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Abstract: An approach to general bivariate Appell polynomials based on matrix calculus is proposed.
Known and new basic results are given, such as recurrence relations, determinant forms, differential
equations and other properties. Some applications to linear functional and linear interpolation are
sketched. New and known examples of bivariate Appell polynomial sequences are given.
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1. Introduction

Appell polynomials have many applications in various disciplines: probability the-
ory [1–5], number theory [6], linear recurrence [7], general linear interpolation [8–12],
operators approximation theory [13–17]. In [18], P. Appell introduced a class of polynomi-
als by the following equivalent conditions: {An}n∈IN is an Appell sequence (An being a
polynomial of degree n) if either

d An(x)
dx

= nAn−1(x), n ≥ 1,

An(0) = αn, α0 6= 0, αn ∈ IR, n ≥ 0,

A0(x) = 1,

or

A(t)ext =
∞

∑
n=0

An(x)
tn

n!
,

where A(t) =
∞

∑
k=0

αk
tk

k!
, α0 6= 0, αk ∈ IR, k ≥ 0.

Subsequentely, many other equivalent characterizations have been formulated. For
example, in [19] [p. 87], there are seven equivalences.

Properties of Appell sequences are naturally handled within the framework of modern
classic umbral calculus (see [19,20] and references therein).

Special polynomials in two variables are useful from the point of view of applications,
particularly in probability [21], in physics, expansion of functions [22], etc. These poly-
nomials allow the derivation of a number of useful identities in a fairly straightforward
way and help in introducing new families of polynomials. For example, in [23] the au-
thors introduced general classes of two variables Appell polynomials by using properties
of an iterated isomorphism related to the Laguerre-type exponentials. In [24], the two-
variable general polynomial (2VgP) family pn(x, y) has been considered, whose members
are defined by the generating function

extφ(y, t) =
∞

∑
n=0

pn(x, y)
tn

n!
,
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where φ(y, t) =
∞

∑
k=0

φk(y)
tk

k!
.

Later, the authors considered the two-variable general Appell polynomials (2VgAP)
denoted by p An(x, y) based on the sequence {pn}b

n∈IN, that is

A(t)extφ(y, t) =
∞

∑
n=0

p An(x, y)
tn

n!
,

where A(t) =
∞

∑
k=0

αk
tk

k!
, α0 6= 0, αk ∈ IR, k ≥ 0.

These polynomials are framed within the context of monomiality principle [24–27].
Generalizations of Appell polynomials can be also found in [22,28–31] (see also the

references therein).
In this paper, we will reconsider the 2VgAP, but with a systematic and alternative

theory, that is matrix calculus-based. To the best of authors knowledge, a systematic
approach to general bivariate Appell sequences does not appear in the literature. New
properties are given and a general linear interpolation problem is hinted. Some applications
of the previous theory are given and new families of bivariate polynomials are presented.
Moreover a biorthogonal system of linear functionals and polynomials is constructed.

In particular, the paper is organized as follows: in Section 2 we give the definition and
the first characterizations of general bivariate Appell polynomial sequences; in Sections 3–5
we derive, respectively, matrix form, recurrence relations and determinant forms for the
elements of a general bivariate Appell polynomial sequence. These sequences satisfy some
interesting differential equations (Section 6) and properties (Section 7). In Section 8 we
consider the relations with linear functional of linear interpolation. Section 9 introduces
new and known examples of polynomial sequences. Finally, Section 10 contains some
concluding remarks.

We point out that the first recurrence formula and the determinant forms, as well
as the relationship with linear functionals and linear interpolation, to the best of authors’
knowledge, do not appear in the literature.

We will adopt the following notation for the derivatives of a polynomial f

f (i,j) =
∂i+j f
∂xi∂yj , f (0,0) = f (x, y), f (i,j)(α, β) = f (i,j)(x, y)

∣∣∣
(x,y)≡(α,β)

.

A set of polynomials is denoted, for example, by {p0, . . . , pn | n ∈ IN}, where the sub-
scripts 0, . . . , n represent the (total) degree of each polynomial. Moreover, for polynomial
sequences, we will use the notation {an}n∈IN for univariate sequence and {rn}b

n∈IN in the
bivariate case. Uppercase letters will be used for particular and well-known sequences.

2. Definition and First Characterizations

Let A(t) be the power series

A(t) =
∞

∑
k=0

αk
tk

k!
, α0 6= 0, αk ∈ IR, k ≥ 0, (1)

(usually α0 = 1) and let φ(y, t) be the two-variable real function defined as

φ(y, t) =
∞

∑
k=0

ϕk(y)
tk

k!
, (2)

where ϕk(y) are real polynomials in the variable y, with ϕ0(y) = 1.
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It is known ([19], p. 78) that the power series A(t) generates the univariate Appell
polynomial sequence {An}n∈IN such that

A0(x) = 1, An(x) =
n

∑
k=0

(
n
k

)
αn−kxk, n ≥ 1. (3)

Now we consider the bivariate polynomals rn with real variables. We denote by
A(φ, A), or simplyAwhere there is no possibility of misunderstanding, the set of bivariate
polynomial sequences {rn}b

n∈IN such that
r0(x, y) = 1 (4a)

r(1,0)
n (x, y) = n rn−1(x, y), n ≥ 1 (4b)

rn(0, y) =
n

∑
k=0

(
n
k

)
αn−k ϕk(y). (4c)

In the following, unless otherwise specified, the previous hypotheses and notations
will always be used.

Remark 1. We observe that in [21,32] a polynomial sequence {Pi}b
n∈IN is said to satisfy the Appell

condition if
∂

∂t
Pi(t, x) = Pi−1(t, x), P0(t, x) = 1.

This sequence in [32] is used to obtain an expansion of bivariate, real functions with integral
remainder (generalization of Sard formula [33]. Nothing is said about the theory of this kind
of sequences.

Proposition 1. A bivariate polynomial sequence {rn}b
n∈IN is an element of A if and only if

rn(x, y) =
n

∑
k=0

(
n
k

)
An−k(x)ϕk(y), n ≥ 1. (5)

Proof. If {rn}b
n∈IN ∈ A, relations (4a) hold. Then, by induction and partial integration

with respect to the variable x ([19] p. 93), we get relation (5), according to (3). Vice versa,
from (5), we easily get (4a).

Proposition 2. A bivariate polynomial sequence {rn}b
n∈IN is an element of A if and only if

A(t)extφ(y, t) =
∞

∑
n=0

rn(x, y)
tn

n!
. (6)

Proof. If {rn}b
n∈IN ∈ A, from Proposition 1 the identity (5) holds. Then

∞

∑
n=0

rn(x, y)
tn

n!
=

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
An−k(x)ϕk(y)

)
tn

n!
.

From the Cauchy product of series, according to (1) and (2), we get (6). Vice-versa,
from (6) we obtain (5). Therefore relations (4a) hold.

We call the function F(x, y; t) = A(t)extφ(y, t) exponential generating function of the
bivariate polynomial sequence {rn}b

n∈IN.

Remark 2. From Propositions 1 and 2 we note explicitly that relations (4a) are equivalent to the
identity (6).
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Example 1. Let φ(y, t) = 1, that is ϕ0(y) = 1, ϕk(y) ≡ 0, k > 0. Then {rn}b
n∈IN, constructed

as in Proposition 1, or, equivalently, Proposition 2, is a polynomial sequence in one variable,
with elements

rn(x, y) ≡ rn(x) = An(x).

