
mathematics

Article

Assess the Impacts of Discount Policies on the Reliability of a
Stochastic Air Transport Network

Thi-Phuong Nguyen

����������
�������

Citation: Nguyen, T.-P. Assess the

Impacts of Discount Policies on the

Reliability of a Stochastic Air

Transport Network. Mathematics 2021,

9, 965. https://doi.org/10.3390/

math9090965

Academic Editor: Tadashi Dohi

Received: 19 March 2021

Accepted: 22 April 2021

Published: 25 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Distribution Management, National Chin-Yi University of Technology, Taichung 411, Taiwan;
phuongnt@ncut.edu.tw

Abstract: In this study, an algorithm for reliability evaluation is proposed in order to assess the
discount policy based on its effect on an air transport network. An air transport network is a typical
stochastic air transport network (SATN) because its capacity (available seats) is regarded as stochastic.
Under different discount policies, the term “reliability” refers to the ability to meet a certain travel
demand within a limited budget. To better describe the flow of SATN, the methods of the sum of
disjoint products and minimal paths are combined in the proposed algorithm. A reliability analysis
is conducted at ranges of budgets and travel demands for a more accurate assessment. The outcomes
of this study help the travel agents assess and select an appropriate discount policy, which is one
of the important contributions. This study also contributes to enhancing the reliability fluctuation
under the impact of multiple discount policies.

Keywords: reliability; stochastic air transport network; quantity discount policy; contractual discount
policy; limited budget

1. Introduction

Recently, an air transport network is more and more popular and becomes one of
the crucial factors that reflects the capacity of travel agents (tour operators) to compete
in the tourism industry [1,2]. The travel agents rely heavily on air transport networks to
handle the transportation tasks. An air transport network can be formed as a directed
graph consisting of a set of edges denoting an airport and a set of vertices representing
a flight [3,4]. A flight is operated with a limited number of seats and booked by several
individuals, travel agents, and other organizations. Thus, the capacity (i.e., available seats)
can be regarded as stochastic quantity [5]. Herein the term “a stochastic air transport
network (SATN)” refers to an air transport network.

From the service quality viewpoints, a reliable air transport network can guarantee
to transport customers to their destinations smoothly. Performance evaluation for air
transport networks, thus, is essential for efficient management. One of the appropriate
indexes that have been substantially used is reliability, which is the ability (probability)
observed in a predetermined period to perform specific tasks and functions under stated
constraints [6,7]. Reliability has been concerned in terms of connectivity, travel time, and
flow (capacity) reliability. Connectivity reliability is the probability of all terminals [8] or
k-out-of-n terminals [9,10] to successfully connect the source with the sink. Regarding
on-time performance, Bing analyzed the travel time reliability of a China aviation firm’s
air transport network structure [11]. According to the proposed empirical analysis, the
author provided suggestions for reliability improvement. Li et al. proposed a compre-
hensive model to evaluate the connectivity, capacity, and travel-time reliabilities of air
traffic networks [12]. The affecting factors with their fuzziness and randomness also were
considered and ranked. Another aspect is flow (capacity) reliability that considers the abil-
ity to deliver a specific demand [9,13–20]. With this in mind, several evaluation methods
have been conducted in the last decade, for example, state enumeration [21,22], minimal
cuts [9,13–15], minimal paths [15–20], cross entropy [23,24], subset simulation [25,26], and
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percolation theory [27,28]. State enumeration is the simplest method that enumerates
entire possible network states. Minimal cuts and paths methods compute the reliability
for a certain demand in terms of upper and lower boundary points, respectively. Be-
sides, sum of the disjoint products [16,29–32], inclusion-exclusion [9,33,34], Monte Carlo
simulation [17,21,35,36], and neural network [26,37] techniques are widely combined to
accordingly compute the reliability. Lin et al. [16] investigated the reliability of air transport
networks regarding the ability to meet travel demand within a limited time. Especially,
this study mainly focused on the effects of late arrivals on reliability [16]. The evaluation
algorithm was formed by the minimal path method and the sum of products technique.
For reliability estimation, Khadiri and Yeh [17] applied Monte Carlo simulation to evaluate
the probability for one minimal path of the network to deliver a certain amount of flow.
Subset simulation focuses on the probability of small failures in the network. Percola-
tion theory calculates the number of failures through removal progresses. Lesko et al.
employed the percolation theory to analyze the fault tolerance and reliability of air trans-
port networks [27]. The authors focused on calculating the threshold of pre-determined
reliability.

