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Abstract: Let (t(r)n )n≥0 be the sequence of the generalized Fibonacci number of order r, which is

defined by the recurrence t(r)n = t(r)n−1 + · · ·+ t(r)n−r for n ≥ r, with initial values t(r)0 = 0 and t(r)i = 1,

for all 1 ≤ i ≤ r. In 2002, Grossman and Luca searched for terms of the sequence (t(2)n )n, which are
expressible as a sum of factorials. In this paper, we continue this program by proving that, for any
` ≥ 1, there exists an effectively computable constant C = C(`) > 0 (only depending on `), such that,
if (m, n, r) is a solution of t(r)m = n! + (n + 1)! + · · ·+ (n + `)!, with r even, then max{m, n, r} < C.
As an application, we solve the previous equation for all 1 ≤ ` ≤ 5.

Keywords: diophantine equation; factorial; fibonacci r-numbers; 2-adic valuation
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1. Introduction

We recall that the factorial of an integer n ≥ 1, denoted by n!, is the product ∏n
j=1 j.

Along the years, several authors have considered Diophantine problems involving factorial
numbers. For instance, Erdős and Selfridge [1] proved that 1 is the only perfect power in
the sequence of factorials. However, the most famous and calssical among such problems
was raised by Brocard [2], in 1876, and, independently, by Ramanujan [3,4] (p. 327 in
ref. [4]), in 1913. The Diophantine equation

n! + 1 = m2,

in positive integers m and n, is known as Brocard–Ramanujan Diophantine equation.
There are three solutions, namely, (n, m) = (4, 5), (5, 11), and (7, 71), and no solution

was found for 7 < n < 109 (as can be see in [5]). In fact, the Brocard–Ramanujan equation
remains still as an open problem.

Let (Fn)n≥0 be the Fibonacci sequence that is given by F0 = 0, F1 = 1 and Fn+2 =
Fn+1 + Fn, for n ≥ 0. There are also several interesting problems related to Fibonacci
numbers (for recent results, we refer the reader to [6,7] and references therein). For instance,
the problem of the perfect powers in the Fibonacci sequence attracted much attention
during some past decades. In 2003, Bugeaud et al. ([8] Theorem 1) confirmed the expecta-
tion, that 0, 1, 8, and 144 are the only perfect powers among (Fn)n≥0. A generalization (for
Fibonomial coefficients) of this result can be found in [9]. We still refer the reader to [8] for
additional references and history.

Many mathematicians have been interested in Diophantine problems that involve both
Fibonacci and factorial numbers. For instance, in 1999, Luca [10] proved that F12 = 2!2!3!3!
is the largest Fibonacci number which can be written as a product of factorials. Additionally,
F1F2F3F4F5F6F8F10F12 = 11! is the largest product of distinct Fibonacci numbers, which is a
product of factorials (see [11]).

Moreover, Grossman and Luca [12] showed that, for any given ` ≥ 1, there are only
finitely many positive integers n, such that
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Fn = m1! + m2! + · · ·+ m`!

holds for some m1, m2, . . . , m` ∈ Z≥1. Moreover, they determined all of the solutions for
` ∈ {1, 2}. In 2010, the case ` = 3 was completely solved in [13] (for the inverse problem,
i.e., factorials that are written as sum of a given number of Fibonacci numbers, we refer the
reader to [14] and the references therein).

As any very well-studied object in mathematics, the Fibonacci sequence possesses
many kinds of generalizations. The most well-known generalization is probably the so-
called k-generalized Fibonacci sequence (or the sequence of the k-bonacci numbers), which
is defined for n ≥ 2 by the kth order recurrence

F(k)
n = F(k)

n−1 + · · ·+ F(k)
n−k, with F(k)

−(k−2) = · · · = F(k)
0 = 0 and F(k)

1 = 1.