Therefore {rn}b
n∈IN is a univariate Appell polynomial sequence [18,19].

Example 1 suggests us the following definition.

Definition 1. A bivariate polynomial sequence {rn}b
n∈IN ∈ A, that is a polynomial sequence

satisfying relations (4a) or relation (6), is called general bivariate Appell polynomial sequence.

Remark 3. (Elementary general bivariate Appell polynomial sequences) Assuming A(t) = 1, that
is α0 = 1, αi = 0, i ≥ 1, relations (4a) become

r0(x, y) = 1 (7a)

r(1,0)
n (x, y) = n rn−1(x, y), n > 1 (7b)

rn(0, y) = ϕn(y). (7c)

Moreover, the univariate Appell sequence is An(x) = xn, n ≥ 0. Hence, from (5),

rn(x, y) =
n

∑
k=0

(
n
k

)
xn−k ϕk(y), n ≥ 1. (8)

Relation (6) becomes

extφ(y, t) =
∞

∑
n=0

rn(x, y)
tn

n!
. (9)

In this case, we call the polynomial sequence {rn}b
n∈IN elementary bivariate Appell se-

quence. We will denote it by {pn}b
n∈IN, that is

pn(x, y) =
n

∑
k=0

(
n
k

)
xn−k ϕk(y), ∀n ∈ IN. (10)

The set of elementary bivariate Appell sequences will be denoted by A(φ, 1), or Ae. Of course,
Ae ⊂ A. We observe that the set Ae coincides with the set of 2VgP considered in [24].

We note that {p0, . . . , pn|n ∈ IN} is a set of n + 1 linearly independent polynomials in Ae.

Proposition 3. Let {rn}b
n∈IN ∈ A(φ, A) and {pn}b

n∈IN ∈ A(φ, 1). Then, the following identi-
ties hold

n

∑
k=0

(
n
k

)
An−k(x)ϕk(y) = rn(x, y) =

n

∑
k=0

(
n
k

)
αn−k pk(x, y). (11)

Proof. From (9), extφ(y, t) =
∞

∑
n=0

pn(x, y)
tn

n!
. Hence the result follows from (1), (6) and the

Cauchy product of series.

It is known that ([19] p. 11) the power series A(t) is invertible and it results

1
A(t)

≡ A−1(t) =
∞

∑
k=0

βk
tk

k!
,

with βk, k ≥ 0, defined by
n

∑
k=0

(
n
k

)
αn−kβk = δn0. (12)
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The identity (9) (with rn = pn) yelds

A−1(t)extφ(y, t) =
∞

∑
n=0

r̂n(x, y)
tn

n!
,

with

r̂n(x, y) =
n

∑
k=0

(
n
k

)
βn−k pk(x, y). (13)

The polynomial sequence {r̂n}b
n∈IN is called conjugate bivariate Appell polynomial

sequence of {rn}b
n∈IN.

Observe that the bivariate polynomial sequence {r̂n}b
n∈IN is an element of the set A.

3. Matrix Form

We denote by A =
(
ai,j
)

i,j∈IN the infinite lower triangular matrix [19,34] with

ai,j =

(
i
j

)
αi−j, i, j = 0, . . . , j ≤ i, α0 6= 0, αk ∈ IR, k ≥ 0,

and let B =
(
bi,j
)

i,j∈IN be the inverse matrix. It is known ([19] p. 11) that

bi,j =

(
i
j

)
βi−j, i, j = 0, . . . , j ≤ i,

where βk are defined as in (12).
Observe that the matrices A and B can be factorized ([19] p. 11) as

A = D1TαD−1
1 , B = D1TβD−1

1 ,

where D1 = diag(i!)i≥0 is a factorial diagonal matrix and Tα, Tβ are lower triangualar

Toeplitz matrices with entries, respectively, tα
i,j =

αi−j

(i− j)!
and tβ

i,j =
βi−j

(i− j)!
, i ≥ j.

We denote by An and Bn the principal submatrices of order n of A and B, respectively.

Let P and R be the infinite vectors

P = [p0(x, y), . . . , pn(x, y), · · · ]T and R = [r0(x, y), . . . , rn(x, y), · · · ]T .

Moreover, for every n ∈ IN, let

Pn = [p0(x, y), . . . , pn(x, y)]T and Rn = [r0(x, y), . . . , rn(x, y)]T . (14)

Proposition 4. The following matrix identities hold:

R = A P, and ∀n ∈ IN Rn = An Pn; (15a)

P = B R, and ∀n ∈ IN Pn = Bn Rn. (15b)

Proof. Identities (15a) follow directly from (11). The relations (15b) follow from (15a).

The identities (15a) are called matrix forms of the bivariate general Appell sequence
and we call A the related associated matrix.

Now, we consider the vectors

R̂ = [r̂0(x, y), . . . , r̂n(x, y), · · · ]T , and, ∀n ∈ IN, R̂n = [r̂0(x, y), . . . , r̂n(x, y)]T .
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From (13) we get

R̂n = Bn Pn, (16a)

Pn = An R̂n. (16b)

By combining (16a) and the second in (15a) we obtain

R̂n = B2
n Rn and Rn =

(
B2

n

)−1
R̂n = A2

n R̂n.

If B2
n =

(
b2

i,j

)
i,j∈IN

and A2
n =

(
a2

i,j

)
i,j∈IN

, we get the inverse formulas

rn(x, y) =
n

∑
j=0

a2
n,j r̂j(x, y), r̂n(x, y) =

n

∑
j=0

b2
n,jrj(x, y).

Remark 4. For the elementary Appell sequence {pn}b
n∈IN with pn given in (10), we observe that

the associated matrix is

A∗ =
(

a∗i,j
)

i,j∈IN
with a∗i,j =

(
i
j

)
,

that is the known Pascal matrix [12]. Hence the inverse matrix is

B∗ =
(

b∗i,j
)

i,j∈IN
with b∗i,j =

(
i
j

)
(−1)i−j.

Then we can obtain the conjugate sequence, { p̂n}b
n∈IN. Therefore, from (16a) and (16b),

we get

p̂n(x, y) =
n

∑
k=0

(
n
k

)
(−1)n−k pk(x, y), (17a)

pn(x, y) =
n

∑
k=0

(
n
k

)
p̂k(x, y). (17b)

If we introduce the vectors

P̂ = [ p̂0(x, y), . . . , p̂i(x, y), · · · ]T , and ∀n ∈ IN, P̂n = [ p̂0(x, y), . . . , p̂n(x, y)]T ,

we get the matrix identities

P = A∗ P̂, and ∀n ∈ IN, Pn = A∗n P̂n,

P̂ = B∗ P, and ∀n ∈ IN, P̂n = B∗n Pn.
(18)

Combining this with (15a) we get

Rn = (An A∗n)P̂n = Cn P̂n, with Cn = An A∗n, (19)

From (19) we have

∀n ∈ IN, rn(x, y) =
n

∑
j=0

cn,j p̂j(x, y) (20)

with cn,j =
n

∑
k=j

(
n
k

)(
k
j

)
αn−k.
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Since the matrix Cn is invertible, we get from (10)

P̂n = C−1
n Rn (21)

that is,

∀n ∈ IN, p̂n(x, y) =
n

∑
j=0

ĉn,jrj(x, y), (22)

with

ĉn,j =
n

∑
k=j

(
n
k

)(
k
j

)
(−1)n−kβk−j, (23a)

ĉn,j =

(
n
j

)
ĉn−j,0 =

(
n
j

)
ĉn−j, with ĉn−j ≡ ĉn−j,0. (23b)

Formulas (20) and (22) are the inverse each other.
In order to determine the generating function of the sequence { p̂n}b

n∈IN we observe that

1
A(t)

=
∞

∑
k=0

βk
tk

k!
, and hence βk = (−1)k.