When investigating the reliability, the travel agents also need to consider a budget
factor for traveling as a given constraint because it is one of the sole influencing factors
in the customer’s choice [38]. In fact, most customers set the amount they are willing to
spend on traveling, which requires the travel agents to calculate the ability to meet demand
under that budget. In real practice, travel agents often receive different discount offers
from their partner airlines. More specifically, discount policies, such as quantity [39,40],
trade [41], promotional [42], geographical, and seasonal discounts [43,44] often aim to
increase sales, enter new markets, retain partnership and membership, encourage loyal
customers, etc [45]. Obviously, the discount policies help to reduce the amount that the
travel agents must pay for each flight. It, therefore, increases their ability to meet travel
demands under a certain budget. However, there is no research appraising how discount
policies affect air transport networks regarding reliability. Hence, there is a need to fill
this gap.

This study aims to address a new approach that bases on reliability to assess the
discount policy. Different from the previous study [16], this paper employs the reliability
evaluation to select the policy with higher reliability. In particular, the reliability in this
study refers to the probability in a specific interval for the SATN to meet travel demand
within the limited budget and is evaluated under different discount policies. To achieve the
stated objectives, an algorithm is built for reliability measurement and is used as a base for
assessing discount policies accordingly. Even though both minimal cuts and minimal paths
methods are mostly utilized for reliability assessment of stochastic flow networks [46], the
minimal paths method can describe the actual flow with a time sequence well. Hence, the
proposed algorithm is based on minimal paths method and the recursive sum of disjoint
product (RSDP) technique [31,32]. In this study, a minimal path is redefined as a sequence
of flights from the origin to the destination with no self-loop. The obtained reliability acts
as a basis for the travel agent to select an appropriate discount policy for more reliable
management.

In the following section, the SATN model, including major assumptions and nomen-
clature, is provided. A complete process to calculate the reliability of SATN is presented
in Section 3. After that, Section 4 indicates how to utilize the proposed algorithm and
accordingly assess the different discount policies through a numerical example. Finally,
some conclusions are shown in the last section.

2. SATN Model and Reliability Evaluation

Let H ≡ (A, W, M, C) denote a SATN that includes the set of airports A, and the set of
z flights W = {wk | k = 1, 2, . . . , z}, the maximal capacity vector M = {Mk | k = 1, 2, . . . , z},
and the set of flight’s fares C = {ck | k = 1, 2, . . . , z}. Each flight wk ∈W, is determined by
its departure and arrival airport’s (ak, a∗k ) departure and arrival time (tk, t∗k ). Since traveling



Mathematics 2021, 9, 965 3 of 13

costs in this study are calculated under discount policies, the set discount rates G = {gi | i
= 1, 2, . . . , n}, are provided, where gi is the discount rate for booking of i passengers, and n
is the maximal capacity of all flights. In the H, X = (x1, x2,..., xz) termed the capacity vector
(i.e., xk is the current capacity of the flight wk), cannot exceed the maximal capacity vector
M. Besides, the H follows some assumptions and nomenclature listed below.

2.1. Assumptions

Assumption 1. The SATN follows the flow-conservation law.

Assumption 2. Each flight’s capacity is independent statistically.

Assumption 3. All flights are on-time.

In the SATN model, very few passengers get lost during their transportation by air.
Thus, the SATN is said to follow the conservation law, which states that the flow-in equals
the flow-out of all airports, except the origin and the destination. All flights in the SATN
are considered separate flights. It means that their capacities are independent statistically.
According to the correlation between flights that are carried by the same aircraft, their
capacity and corresponding capacity will be the same. Besides, this study aims to figure
out the impacts of discount policies instead of late arrivals; thus, all flights are assumed to
be on time.

