual labeling data
operations. Thus, it can greatly model control/data- flows of concurrent systems. Moreover,
its model scale is much smaller than other Petri nets with data-flow arcs such as C-net and
PN-DO. Furthermore, WFD-net has been widely used to do model checkings. However,
concurrent data operations and guard functions easily lead to the problems of state–space
explosion and pseudo-states. In order to alleviate these problems, we proposed some
efficient methods to detect data-flow errors and verify some properties. In this paper,
we develop a new model checker DICER 2.0. By this tool, we can do a series of model
checkings, e.g., detecting data inconsistencies based on the unfolding technique of PD-nets,
and checking deadlocks via the GRG of WFD-nets.

In the future work, we plan to do the following studies:
(1) The unfolding methods of WFD-nets are studied to check many more data-flow

errors and concurrency bugs [64,65] of concurrent systems;
(2) DICER 2.0 is further improved to support many more efficient model checkings;

and
(3) Timed concurrent systems are modeled and checked by the unfolding techniques

of Petri nets.
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