Consequently, the generating function of { p̂n}b
n∈IN is

G(x, y; t) = e−textφ(y, t). (24)

that is { p̂n}b
n∈IN is an element of A(φ, A).

Proposition 5. For the conjugate sequence { p̂n}b
n∈IN the following identity holds

∀n ∈ IN, p̂n(x, y) =
n

∑
k=0

(
n
k

)
(x− 1)kφn−k(y). (25)

Proof. From (24) and (17a) we get

e−textφ(y, t) =
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
(−1)k pn−k(x, y)

)
tn

n!
. (26)

By applying the Cauchy product of series to the left-hand term in (26), and substitut-
ing (17a) in the right-hand term, we obtain (25).

Corollary 1.

∀n ∈ IN,
n

∑
k=0

(
n
k

)
(−1)k pn−k(x, y) =

n

∑
k=0

(
n
k

)
(x− 1)kφn−k(y). (27)

4. Recurrence Relations

In [35] has been noted that recurrence relations are a very interesting tool for the study
of the polynomial sequences.

Theorem 1 (Recurrence relations). Under the previous hypothesis and notations for the elements
of {rn}b

n∈IN ∈ A(φ, A) the following recurrence relations hold:

r0(x, y) = 1, rn(x, y) = pn(x, y)−
n−1

∑
j=0

(
n
j

)
βn−jrj(x, y), n ≥ 1; (28)
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r0(x, y) = 1, rn(x, y) = p̂n(x, y)−
n−1

∑
j=0

(
n
j

)
ĉn−jrj(x, y), n ≥ 1, (29)

with βk defined as in (12) and ĉk given as in (23b).

Proof. The proof follows easily by identities (15a) and (21).

We call relations (28) and (29), first and second recurrence relations, respectively.

The third recurrence relations can be obtained from the generating function.

Theorem 2 (Third recurrence relation). For the elements of {rn}b
n∈IN ∈ A(φ, A) the following

identity holds: ∀n ≥ 0

rn+1(x, y) = [x + b0 + c0(y)]rn(x, y) +
n−1

∑
k=0

(
n
k

)
[bn−k + cn−k(y)]rk(x, y), (30)

where bk and ck are such that

A′(t)
A(t)

=
∞

∑
k=0

bk
tk

k!
,

φ(0,1)(y, t)
φ(y, t)

=
∞

∑
k=0

ck(y)
tk

k!
. (31)

Proof. Partial differentiation with respect to the variable t in (6) gives[
x +

A′(t)
A(t)

+
φ(0,1)(y, t)

φ(y, t)

]
A(t)extφ(y, t) =

∞

∑
n=1

n rn(x, y)
tn−1

n!
=

∞

∑
n=0

rn+1(x, y)
tn

n!
(32)

Hence we get

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
[bn−k + cn−k(y)]rk(x, y) + xrn(x, y)

)
tn

n!
=

∞

∑
n=0

rn+1(x, y)
tn

n!
,

and from this, relation (30) follows.

The same techniques used previously can be used to derive recurrence relations for
the conjugate sequence. Particularly, the third recurrence relation is similar to (30) by
exchanging bk with dk, k = 0, . . . , n, being dk such that(

A−1(t)
)′

A−1(t)
=

∞

∑
k=0

dk
tk

k!
. (33)

Remark 5. Observe that if
n−2

∑
k=0

(
n
k

)
[bn−k + cn−k(y)]rk(x, y) = 0, the recurrence relation (30)

becomes a three-terms relation.

5. Determinant Forms

The previous recurrence relations provide determinant forms [36,37], which can be
useful for both numerical calculations and new combinatorial identities.

Theorem 3 (Determinant forms). For the elements of {rn}b
n∈IN ∈ A(φ, A) the following

identities hold:
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r0(x, y) = 1, rn(x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p0(x, y) p1(x, y) p2(x, y) · · · pn(x, y)
β0 β1 β2 · · · βn

0 β0 (2
1)β1 · · · (n

1)βn−1
...

. . . . . . . . .
...

...
. . . . . .

...
0 · · · 0 β0 ( n

n−1)β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n > 0. (34)

r0(x, y) = 1, rn(x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p̂0(x, y) p̂1(x, y) p̂2(x, y) · · · p̂n(x, y)
ĉ0 ĉ1 ĉ2 · · · ĉn

0 ĉ0 (2
1)ĉ1 · · · (n

1)ĉn−1
...

. . . . . . . . .
...

...
. . . . . .

...
0 · · · 0 ĉ0 ( n

n−1)ĉ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n > 0. (35)

Proof. For n > 1 relation (28) can be regarded as an infinite lower triangular system in the
unknowns r0(x, y), . . . , rn(x, y), . . .. By solving the first n + 1 equations by Cramer’s rule,
after elementary determinant operations we get (34). Relation (35) follows from (29) by the
same technique.

We note that the determinant forms are Hessenberg determinants. It is known ([19] p. 28)
that Gauss elimination for the calculation of an Hessenberg determinant is stable.

Theorem 4 (Third determinant form). For the elements of {rn}b
n∈IN ∈ A(φ, A) the following

determinant form holds:

r0(x, y) = 1,

rn+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + b0 + c0(y) −1 0 · · · 0
b1 + c1(y) x + b0 + c0(y) −1 · · · 0

...
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . −1
bn + cn(y) (n

1)[bn−1 + cn−1(y)] · · · ( n
n−1)[b1 + c1(y)] x + b0 + c0(y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 0.

(36)

Proof. The result follows from (30) with the same technique used in the previous Theorem.

We point out that the first and second recurrence relations and the determinant
forms (34)–(36) do not appear in the literature. They will be fundamental in the relationship
with linear interpolation.

Remark 6. For the elements of {r̂n}b
n∈IN ∈ A(φ, A) an expression similar to (36) is obtained by

exchanging bk with dk, k = 0, . . . , n, dk being defined as in (33).

Remark 7. For the elements of {pn}b
n∈IN ∈ A(φ, 1), from (17a), we get the recurrence relation

pn(x, y) = p̂n(x, y)−
n−1

∑
k=0

(
n
k

)
(−1)n−k pk(x, y). (37)

By the same technique used in the proof of Theorem 3 we obtain the following determinant form
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p0(x, y) = 1, pn(x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p̂0(x, y) p̂1(x, y) p̂2(x, y) p̂3(x, y) · · · p̂n(x, y)
1 −1 1 −1 · · · (−1)n

0 1 −2 3 · · · (n
1)(−1)n−1

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · · · · 0 1 −( n
n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n > 0. (38)

From (30) we obtain

pn+1(x, y) = x pn(x, y) +
n

∑
k=0

(
n
k

)
cn−k(y)pk(x, y),

where ck are defined as in (31). The related determinant form is

p0(x, y) = 1,

pn+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + c0(y) −1 0 · · · 0
c1(y) x + c0(y) −1 · · · 0

...
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . −1
cn(y) (n

1)cn−1(y) · · · ( n
n−1)c1(y) x + c0(y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 0.