2.2. Nomenclature
X ≤ Y (x1, x2,..., xz) ≥ (y1, y2,..., yz) if xk ≥ yk for all k
X < Y (x1, x2,..., xz) > (y1, y2,..., yz) if X ≥ Y and exists at least one xh > yh
X
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Let X = (x1, x2,..., xz) and Y = (y1, y2,..., yz), which are two different capacity vectors
of the SATN. Since being z-vectors, they are equal if and only if xk = yk for k = 1, 2, . . . ,
z. Therefore, X ≤ Y when xk ≥ yk for all z states k. If existing at least one state xh > yh, X
becomes greater than Y. On other hand, neither X ≥ Y nor X < Y if there is at least one state
that xh < yh and xk ≥ yk for the remaining states.

3. Reliability Assessment

The classical definition of reliability is the ability (probability) to successfully fulfill
the requirements under specific constraints. More specifically, the SATN reliability refers
to the probability that at least (E) passengers can be transported from the origin (o) to
the destination (d) within the limited budget (B) in a specific interval. Let Λ contain all
capacity vectors (Ys), such that SATN can transport at least E passengers to the destination
d from the origin o within the limited budget B. The SATN reliability can be computed
through the formula REB = ∑Y∈Λ Pr(Y). However, under a large and complex H, the
number of feasible capacity vectors (Y ∈ Λ) increases dramatically; thus, it becomes hard
to enumerate them and to sum up their corresponding probabilities. For more efficiency,
the SATN reliability can be derived via the lower and upper boundary points [47,48]. In
which any capacity vector (Y ∈ Λ) is between at least one upper boundary point and at
least one lower boundary point. Note that the maximal capacity vector (M) is the only
upper boundary point and the lower boundary point is defined as follows.

Definition 1. X is one of the lower boundary points if X ∈ Λ and there is no Y ∈ Λ that Y < X.

Let ΞL consist of all lower boundary points. The SATN reliability formula becomes:

REB = Pr
{
∪

X∈EL
{Y|X ≤ Y ≤ M}

}
(1)
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According to Equation (1), figuring out the set ΞL is necessary for computing reliability.
Inferred from Definition 1, any X = (x1, x2,..., xz) ∈ ΞL must satisfy the following three
conditions.

Condition 1. At least E passengers can be transported from the origin o to the destination d under
it,

Condition 2. The traveling costs do not exceed the limited budget B,

Condition 3 There is no Y ∈ Λ that Y < X.

3.1. Minimal Paths and Feasible Flow Vectors

Regarding Condition 1, that guarantees the transportation from the origin o to the
destination d, we first search all minimal paths that are sequences of flights where the first
flight departs at the origin o and the last flight arrives at the destination d with no self-loop
and named MPs herein. Note that, passengers will be transported through one MP that
can accommodate any flight, as long as that its first flight departs at the origin o and its last
flight arrives at the destination d with no self-loop. Thus, each MP can be a sequence of one
to z flights, whose flights must ensure the order of visiting airports and departure/arrival
times. Suppose that P1, P2,..., Pm are all MPs of the SATN. Let F = (f 1, f 2,..., fm) be a flow
vector where fj denotes the flow on Pj for j = 1, 2, . . . , m.

Following the flow-conservation law, the total flow through any wk cannot exceed its
maximal capacity Mk.

Mk ≥∑
j

{
f j
∣∣wk ∈ Pj)

}
, for k = 1, 2, . . . , z. (2)

Similarly, a flow vector F is feasible under X if and only if

xk ≥∑
j

{
f j
∣∣wk ∈ Pj)

}
, for k = 1, 2, . . . , z. (3)

For example, if there are three MPs P1, P2, and P3 going through flight wk, a flow
vector F = (f 1, f 2,..., fm) must satisfy that xk ≥ f 1 + f 2 + f 3. Also, a capacity vector X is

feasible under F if xk ≥ f 1 + f 2 + f 3. Let V(X) = max
m
∑

j=1

{
f j
∣∣F is feasible under X} be the

maximum flow under X. Using V(X), condition 1 becomes.

V(X) ≥ E. (4)

The following lemma indicates the necessary conditions for a capacity vector X meet-
ing condition 1.