Some interesting features of the sequence (F(k)
n )n we can find, e.g., in [15–19]. Here, we

are interested in a sequence (t(r)n )n≥0 with the same recurrence relation, but with modified
initial conditions. This sequence is called generalized Fibonacci numbers of order r and it
is defined by

t(r)n =


0, if n = 0;
1, if 1 ≤ n ≤ r− 1;

∑r
i=1 t(r)n−i, if n ≥ r.

For r = 2, we have the sequence of Fibonacci numbers and, for r = 3, we have the
Tribonacci numbers.

We remark that the equation Fm = n! may be solved by a direct application of the
Carmichael Theorem about primitive divisors in the Fibonacci sequence (which asserts that
for any n > 12, there exists a prime number p, such that p | Fn, but p - ∏n−1

i=1 Fi). However,
there is no such a result for Tribonacci numbers. Thus, Lengyel and Marques [20] provided
a complete description for the 2-adic valuation ν2(t

(3)
n ) (where νp(s) := max{k ≥ 0 : pk | s})

in order to solve the equation t(3)n = m!. After that, some authors generalized their results
for ν2(t

(r)
n ) (see [21,22]). In particular, Sobolewski [21] completely characterized ν2(t

(r)
n ),

for all n ≥ 1 and r ≥ 4 with r even.
In this paper, we search for terms of a generalized Fibonacci sequence of order r,

which can be written as a sum of consecutive factorial numbers. In particular, we provide
an explicit constant (depending only on the number of factorials), which is an upper bound
for the number of the possible solutions. More precisely, we have

Theorem 1. Let ` be a positive integer and let (n, m, r) ∈ Z3
≥1 be a solution of the Diophantine

equation
t(r)m = n! + (n + 1)! + · · ·+ (n + `)!, (1)

with m > r ≥ 2 even. We have

(a) For n ≤ 3, it holds that

(i) If m ≤ 2r, then either (n, m, r, `) ∈ {(1, 4, 2, 1), (1, 60, 56, 5)} or

(n, m, r, `) =

(
3, 2 +

1
2

`+3

∑
j=3

j!, 1 +
1
2

`+3

∑
j=3

j!, `

)
, (2)

where ` is any positive integer.

(ii) If m > 2r, then
m < 7.1(`+ 4) log(`+ 3).
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(b) For n ≥ 4, it holds that

n < 2 log((`+ 1) log(`+ 1)) + 105, m < 6(n + `+ 1) log(n + `) and r ≤ m− 2
2

.

As an application of the previous result, we found all solutions of (1) for some cases
of `. Actually, we prove that

Theorem 2. All of the solutions of the Equation (1) for positive integers n, m, r and `, with r ≡ 0
(mod 2), m > r ≥ 2, and ` ≤ 5 are

(n, m, r, `) ∈ {(1, 4, 2, 1), (1, 60, 56, 5), (2, 6, 2, 1), (2, 10, 4, 3), (3, 17, 16, 1), (3, 77, 76, 2),

(3, 437, 436, 3), (3, 2957, 2956, 4), (3, 23117, 23116, 5), (4, 12, 2, 1)}.

We organize this paper, as follows. In Section 2, we will present some helpful proper-
ties of the sequence (t(r)n )n. The third section is devoted to the proof of
Theorems 1 and 2. The computations of this paper will be performed by using the Wolfram
Mathematica software.

2. Auxiliary Results

Before proceeding further, some considerations will be needed for the convenience of
the reader.

The characteristic polynomial of the sequence (t(r)n )n is ψk(x) = xr− xr−1− · · ·− x− 1,
which has only one root outside the unit circle, say α, which is located in the interval
(2(1− 2−r), 2) (see [23]). Furthermore, one can deduce from ([21] Lemma 4) that

Lemma 1. For all n ≥ 1, we have

t(r)n > αn−r−1.

In particular, t(r)n > (
√

2)n−r−1, for all n ≥ 1.

The last inequality follows because α > 2− 1/2r−1 ≥ 2− 1/2 = 3/2 >
√

2 (for all
r ≥ 2).