6. Differential Operators and Equations

The elements of a general bivariate Appell sequence satisfy some interesting differen-
tial equations.

Proposition 6. For the elements of {rn}b
n∈IN ∈ A(φ, A) the following identity holds

∀n, k ∈ IN, k < n, rn−k(x, y) =
1

n(n− 1) . . . (n− k + 1)
r(k,0)

n (x, y). (39)

Proof. The proof follows easily after k partial differentiation of (7b) with respect to x.

Theorem 5 (Differential equations). The elements of {rn}b
n∈IN ∈ A(φ, A) satisfy the following

differential equations

βn

n!
∂n

∂xn f (x, y) +
βn−1

(n− 1)!
∂n−1

∂xn−1 f (x, y) + . . . + f (x, y) =
n

∑
i=0

(
n
i

)
xi ϕn−i(y);

ĉn
∂n

∂xn f (x, y) +
n ĉn−1
(n− 1)!

∂n−1

∂xn−1 f (x, y) +
n(n− 1)ĉn−2

2(n− 2)!
∂n−2

∂xn−2 f (x, y) + . . . + f (x, y) =
n

∑
i=0

(
n
i

)
(x− 1)i ϕn−i(y).

Proof. The results follow by replacing relation (39) in the first recurrence relation (28) and
in the second recurrence relation (29), respectively.

Theorem 6. The elements of {pn}b
n∈IN ∈ A(φ, 1) satisfy the following differential equation

(−1)n

n!
∂n

∂xn f (x, y) +
(−1)n−1

(n− 1)!
∂n−1

∂xn−1 f (x, y) + . . . + f (x, y) =
n

∑
i=0

(
n
i

)
(x− 1)i ϕn−i(y).

Proof. The result follows by replacing relation (39) in (27).

We observe that the results in Theorems 5 and 6 are new in the literature.
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In order to make the paper as autonomous as possible, we remind that a polyno-
mial sequence {qn}n∈IN is said to be quasi-monomial if two operators M̃ and P̃, called
multiplicative and derivative operators respectively, can be defined in such a way that

P̃{qn(x)} = nqn−1(x), (40a)

M̃{qn(x)} = qn+1(x). (40b)

If these operators have a differential realization, some important consequences follow:

• differential equation: M̃P̃{qn(x)} = nqn(x);
• it q0(x) = 1, then qn(x) = M̃n{1}, and this yields the series definition for qn(x);

• the exponential generating function of qn(x) is etM̃{1} =
∞

∑
n=0

qn(x)
tn

n!
.

For the general bivariate Appell sequence {rn}b
n∈IN we also have multiplicative and

derivative operators.

Theorem 7 (Multiplicative and derivative operators [24]). For {rn}b
n∈IN ∈ A(φ, A) multi-

plicative and derivative operators are respectively

M̃r = x +
A′(Dx)

A(Dx)
+

φ′(y, Dx)

φ(y, Dx)
, (41a)

P̃r = Dx. (41b)

where φ′(y, t) = φ(0,1)(y, t) and Dx =
∂

∂x
.

Thus the set {rn}b
n∈IN is quasi-monomial under the action of the operators M̃r and P̃r.

Proof. Relations (41a) and (41b) follow from (32) and (4b), respectively [24,38].

Theorem 8 (Differential identity). The elements of a general bivariate Appell sequence {rn}b
n∈IN

satisfy the following differential identity

n

∑
k=0

bk + ck(y)
k!

r(k,0)
n (x, y) + xrn(x, y) ≡ M̃r{rn(x, y)} = rn+1(x, y).

Proof. From (41a) we get the first identity. The second equality follows by (40b), according
to Theorem 7.

Remark 8. The operators (41a) and (41b) satisfy the commutation relation [24] P̃r M̃r− M̃r P̃r = I,
and this shows the structure of a Weyl group.

Remark 9. From Theorem 7 and Remark 8 we get M̃r P̃r{rn(x, y)} = n rn(x, y) that can be
interpreted as a differential equation.

7. General Properties

The general bivariate Appell polynomial sequences satisfy some properties.

Proposition 7 (Binomial identity). Let {rn}b
n∈IN ∈ A(φ, A). The following identity holds

∀n ∈ IN, rn(x1 + x2, y) =
n

∑
k=0

(
n
k

)
rk(x1, y)xn−k

2 . (42)
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Proof. From the generating function

A(t)e(x1+x2)tφ(y, t) = A(t)ex1tφ(y, t)ex2t =
∞

∑
n=0

[
n

∑
k=0

(
n
k

)
rk(x1, y)xn−k

2

]
tn

n!
.

Thus the result follows.

Corollary 2. For n ∈ IN we get

n

∑
k=0

(
n
k

)
rk(x, y)(−x)n−k =

n

∑
k=0

(
n
k

)
αn−k ϕk(y).

Proof. The proof follows from Proposition 7 for x2 = −x1 and x1 = x and from (4c).

Corollary 3 (Forward difference). For n ∈ IN we get

∆xrn(x, y) ≡ rn(x + 1, y)− rn(x, y) =
n−1

∑
k=0

(
n
k

)
rk(x, y).

Remark 10. Proposition 7 suggests us to consider general Appell polynomial sequences with three
variables. In fact, setting in (42) x1 = x, x2 = z and

vn(x, y, z) =
n

∑
k=0

(
n
k

)
rk(x, y)zn−k,

the sequence {vn}n can be consider a general Appell polynomial sequence in three variables.
Analogously, we can consider Appell polynomial sequences in d variables with d ≥ 3.

Proposition 8 (Integration with respect to the variable x). For n ∈ IN we get∫ x

0
rn(t, y)dt =

1
n + 1

[rn+1(x, y)− rn+1(0, y)] (43)

∫ 1

0
pn(x, y)dx =

1
n + 1

n

∑
k=0

(
n + 1

k

)
ϕk(y). (44)

Proof. Relation (43) follows from (4b). The (44) is obtained from (7c), (7b) and Proposition 7
for x1 = 0, x2 = 1.

Proposition 9 (Partial matrix differentiation with respect to the variable x). Let Rn be the
vector defined in (14). Then

R(1,0)
n = D Rn,

where D is the matrix with entries

di,j =

{
i i = j + 1
0 otherwise

i, j = 0, . . . , n.

Proof. The proof follows from (4b).

In order to give an algebraic structure to the setA, we consider two elements {rn}b
n∈IN

and {sn}b
n∈IN. From (11) we get, ∀n ∈ IN,

rn(x, y) =
n

∑
k=0

(
n
k

)
αn−k pk(x, y), sn(x, y) =

n

∑
k=0

(
n
k

)
αn−k pk(x, y).
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That is, An =
(
ai,j
)

i,j≤n with ai,j =

(
i
j

)
αi−j is the associated matrix to {rn}b

n∈IN, and

An =
(
ai,j
)

i,j≤n with ai,j =

(
i
j

)
αi−j is the associated matrix to {sn}b

n∈IN.