Lemma 1. X meets Condition 1 if there exists at least one F such that

Mk ≥ xk ≥∑
j

{
f j
∣∣wk ∈ Pj)

}
, for k = 1, 2, . . . , z. (5)

m

∑
j=1

f j = E. (6)
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Proof. Let F = {Fs satisfy Constraints (5) and (6)}. Constraint (5) said that such flow vectors

F ∈ F are feasible under X. Therefore, V(X) = max
m
∑

j=1

{
f j
∣∣F ∈ F} and the following constraint

is inferred:
m

∑
j=1

f j ≤ V(X) (7)

Combining with Constraint (6), we have:

E ≤ V(X) (8)

Lemma 1 is proved.

3.2. Traveling Costs under Discount Policies

This subsection focuses on Condition 2—finding all capacity vectors whose traveling
costs after discounted, named co

j (X) where o denotes the discount policy, do not exceed the
limited budget B.

co
j (X) > B, for all

{
j
∣∣ f j > 0

}
. (9)

Among several discount policies offered by airlines, quantity and contractual dis-
counts are only ones the travel agent can take advantage of. Therefore, they are focused on
this study.

Policy 1. Quantity discount (i.e., a discount is granted for purchasing large quantities)
aims to encourage bulk bookings. The higher volume the travel agents book, the higher
discount rates the airlines offer.

Policy 2. Contractual discount (i.e., partnership discount, a discount is offered to
partners for the functions they perform) provides the travel agents a specific discount rate
no matter how much they book on each flight. It, normally, depends on the terms signed
and/or the cooperation between two sides: travel agent and airlines.

Because two different discount policies are considered, this study provides two corre-
sponding formulas to calculate the traveling cost co

j (X) of capacity vector X on Pj. Under
policy 1, the discount rate depends on the booking quantity. Therefore, we have:

c1
j (X) = ∑

k|k∈Pj

{ck × (1− gi|i = xk)}, for
{

j
∣∣ f j > 0

}
. (10)

On the other hand, policy 2 offers a fixed discount rate. For a more accurate assessment,
the authors pick up one the discount rate from G and call it g. The following equation is
for the calculation of the traveling costs under policy 2.

c2
j (X) = ∑

k|k∈Pj

{ck × (1− g)}, for
{

j
∣∣ f j > 0

}
. (11)

3.3. Generate All Lower Boundary Points

Combining the former subsections, a capacity vector X ∈ Λ if it satisfies Constraint (9)
and exists at least one F ∈ F feasible under it. The following property adds condition 3 to
determine lower boundary point candidates.

Lemma 2. If X ∈ ΞL then exists F ∈ F such that

xk = ∑
j

{
f j
∣∣wk ∈ Pj)

}
, for k = 1, 2, . . . , z. (12)
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Proof. Suppose that Y = (y1, y2,..., yz) and X = (x1, x2,..., xz)∈ ΞL. Obviously, both X and
Y ∈ Λ. Suppose to exist a capacity of X satisfying that Mt ≥ xt > ∑

j

{
f j
∣∣wk ∈ Pj)

}
and

xk = ∑
j

{
f j
∣∣wk ∈ Pj)

}
for k 6= t where yt = ∑

j

{
f j
∣∣wk ∈ Pj)

}
and yk = ∑

j

{
f j
∣∣wk ∈ Pj)

}
for k

6= t. It indicates that Y < X, which conflicts with condition 3. Hence, xk = ∑
j

{
f j
∣∣wk ∈ Pj)

}
,

for k = 1, 2, . . . , z. Lemma 2 is proved.

Lemma 2 indicates that all capacity vectors X converted from Fs∈ F through Equation (12)
and satisfies Constraint (9) are lower boundary point candidates. Let Ξ contain all of them.
The set ΞL of all exact lower boundary points is obtained by rejecting from Ξ all capacity
vector Y if existing any X < Y.

3.4. Solution Procedure

Given the SATN H ≡ (A, W, M, C), travel demand E, transit time θ, limited budget
B with the set of quantity discount rates G, the origin o, and the destination d, the main
algorithm is proposed for reliability evaluation as follows.

Step 1: Generate all feasible minimal paths (MPs) as follows.