Then we define

(rn ◦ sn)(x, y) = rn(sn(x, y)) :=
n

∑
k=0

(
n
k

)
αn−ksk(x, y)

and we set
zr,s

n (x, y) = (rn ◦ sn)(x, y). (45)

Proposition 10 (Umbral composition). The polynomial sequence
{

zr,s
n
}b

n∈IN, with zr,s
n defined

as in (45), is a general bivariate Appell sequence and we call it umbral composition of {rn}b
n∈IN ∈

A(φ, A) and {sn}b
n∈IN ∈ A(φ, A).

Proof. It’s easy to verify that the matrix associated to the sequence
{

zr,s
n
}b

n∈IN is V = A A.
In fact

zr,s
n (x, y) =

n

∑
k=0

(
n
k

)
αn−k

k

∑
i=0

(
k
i

)
αk−i pi(x, y) =

n

∑
k=0

(
n
k

)
vn,k pk(x, y)

with vn,k =
n−k

∑
i=0

(
n− k

i

)
αn−i−kαi.

Moreover V is an Appell-type matrix [19]. In fact

V = D1TαD−1
1 D1TαD−1

1 = D1TαTαD−1
1 .

The set A(φ, A) with the umbral composition operation is an algebraic structure
(A(φ, A), ◦).

Let (L, ·) be the group of infinite, lower triangular matrix with the usual prod-
uct operation.

Proposition 11 (Algebraic structure). The algebraic structure (A(φ, A), ◦) is a group isomor-
phic to (L, ·).

Proof. We have observed that A(φ, A) is an algebraic structure. Then we have

(i) the elementary Appell sequence {pn}b
n∈IN is the identity in (A(φ, A), ◦).

(ii) for every {rn}b
n∈IN ∈ A(φ, A) the conjugate sequence {r̂n}b

n∈IN is its inverse.

Remark 11. Given λ, µ ∈ IR, with (λ, µ) 6= (0, 0), if {rn}b
n∈IN and {sn}b

n∈IN are two elements
of A(φ, A), the sequence {λrn + µsn}b

n∈IN is also an element of A(φ, A). Hence the algebraic
structure (A(φ, A), ◦,+, ·) is an algebra on IK(IR or IC).

8. Relations with Linear Functional and Linear Interpolation

Let {pn}b
n∈IN ∈ A(φ, 1). We consider the set of polynomials

Sn = span{p0, . . . , pn | n ∈ IN}.

where pi, i = 0, . . . , n, are defined as in (10). Let L be a linear functional on S∗n . If we set

L(pk) = βk, k = 0, . . . , n, β0 = 1, βk ∈ IR, k ≥ 1, ∀pk ∈ S ,
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we can consider the general bivariate Appell polynomial sequence inA(φ, A) as in (34) and

we call it the polynomial sequence related to the functional L. We denote it by
{

rL,p
n

}b

n∈IN
.

Now we define the n + 1 linear functionals Li, i = 0, . . . , n, in S∗n as

L0(pk) = L(pk) = βk, Li(pk) = L
(

p(i,0)k

)
= i!

(
k
i

)
βk−i, i = 1, . . . , k, k = 0, . . . , n,

where in the second relation we have applied (7b).

Theorem 9. For the elements of the bivariate general Appell sequence
{

rL,p
n

}b

n∈IN
the following

identity holds
Li

(
rL,p

n

)
= n!δni, i = 0, . . . , n,

where δni is the known Kronecker symbol.

Proof. The proof follows from the first determinant form (Theorem 3).

Corollary 4. The bivariate general Appell polynomial sequence
{

rL,p
n

}b

n∈IN
is the solution of the

following general linear interpolation problem on Sn

Li(zn) = n!δni, i = 0, . . . , n, zn ∈ Sn.

Proof. The proof follows from Theorem 9 and the known theorems on general linear
interpolation problem [39] since Li, i = 0, . . . , n, are linearly independent functionals.

Theorem 10 (Representation theorem). For every zn ∈ Sn the following relation holds

zn(x, y) =
n

∑
k=0

L
(

z(k,0)
n

) rL,p
k (x, y)

k!
.

Proof. The proof follows from Theorem 9 and the previous definitions.

9. Some Bivariate Appell Sequences

In order to illustrate the previous results, we construct some two variables Appell
sequences. As we have shown, to do this, for each sequence we need two power series
A(t) and φ(y, t), where y is considered as a parameter.

Example 2. Let φ(y, t) = eyt. There are several choices for A(t).

(1) A(t) = 1.
In this case, the elementary bivariate Appell sequence is the classical bivariate monomials.
These polynomials are known in the literature also as Hermite polynomials in two variables
and denoted by H(1)

n (x, y) [40,41]:

H(1)
n (x, y) = (x + y)n.

Figure 1 provides the graphs of the first four polynomials.
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(a) H(1)
1 (b) H(1)

2

(c) H(1)
3 (d) H(1)

4

Figure 1. Plot of H(1)
i , i = 1, . . . , 4, in [−1, 1]× [−1, 1].

The matrix form is obtained by using the known Pascal matrix [34].
From (25) we get the conjugate sequence

Ĥ(1)
n (x, y) =

n

∑
k=0

(
n
k

)
(x− 1)n−kyk = [(x− 1) + y]n,

hence, from (17a) and (17b), the inverse relations are

(x + y)n =
n

∑
k=0

(
n
k

)
[(x− 1) + y]k (46a)

[(x− 1) + y]n =
n

∑
k=0

(
n
k

)
(−1)n−k(x + y)k. (46b)

Note that from (46a) and (46b) we obtain the basic relations for binomial coefficients ([42] p. 3).
From (46b) we get the second recurrence relation

(x + y)n = (x + y− 1)n −
n−1

∑
j=0

(
n
j

)
(−1)n−j(x + y)j, n ≥ 1.

and the related determinant form for n > 0

(x + y)n = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x + y− 1 (x + y− 1)2 · · · (x + y− 1)n

1 −1 1 · · · (−1)n

0 1 −2 · · · (−1)n−1n
...

. . .
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 1 −n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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From this we can derive many identities. For example, for n > 0,

1 = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 1 −1 · · · (−1)n

1 −2 · · · · · · (−1)n−1n
...

. . .
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 1 −n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and

xn = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x− 1 (x− 1)2 · · · (x− 1)n

1 −1 1 · · · (−1)n

0 1 −2 · · · (−1)n−1n
...

. . .
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 1 −n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2) A(t) =
t

et − 1
.

It is known ([19] p. 107) that this power series generates the univariate Bernoulli polynomials.
Hence, directly from (11) we obtain a general bivariate Appell sequence which we call natural
bivariate Bernoulli polynomials and denote it by {Bn}b

n∈IN, where

Bn(x, y) =
n

∑
k=0

(
n
k

)
Bn−k(x)yk =

n

∑
k=0

(
n
k

)
(x + y)kBn−k. (47)

Bj(x) and Bj are, respectively, the Bernoulli polynomial of degree j and the j-th Bernoulli
number ([19] p. 109).
We note that

Bn(x, 0) = Bn(x), Bn(0, 0) = Bn, n ≥ 1.

From the second equality in (47) and the known properties of Bernoulli polynomials ([19] p. 109)
we have

Bn(x, y) = Bn(x + y), n ≥ 1.

The first natural bivariate Bernoulli polynomials are

B0(x, y) = 1, B1(x, y) = x + y− 1
2

, B2(x, y) = (x + y)2 − (x + y) +
1
6

,

B3(x, y) = (x + y)3 − 3
2
(x + y)2 +

1
2
(x + y),

B4(x, y) = (x + y)4 − 2(x + y)3 + (x + y)2 − 1
30

.

Figure 2 shows the graphs of the first four polynomials Bi, i = 1, . . . , 4.
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(a) B1 (b) B2

(c) B3 (d) B4

Figure 2. Plot of Bi, i = 1, . . . , 4, in [−1, 1]× [−1, 1].

From (11), (12) and (47) we get αk = Bk and βk =
1

k + 1
, k = 0, 1, . . .

Therefore the first recurrence relation is

B0(x, y) = 1, Bn(x, y) = (x + y)n −
n−1

∑
j=0

(
n
j

) Bj(x, y)
n− j + 1

, n ≥ 1.

The related determinant form for n > 0 is

Bn(x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x + y (x + y)2 (x + y)3 · · · (x + y)n

1 1
2

1
3

1
4 · · · 1

n+1

0 1 1 1 · · · 1
0 0 1 3

2 (n
2)

1
n−1

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · · · · 0 1 n

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (48)

For the coefficients of
A′(t)
A(t)

=
∞

∑
k=0

bk
tk

k!
we find b0 = B1, bk = − Bk+1

k + 1
, k ≥ 1. Moreover,

c0(y) = y, ck(y) = 0, k ≥ 1. Hence the third recurrence relation is

Bn+1(x, y) =
(

x + y− 1
2

)
Bn(x, y)−

n−1

∑
k=1

(
n
k

)
Bk+1
k + 1

Bn−k(x, y).
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The related determinant form for n > 0 is

Bn+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− 1
2 + y −1 0 · · · · · · 0
− 1

2 x− 1
2 + y −1 · · · · · · 0

− B3
3

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . −1
− Bn+1

n+1 −(n
1)

Bn
n · · · · · · −( n

n−1)
1
2 x− 1

2 + y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(3) A(t) =
2

et + 1
.

This power series generates the univariate Euler polynomials ([19] p. 123). Hence, directly
from (11) we obtain a general bivariate Appell sequence which we call natural bivariate Euler
polynomials and denote it by {En}b

n∈IN, where

En(x, y) =
n

∑
k=0

(
n
k

)
En−k(x)yk =

n

∑
k=0

(
n
k

)
(x + y)kEn−k(0). (49)

Ej(x) is the Euler polynomial of degree j ([19] p. 124).
We note that

En(x, 0) = En(x), n ≥ 1,

and
En(x, y) = En(x + y), n ≥ 1.

The first natural bivariate Euler polynomials are

E0(x, y) = 1, E1(x, y) = x + y− 1
2

, E2(x, y) = (x + y)2 − (x + y),

E3(x, y) = (x + y)3 − 3
2
(x + y)2 +

1
4

, E4(x, y) = (x + y)4 − 2(x + y)3 + x + y.

Figure 3 shows the graphs of the first four polynomials Ei, i = 1, . . . , 4.

(a) E1 (b) E2

(c) E3 (d) E4

Figure 3. Plot of Ei, i = 1, . . . , 4, in [−1, 1]× [−1, 1].
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From (11), (12) and (49) we get αk = Ek(0), hence ([19] p. 124) β0 = 1 and βk =
1
2

, k ≥ 1.
Therefore the first recurrence relation is

E0(x, y) = 1, En(x, y) = (x + y)n − 1
2

n−1

∑
j=0

(
n
j

)
Ej(x, y), n ≥ 1.

The related determinant form for n > 0 is

En(x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x + y (x + y)2 · · · (x + y)n

1 1
2

1
2 · · · 1

2

0 1 1
2 (

2
1) · · · 1

2 (
n
1)

...
. . .

. . .
. . .

...
...

. . .
. . .

...
0 · · · 0 1 1

2 (
n

n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For the coefficients of the power series
A′(t)
A(t)

=
∞

∑
k=0

bk
tk

k!
we find b0 = −1

2
, bk = −Ek(0)

2
,

k ≥ 1. Hence the third recurrence relation becomes

En+1(x, y) =
(

x + y− 1
2

)
En(x, y) +

1
2

n−1

∑
k=1

(
n
k

)
En−k(0)Ek(x, y).

The related determinant form for n > 0 is

En+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− 1
2 + y −1 0 · · · 0

− E1(0)
2 x− 1

2 + y −1 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . −1
− En(0)

2 −(n
1)

En−1(0)
2 · · · −( n

n−1)
E1(0)

2 x− 1
2 + y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For other choices of A(t) we proceed in a similar way.

Example 3. Let φ(y, t) = eyt2
. We can consider the power series A(t) as in the previous example.

(1) A(t) = 1.
In this case we obtain the Hermite-Kampé de Fériet polynomials. They are denoted by
H(2)

n (x, y), n ≥ 0 [23,28,40]. From (9) we get

H(2)
n (x, y) = n!

b n
2 c

∑
k=0

xn−2kyk

k!(n− 2k)!
.

The first polynomials are:

H(2)
0 (x, y) = 1, H(2)

1 (x, y) = x, H(2)
2 (x, y) = x2 + 2y,

H(2)
3 (x, y) = x3 + 6xy, H(2)

4 (x, y) = x4 + 12x2y + 12y2.

Their graphs are displayed in Figure 4.
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(a) H(2)
1 (b) H(2)

2

(c) H(2)
3 (d) H(2)

4

Figure 4. Plot of H(2)
i , i = 1, . . . , 4, in [−1, 1]× [−1, 1].

Particular cases are

(a) H(2)
n

(
x,−1

2

)
= He

n(x), known as probabilistic Hermite univariate polynomials [19]

(p. 134);
(b) H(2)

n (2x,−1) = Hn(x), known as physicist Hermite or simply Hermite polynomials [19]
(p. 134);

(c) H(2)
n (x, 0) = xn;

(d) H(2)
n (0, y) = sn(y) =


n!( n
2
)
!
y

n
2 n even

0 n odd.
From (13) we obtain the conjugate sequence

Ĥ(2)
n (x, y) = n!

b n
2 c

∑
k=0

(x− 1)n−2kyk

k!(n− 2k)!
,

and the second recurrence relation:

H(2)
n (x, y) = Ĥ(2)

n (x, y)−
n−1

∑
j=0

(
n
j

)
(−1)n−jH(2)

j (x, y), n ≥ 1.

The related determinant form for n > 0 is

H(2)
n (x, y) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ĥ(2)
0 (x, y) Ĥ(2)

1 (x, y) Ĥ(2)
2 (x, y) · · · Ĥ(2)

n (x, y)
1 −(1

0) (2
0)(−1)2 · · · (n

0)(−1)n

0 1 −(2
1) · · · (n

1)(−1)n−1

...
. . .

. . .
. . .

...
...

. . .
. . .

...
0 · · · 0 1 −( n

n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (50)
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From (50) for x = 1 and n > 0 we have

n!
b n

2 c

∑
k=0

yk

k!(n− 2k)!
= (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 s1(y) s2(y) · · · sn(y)
1 −(1

0) (2
0)(−1)2 · · · (n

0)(−1)n

0 1 −(2
1) · · · (n

1)(−1)n−1

...
. . .