Set j = 1, Ω = Ø, @= {o}, and, µ = length(@)//*j is an index of a feasible MP (Pj), Ω stores Pj’s flights,
and @stores airports that Pj visits.
Function Search (Ω, @, o, d, µ, θ)

(1.1) IF µ 6= 1, let wh be the µ–1th element of Ω
Select one available flight wk such that ak ≡ a∗h and a∗k /∈ @

(1.2) IF tk≥ t∗k + θ

(1.3) Ω← Ω ∪ {wk}, @← @∪ {a∗k }, and µ = µ + 1
(1.4) IF a∗k = d then Pj ← Ω, output Pj, j = j + 1
(1.5) ELSE, Call search (Ω, @, o, d, µ, θ)
(1.6) ELSE, select one available flight wk that departs from o
(1.7) Go to step (1.2)
(1.8) Ω← Ω\{wk}, @← @\{a∗k }, and µ = µ − 1
(1.9) Next selection
(1.10) END

Suppose that Step 1 accepted m MPs: P1, P2,..., Pm.

Step 2: Through the following equation, obtain set F of all flow vectors F fulfilling the
travel demand E.

m

∑
j=1

f j = E. (13)

∑
j

{
f j
∣∣wk ∈ Pj)

}
≤ Mk, for k = 1, 2, . . . , z. (14)

Step 3: Through Equation (15), convert each flow vector F ∈ F into capacity vector X and
store it in ∆.

xk = ∑
j

{
f j
∣∣wk ∈ Pj)

}
, for k = 1, 2, . . . , z. (15)

Step 4: Calculate the traveling cost of capacity vector X ∈ ∆ on MPs.
(4.1) Under policy 1:

c1
j (X) = ∑

k|k∈Pj

{ck × (1− gi|i = xk)}, for
{

j
∣∣ f j > 0

}
. (16)
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(4.2) Under policy 2:

c2
j (X) = ∑

k|k∈Pj

{ck × (1− g)}, for
{

j
∣∣ f j > 0

}
. (17)

Then, reject from ∆ any capacity vectors that exceed does not exceed the limited budget
to get two corresponding sets Ξo, for o = 1, 2, of all lower boundary point candidates.

Ξo= ∆\{X} if co
j (X) > B, for

{
j
∣∣ f j > 0

}
. (18)

Step 5: Through the following comparison process, obtain a set Ξo
L of all exact lower

boundary points from Ξo for o = 1, 2.

Initially, Θ stores θ indexes of Xs in Ξo

(5.1) FOR k = 1 to θ ∈ Θ
(5.2) FOR h = k + 1 to θ ∈Θ
(5.3) IF Xk ≤ Xh then Xh is not a lower boundary point, Θ = Θ\{h}

ELSE IF Xk > Xh then Xk is not a lower boundary point, Θ = Θ\{k}, and BREAK
(5.6) Ξo

L = {Xk| k ∈Θ}

Step 6: Compute the reliability as Equation (19) by utilizing the RSDP algorithm [31,32].

Ro
EB = Pr

{
∪

X∈Ξo
L

{Y|M ≥ Y ≥ X}
}

, for o = 1, 2. (19)

Basically, the main algorithm is developed according to lemmas and statements in the
former subsections. It first searches all minimal paths, then generates all lower boundary
points and utilizes the RSDP method to calculate the reliabilities.

4. A Numerical Example and Reliability Analysis

To demonstrate how the main algorithm runs and assess the impacts of two different
discount policies on the reliability, this section adopts the SATN of a travel agent Y from
Vietnam to be a numerical example. To transport customers to Taipei (TPE) from Da Nang
(DAD), the Y agent has contracted some airlines and airports in Hanoi (HAN) and Ho Chi
Minh city (SGN) to build up their SATN, shown in Tables 1 and 2.

Table 1. The discount rates for all flights of the SATN.

Capacity (i) 1 2 3 4 5

Quantity Discount Rate (gi) 0.05 0.075 0.1 0.15 0.2

Table 2. The relevant information about all flights of the SATN.