. . .
. . .

...
...

. . .
. . .

...
0 · · · 0 1 −( n

n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (51)

Observe that
φ(0,1)(y, t)

φ(y, t)
= 2yt. Therefore the third recurrence relation becomes

H(2)
n+1(x, y) = x H(2)

n (x, y) + 2nyH(2)
n−1(x, y).

The related determinant form for n > 0 is

H(2)
n (x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 · · · 0
2y x −1 · · · 0

. . .
. . .

. . .
...

. . .
. . . −1

· · · 2y( n
n−1) x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

To the best of authors knowledge the first recurrence relation, the first determinant form and
the last determinant form are new.
For x = 1 and n > 0 we get the identity

n!
b n

2 c

∑
k=0

yk

k!(n− 2k)!
= (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 · · · 0
2y 1 −1 · · · 0

. . .
. . .

. . .
...

. . .
. . . −1

· · · 2y( n
n−1) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

From the comparison with (51) the following identity is obtained:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 s1(y) s2(y) · · · sn(y)
1 −(1

0) (2
0)(−1)2 · · · (n

0)(−1)n

0 1 −(2
1) · · · (n

1)(−1)n−1

...
. . .

. . .
. . .

...
...

. . .
. . .

...
0 · · · 0 1 −( n

n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 · · · 0
2y 1 −1 · · · 0

. . .
. . .

. . .
...

. . .
. . . −1

· · · 2y( n
n−1) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The Hermite-Kampé de Fériet polynomials H(2)
n (x, y) satisfy the following differential equations

1.
(−1)n

n!
∂n

∂xn f (x, y) + · · ·+ f (x, y) =
b n

2 c

∑
k=0

n! (x− 1)n−2kyk

k!(n− 2k)!
;

2.
∂

∂y
H(2)

n (x, y) =
∂2

∂x2 H(2)
n (x, y) (heat equation);

3.
(

2y
∂2

∂x2 + x
∂

∂x
− n

)
H(2)

n (x, y) = 0.

(2) A(t) =
t

et − 1
.
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In this case we get the bivariate Appell sequence whose elements can be called Bernoulli–
Hermite–Kampé de Fériet polynomials and denoted by KB

n .
From (6) and (11) we obtain

KB
n (x, y) =

n

∑
k=0

(
n
k

)
Bn−k(x)ϕk(y) =

n

∑
k=0

(
n
k

)
H(2)

k (x, y)Bn−k,

with

ϕk(y) =
wkk!
b k

2c!
yb

k
2 c, being wk =

{
1 even k
0 odd k.

(52)

The first bivariate Bernoulli–Hermite–Kampé de Fériet polynomials are

KB
0 (x, y) = 1, KB

1 (x, y) = x− 1
2

, KB
2 (x, y) = x2 − x + 2y +

1
6

,

KB
3 (x, y) = x3 − 3

2
x2 +

1
2

x− 3y + 6xy,

KB
4 (x, y) = x4 − 2x3 + x2 + 2y− 12xy + 12x2y + 12y2 − 1

30
.

Their graphs are in Figure 5.

(a) KB
1 (b) KB

2

(c) KB
3 (d) KB

4

Figure 5. Plot of KB
i , i = 1, . . . , 4, in [−1, 1]× [−1, 1].

In this case we observe that KB
n (x, 0) = Bn(x).

The first recurrence relation is

KB
0 (x, y) = 1, KB

n (x, y) = Hn(x, y)−
n−1

∑
j=0

(
n
j

)KB
j (x, y)

n− j + 1
, n ≥ 1.

The related determinant form is obtained from (48) by replacing (x + y)k by H(2)
k (x, y),

k = 0, . . . , n.
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As we observed, for φ(y, t) = eyt2
, c0(y) = 0, c1(y) = 2y, ck(y) = 0, k ≥ 2. Moreover, as in

the Example 2, case 2), b0 = B1, bk = −
Bk+1
k + 1

, k ≥ 1. Hence the third recurrence relation is

KB
n+1(x, y) =

(
x− 1

2

)
KB

n (x, y) + n
(

2y− 1
12

)
KB

n−1(x, y)−
n−2

∑
k=1

(
n
k

)
Bn−k+1

n− k + 1
KB

k (x, y).

The related determinant form for n > 0 is

KB
n+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− 1
2 −1 0 · · · · · · 0

2y− 1
2 x− 1

2 −1 · · · · · · 0

− B3
3

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . −1

− Bn+1
n+1 −(n

1)
Bn
n · · · · · · ( n

n−1)
(

2y− 1
2

)
x− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(3) A(t) =
2

et + 1
.

In this case we get the bivariate Appell sequence whose elements can be called Euler–Hermite–
Kampé de Fériet polynomials and denoted by KE

n .

KE
n (x, y) =

n

∑
k=0

(
n
k

)
En−k(x)ϕk(y) =

n

∑
k=0

(
n
k

)
H(2)

k (x, y)En−k(0).

with ϕk(y) as in (52).

The first polynomials of the sequence
{
KE

n
}b

n∈IN are

KE
0 (x, y) = 1, KE

1 (x, y) = x− 1
2

, KE
2 (x, y) = x2 − x + 2y,

KE
3 (x, y) = x3 − 3

2
x2 − 3y + 6xy +

1
4

, KE
4 (x, y) = x4 − 2x3 + 12x2y− 12xy + 12y2 + x.

Their graphs are in Figure 6.

(a) KE
1 (b) KE

2

(c) KE
3 (d) KE

4

Figure 6. Plot of KE
i , i = 1, . . . , 4, in [−1, 1]× [−1, 1].
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Since αk = Ek(0), k = 0, . . . , n, from (12) we get β0 = 1, βk =
1
2

, k = 1, . . . , n. Therefore,
the first recurrence relation is

KE
0 (x, y) = 1, KE

n (x, y) = H(2)
n (x, y)− 1

2

n−1

∑
j=1

(
n
j

)
KE

j (x, y), n ≥ 1.

Since in this case b0 = −1
2

, bk =
Ek(0)

2
, k ≥ 1, the third recurrence relation is

KE
n+1(x, y) =

(
x− 1

2

)
KE

n (x, y) + n
(

2y− 1
4

)
KE

n−1(x, y) +
1
2

n−2

∑
k=0

(
n
k

)
En−k(0)KE

k (x, y).

The related determinant form for n > 0 is

KE
n+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + y− 1
2 −1 0 · · · 0

E1(0)
2 x + y− 1

2 −1 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . −1
En(0)

2 (n
1)

En−1(0)
2 · · · ( n

n−1)
E1(0)

2 x + y− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Example 4. Let φ(y, t) =
1

1− yt
.

(1) A(t) = 1.

Being φ(y, t) =
∞

∑
k=0

k!yk tk

k!
, from (10) we get the elementary bivariate Appell sequence

pn(x, y) =
n

∑
k=0

n!
k!

xkyn−k,

and from (25) the conjugate sequence

p̂n(x, y) =
n

∑
k=0

n!
k!
(x− 1)kyn−k.