Flight Fare Departure
Time

Arrival
Time

Departure—
Arrival
Airport

Probability Pr (xk)

wk ck tk t∗k (ak–a∗k ) xk = 5 xk = 4 xk = 3 xk = 2 xk = 1 xk = 0

1 900 7:00 8:00 DAD-HAN 0.81 0.1 0.05 0.02 0.01 0.01
2 900 9:45 10:45 DAD-HAN 0.80 0.1 0.05 0.02 0.01 0.02
3 950 7:15 8:30 DAD-SGN 0.81 0.05 0.06 0.05 0.01 0.02
4 950 10:15 11:30 DAD-SGN 0.80 0.08 0.05 0.05 0.01 0.01
5 1200 8:45 10:15 HAN-SGN 0.935 0.035 0.01 0.01 0.01
6 1200 9:00 10:30 SGN-HAN 0.94 0.04 0.005 0.005 0.01
7 3250 11:00 14:30 HAN-TPE 0.81 0.1 0.05 0.02 0.01 0.01
8 3250 11:30 15:00 SGN-TPE 0.90 0.055 0.02 0.01 0.005 0.01
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4.1. Evaluate the Reliability of Numerical Example

Given travel demand E = 5 (passengers), and limited budget B = 5000 Taiwan dollar
(TWD), the discount rate of contractual policy g = g2, the reliabilities Ro

EB for o = 1, 2 are
evaluated by the following steps.

Step 1: Generate all feasible minimal paths (MPs). Totally, four MPs: P1 = {w1, w5, w8}, P2 =
{w1, w7}, P3 = {w3, w6, w7}, P4 = {w3, w8} are accepted.
Step 2: Through Equations (20) and (21), obtain set F of all flow vectors F fulfilling the
travel demand E

f1 + f2 + f3 + f4 = 5. (20)

f1 + f2 ≤ 5; f1 + f2 ≤ 5; f1 ≤ 4; f3 ≤ 4; f2 + f3 ≤ 5; f1 + f4 ≤ 5. (21)

All obtained flow vectors are shown in column 1 of Table 3.

Table 3. The results of four steps (2)–(5).

Step 2 Step 3 Step 4.1 Step 4.2 Step 5

(F) (∆) (Ξ1) (Ξ2) (Ξ1
L) (Ξ2

L)

F1 = (0, 0, 0, 5) X1 = (0, 0, 5, 0, 0, 0, 0, 5)
√ √ √ √

F2 = (0, 0, 1, 4) X2 = (0, 0, 5, 0, 0, 1, 1, 4)
√ √ √ √

. . .
F6 = (0, 1, 0, 4) X6 = (1, 0, 4, 0, 0, 0, 1, 4)

√ √ √ √
F7 = (0, 1, 1, 3) X7 = (1, 0, 4, 0, 0, 1, 2, 3)

√ √ √ √
. . .

F11 = (0, 2, 1, 2) X11 = (2, 0, 3, 0, 0, 0, 2, 3)
√ √ √ √

F12 = (1, 0, 1, 3) X12 = (2, 0, 3, 0, 0, 1, 3, 2)
√ √ √ √

. . .
F22 = (1, 0, 1, 3) X22 = (1, 0, 4, 0, 1, 1, 1, 4) c1

3(X12) = 5036
√

c1
3(X12) > B X22 > X6

F23 = (1, 0, 2, 2) X23 = (1, 0, 4, 0, 1, 2, 2, 3)
√ √

X23 > X7 X23 > X7
. . .

F26 = (1, 1, 0, 3) X26 = (2, 0, 3, 0, 1, 0, 1, 4)
√ √ √ √

F27 = (1, 1, 1, 2) X27 = (2, 0, 3, 0, 1, 1, 2, 3) c1
1(X27) = 5001

√
c1

1(X27) > B X27 > X11
F28 = (1, 1, 2, 1) X28 = (2, 0, 3, 0, 1, 2, 3, 2)

√ √
X28 > X12 X28 > X12

. . .
F37 = (2, 0, 1, 2) X37 = (2, 0, 3, 0, 2, 1, 1, 4) c1

1(X37) = 5083
√

c1
1(X37) > B X37 > X26

F38 = (2, 0, 2, 1) X38 = (2, 0, 3, 0, 2, 2, 2, 3)
√ √

X38 > X11 X38 > X11
F39 = (2, 0, 3, 0) X39 = (2, 0, 3, 0, 2, 3, 3, 2)

√ √
X39 > X12 X39 > X12

. . .
F54 = (4, 1, 0, 0) X54 = (5, 0, 0, 0, 4, 0, 1, 4)

√ √ √ √

Step 3: Through Equation (22), convert each flow vector F ∈ F into capacity vector X and
store it in ∆, referring to column 2 of Table 3.

x1 = f1 + f2; x3 = f1 + f2; x5 = f1 ≤ 4; x6 = f3; x7 = f2 + f3; x8 = f1 + f4. (22)

Step 4: Calculate the traveling cost of each capacity vector X ∈ ∆ on MPs. Then, reject from
∆ any capacity vectors through Constraints (24) and (26) to get corresponding sets of all
lower boundary point candidates under policies 1 and 2.
(4.1) Under policy 1:

c1
j (X) = ∑

k|k∈Pj

{ck × (1− gi|i = xk)}, for
{

j
∣∣ f j > 0

}
. (23)

Ξ1= ∆\{X} if c1
j (X) > B, for

{
j
∣∣ f j > 0

}
. (24)

For instance, since F22 > 0, it is necessary to check the traveling cost of X22 = (1, 0, 4, 0, 1, 1,
1, 4) on P1, P3, and P4. By means of Equation (23), we have: c1

1(X) = c1 × (1− g1) + c5 ×
(1− g1) + c8 × (1− g4) =900*0.95 + 1200*0.95 + 3250*0.85 = 4758. Similarly, c1

3(X) = 5036
and c1

4(X) = 3571.
(4.2) Under policy 2:

c2
j (X) = ∑

k|k∈Pj

{ck × (1− g)}, for
{

j
∣∣ f j > 0

}
. (25)
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Ξ2= ∆\{X} if c2
j (X) > B, for

{
j
∣∣ f j > 0

}
. (26)

Columns 3 and 4 of Table 3 present sets Ξ1 and Ξ2, respectively, and one of the reasons for
each rejection.
Step 5: Through the following comparison process, obtain the sets of all exact lower
boundary points Ξ1

L = Ξ2
L = {X1, X2, . . . , X21, X26, X30, X33, X35, X36, X40, X43, X45, X46, X49,

X51, X52, X54}. Column 5 of Table 3 remarks why a certain X does not belong to Ξ1
L or/and

Ξ2
L.

Step 6: Utilize the RSDP algorithm into Equation (27) to compute the reliabilities under
two policies.

R1
EB = R2

EB = Pr
{

54
∪

i=1
{Y|M ≥ Y ≥ Xi}

}
(27)

In terms of the RSDP technique, the reliability in this case is the sum of 54 terms

R1
EB = R2

EB =
54
∑

i=1
Term_i where Term_1 is Pr(Y|M≥ Y ≥ X1) for i = 1, and Term_i = Pr(Y|M

≥ Y ≥ Xi) − Pr{(Y|M ≥ Y ≥ max(X1, Xi))∪ . . . ∪(Y|M ≥ Y ≥ max(Xi-1, Xi))} for 54 ≥
i ≥ 2.

Because Ξ1
L = Ξ2

L, we have R1
EB = R2

EB = 0.98755955. This reliability means that the
travel agent does not meet only one or two in a hundred offers. It indicates a high possibility
to transport five passengers with no more than 5000 TWD. There is no reliability difference
in the reliability between applying quantity discounts and contractual discounts where
g = g2.

4.2. Analyze the Impact of Discount Policies on the Reliability

Focusing on the impact of different discount policies, this section considers all discount
rates. Besides, the authors evaluate the reliabilities of different travel demands and limited
budgets.

As shown in Figure 1 and Table 4, regardless of whether the travel agent selects policy
1 or 2, the reliabilities with B = 4000 TWD are the same. However, the travel agent must
receive a discount rate g ≥ g2 for the same reliability under policy 1 when B = 5000 TWD.
Under policy 2 with B = 4500 TWD, they even need the highest discount to keep the
reliabilities at the same or slightly greater.

Table 4. The reliabilities of SATN subject to ranges of travel demands and limited budgets (E, B).