The first polynomials of the sequence {pn}b
n∈IN are

p0(x, y) = 1, p1(x, y) = x + y, p2(x, y) = x2 + 2xy + 2y2,

p3(x, y) = x3 + 3x2y + 6xy2 + 6y3, p4(x, y) = x4 + 4x3y + 12x2y2 + 24xy3 + 24y4.

Their graphs are in Figure 7.

(a) p1 (b) p2

Figure 7. Cont.
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(b) p3 (c) p4

Figure 7. Plot of polynomials pi, i = 1, . . . , 4, in [−1, 1]× [−1, 1].

For pn(x, y) relations (37) and (38) hold. Furthermore, since
φ(0,1)(y, t)

φ(y, t)
=

y
1− yt

, then

ck(y) = k! yk+1, k ≥ 0. Hence, from Remark (7), for n > 0

pn+1(x, y) = x pn(x, y) + n!
n

∑
k=0

yk+1

(n− k)!
pn−k(x, y),

and

pn+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + y −1 0 · · · 0
y2 x + y −1 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
...

. . .
. . . −1

n!yn+1 (n
1)(n− 1)!yn · · · ( n

n−1)y
2 x + y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2) A(t) =
t

et − 1
.

In this case we obtain

rB
n (x, y) =

n

∑
k=0

n!
k!

Bk(x)yn−k.

We note that
rB

n (x, 0) = Bn(x), rB
n (0, 0) = Bn, n ≥ 1,

Moreover, αk = Bk and from (12) βk =
1

k + 1
, k = 0, 1, . . .

Hence the first recurrence relation is

rB
0 (x, y) = 1, rB

n (x, y) = pn(x, y)−
n−1

∑
j=0

(
n
j

) rB
j (x, y)

n− j + 1
, n ≥ 1,

and the conjugate sequence is

r̂B
n (x, y) =

n

∑
k=0

n!
k!(n− k + 1)!

pk(x, y).

The first polynomials of the sequence
{

rB
n
}b

n∈IN are

rB
0 (x, y) = 1, rB

1 (x, y) = −1
2
+ x + y, rB

2 (x, y) =
1
6
− x + x2 − y + 2xy + 2y2,

rB
3 (x, y) =

x
2
− 3

2
x2 + x3 +

y
2
− 3xy + 3x2y− 3y2 + 6xy2 + 6y3,

rB
4 (x, y) = − 1

30
+ x2 − 2x3 + x4 + 2xy− 6x2y + 4x3y + 2y2 − 12xy2

+12x2y2 − 12y3 + 24xy3 + 24y4.
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Their graphs are in Figure 8.

(a) rB
1 (b) rB

2

(c) rB
3 (d) rB

4
Figure 8. Plot of rB

i , i = 1, . . . , 4, in [−1, 1]× [−1, 1].

As in the case (2) of the previous Examples, b0 = B1, bk = −
Bk+1
k + 1

, k ≥ 1. Hence the third

recurrence relation is

rB
n+1(x, y) =

(
x + y− 1

2

)
rB

n (x, y) + n!
n−1

∑
k=0

(
yn−k+1 − Bn−k+1

(n− k + 1)!

)
rB

k (x, y)
k!

.

The related determinant form for n > 0 is

rB
n+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x + y− 1
2 −1 0 · · · 0

b1 + y2 x + y− 1
2 −1 · · · 0

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . −1
bn + n!yn+1 (n

1)(bn−1 + (n− 1)!yn) · · · ( n
n−1)

(
b1 + y2) x + y− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(3) A(t) =
2

et + 1
. In this case we obtain

rE
n (x, y) =

n

∑
k=0

n!
k!

Ek(x)yn−k.

The first polynomials of the sequence
{

rE
n
}b

n∈IN are

rE
0 (x, y) = 1, rE

1 (x, y) = −1
2
+ x + y, rE

2 (x, y) = −x + x2 − y + 2xy + 2y2,

rE
3 (x, y) =

1
4
− 3

2
x2 + x3 − 3xy + 3x2y− 3y2 + 6xy2 + 6y3,

rE
4 (x, y) = x− 2x3 + x4 + y− 6x2y + 4x3y− 12xy2 + 12x2y2 − 12y3 + 24xy3 + 24y4.

Their graphs are in Figure 9.
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(a) rE
1 (b) rE

2

(c) rE
3 (d) rE

4
Figure 9. Plot of rE

i , i = 1, . . . , 4, in [−1, 1]× [−1, 1].

Moreover, since β0 = 1, βk =
1
2

, k = 1, . . . , n, the first recurrence relation is

rE
0 (x, y) = 1, rE

n (x, y) =
n

∑
j=0

n!
j!

xjyn−j − 1
2

n−1

∑
j=0

(
n
j

)
rE

j (x, y), n ≥ 1,

and the conjugate sequence is

r̂E
n (x, y) =

1
2

n

∑
k=0

(
n
k

)
pk(x, y).

As in the case (3) of the previous Examples, b0 = −1
2

, bk =
Ek(0)

2
, k ≥ 1. Hence the third

recurrence relation is

rE
n+1(x, y) =

(
x + y− 1

2

)
rE

n (x, y) +
n−1

∑
k=0

(
n
k

)(
(n− k)!yn−k+1 +

En−k(0)
2

)
rE

k (x, y).

The related determinant form for n > 0 is

rE
n+1(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x + y− 1
2 −1 0 · · · 0

y2 + E1(0)
2 x + y− 1

2 −1 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . −1

n!yn+1 + En(0)
2 (n

1)
(
(n− 1)!yn + En−1(0)

2

)
· · · ( n

n−1)
(

y2 + E1(0)
2

)
x + y− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Remark 12. In [29,30] the authors introduced the functions φ(y, t) = cos yt, φ(y, t) = sin yt.
They studied the related elementary sequences and respectively the Bernoulli and Genocchi sequences
but matricial and determinant forms are not considered. Most of their results are a consequence of
our general theory.
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10. Concluding Remarks

In this work, an approach to general bivariate Appell polynomial sequences based on
elementary matrix calculus has been proposed.

This approach, which is new in the literature [3,22,24,27,28], generated a systematic,
simple theory. It is in perfect analogy with the theory in the univariate case (see [19] and
the references therein). Moreover, our approach provided new results such as recurrence
formulas and related differential equations and determinant forms. The latter are useful
both for numerical calculations and for theoretical results, such as combinatorial identities
and biorthogonal systems of linear functionals and polynomials. In particular, after some
definitions, the generating function for a general bivariate Appell sequence is given. Then
matricial forms are considered, based on the so called elementary bivariate Appell polyno-
mial sequences. These forms provide three recurrence relations and the related determinant
forms. Differential definitions and recurrence relations generate differential equations. For
completeness of discussion the multiplicative and derivatives differential operators are
hinted. A linear functional on Sn = span{p0, . . . , pn | n ∈ IN} is considered. It generates a
general bivariate Appell sequence. Hence, an interesting theorem on representation for
any polynomial belonging to Sn is established. Finally, some examples of general bivariate
Appell sequences are given.

Further developments are possible. In particular, the extension of the considered linear
functional to a suitable class of bivariate real functions and the related Appell interpolant
polynomial. These interpolant polynomials can be applied not only as an approximant of a
function, but also to generate new cubature and summation formulas. It would also be
interesting to consider the bivariate generating functions for polynomials.
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