Travel Demand and Limited Budget
EB = (E, B)

Policy 1
Quantity Discount

Policy 2
Contractual Discount

g = g1 g = g2 g = g3 g = g4 g = g5

EB = (3, 5000) 0.99786556 0.99591643 0.99787289 0.99787289 0.99787289 0.99787289
EB = (5, 5000) 0.98755955 0.97779929 0.98755955 0.98755955 0.98755955 0.98755955
EB = (7, 5000) 0.90026408 0.8862315 0.90026408 0.90026408 0.90026408 0.90026408
EB = (9, 5000) 0.67142394 0.66424293 0.67142394 0.67142394 0.67142394 0.67142394
EB = (3, 4500) 0.99591643 0.99591643 0.99591643 0.99591643 0.99591643 0.99787289
EB = (5, 4500) 0.98335734 0.97779929 0.97779929 0.97779929 0.97779929 0.98755955
EB = (7, 4500) 0.89911623 0.8862315 0.8862315 0.8862315 0.8862315 0.90026408
EB = (9, 4500) 0.67142394 0.66424293 0.66424293 0.66424293 0.66424293 0.67142394
EB = (3, 4000) 0.99591643 0.99591643 0.99591643 0.99591643 0.99591643 0.99591643
EB = (5, 4000) 0.97779929 0.97779929 0.97779929 0.97779929 0.97779929 0.97779929
EB = (7, 4000) 0.8862315 0.8862315 0.8862315 0.8862315 0.8862315 0.8862315
EB = (9, 4000) 0.66424293 0.66424293 0.66424293 0.66424293 0.66424293 0.66424293
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Figure 1. The reliabilities of SATN to meet different travel demands within limited budgets. (a) Limited budget B = 5000;
(b) limited budget B = 4500; (c) limited budget B = 4000.

Besides, this study calculates the average of the reliabilities under policy 2 then
compares them with that under policy 1 at each travel demand and limited budgets. The
comparison results are presented in Figure 2. It is clear that the reliability under policy 1 is
not lower than the average reliability under policy 2 at all 12 levels of demands and budgets.
Policy 1 also has more positive effects in the cases that the limited budgets B = 4500 and
B = 5000 TWD.

Though the differences are not great, the travel agent can conclude that the quantity
discount policy is a relatively better choice as it gets greater or similar reliabilities in most
cases. The travel agent can also determine the most beneficial option, exactly. For example,
with a limited budget B = 5000 TWD, if the discount rate offered is 0.05 then the quantity
discount policy is the right choice. However, they should choose the contractual discount
policy if airlines increase their discount rate to about 0.175. Besides, the travel agent knows
that alternatives or adjustments are needed for higher reliability since the reliabilities of
their SATN at the travel demand E = 9 are low, despite applying discount policies.
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5. Conclusions

This paper focuses on reliability evaluation for an air transport network and uses it
as a base to assess the impact of different discount policies. The most positive influencing
policy is recommended as an appropriate choice towards more reliable performance.
To accomplish this aim, a stochastic air transport network (SATN) is formulated as a
typical directed graph. Then, an algorithm, based on the minimal paths (MP) method, is
proposed to simultaneously calculate the SATN reliability under the impact of quantity
and contractual discounts. Whilst it has been proved that finding all feasible MPs in a
complex network like the SATN belongs to an NP-hard problem [49], this study provides
an evaluation algorithm without assuming that all MPs are known.

Furthermore, a numerical example is carried out applying the proposed algorithm to
investigate the reliability of the SATN under different discount policies. The fluctuation of
reliability is examined, subject to travel demands and budget, to make a broader assessment.
Some potential management actions are also suggested. In short, this research provides a
new approach that takes discount policy under consideration in reliability evaluation and
examines the effects of different policies. Likewise, other transport networks can employ
the proposed algorithm to address the same issues: reliability evaluation and the definition
of optimal discount policies with the limited budget and given demand.

In the future, there is potential to assess the impacts of discount policies based on
reliability estimation in the case of demand uncertainty or lacking probability data [50–52].
Also, addressing the same research problem with the dependent capacity [53] can get more
realistic findings.
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