Another very useful tool is related to the p-adic order (recall that the p-adic order,
or valuation, of s, νp(s), is the exponent of the highest power of a prime p, which divides
s). An explicit formula for νp(Fn) was provided, see [24–27]. In particular, Lengyel [25]
showed that

Lemma 2. We have that

ν2(Fn) =


0, for n ≡ 1, 2 (mod 3);
1, for n ≡ 3 (mod 6);

ν2(n) + 2, for n ≡ 0 (mod 6).

In 2014, Lengyel and Marques [20] characterized ν2(t
(3)
n ) and, recently, Sobolewsky [21]

and Young [22] worked on a description of ν2(t
(r)
n ), for even and odd r, respectively. In par-

ticular, the case in which r is even was completely solved:

Lemma 3. For r = 2k ≥ 4, we have that

ν2(t
(r)
n ) =


0, for n ≡ 1, 2, . . . , 2k (mod 2k + 1);
1, for n ≡ 2k + 1 (mod 2(2k + 1));
ν2(n) + ν2(k− 1) + 2, for n ≡ 0 (mod 2(2k + 1)).
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Remark 1. We remark that the ν2(t
(r)
n ) is not completely characterized for r ≥ 5 odd. In fact,

the only missing case happens if n ≡ r + 1 (mod 2r + 2) and ν2(n− r− 1) = ν2(r2− 1). Indeed,
Young [22] showed that, in this case, ν2(t

(r)
n ) = ν2(z− (n− r− 1)/(2r + 2)) + 2, for some 2-adic

integer z. As will be seen after, the proof of Theorem 1 only requires an upper bound for ν2(t
(r)
n ),

but there is no a direct tool for providing a useful such bound for ν2(z− (n− r− 1)/(2r + 2)).
Even the deep theory of linear forms in p-adic logarithms is not helpful, since it is conjectured that z
is a 2-adic transcendental number.

We require one last fact about ν2 in order to complete our proof of Theorem 1.

Lemma 4. For any integer n ≥ 1, we have

ν2(n!) ≥ n−
⌊

log n
log 2

⌋
− 1, (3)

where bxc denotes the largest integer that is less than or equal to x. In particular, ν2(n!) ≥ n/4,
for all n ≥ 4.

We refer the reader to ([28] Lemma 2.4) for a proof of this result.
Now, we are ready to deal with the proof of theorems.

3. The Proofs
3.1. The Proof of Theorem 1

Write

t(r)m = n! + (n + 1)! + · · ·+ (n + `)!

as t(r)m = n!dn,`, where

dn,` = 1 + (n + 1) + (n + 1)(n + 2) + · · ·+ (n + 1) · · · (n + `).

Note that dn,` is an integer and, moreover, the following estimate holds

n!dn,` ≤ (`+ 1)(n + `)! ≤ (`+ 1)(n + `)n+` < (n + `)n+`+1,

where we used that s! ≤ ss, for all s ≥ 1 (we decided to use this inequality instead of the
sharper s! ≤ 2(s/2)s, for s ≥ 3, in order to leave the bounds notationally simpler and we
observe that this choice does not change them in order).

The proof splits into two cases.

3.1.1. The Case n ≤ 3

If r < m ≤ 2r, then

t(r)r+i = 2i−1(2r− 3) + 1,

for i ∈ [1, r] (this can be seen in ([22] p. 4)). If i = 1, then the equation becomes

2(r− 1) = n! + (n + 1)! + · · ·+ (n + `)!

and so

r− 1 =
n!
2
+

(n + 1)!
2

+ · · ·+ (n + `)!
2

.

Because the left-hand side is an odd integer, then n ∈ {2, 3}. If n = 2, then

r− 1 = 1 +
3!
5
+ (sum of even terms)
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yielding that r = 5 + (sum of even terms) is odd (where we convention that (sum of even
terms) is zero, for ` = 1). Thus, there is no solution for n = 2 and r < m ≤ 2r. When n = 3,
we have that

r− 1 =
3!
2
+

4!
2
+ · · ·+ (`+ 3)!

2
is even. Thus, we obtain the following family of solutions

n = 3, r = 1 +
3!
2
+

4!
2
+ · · ·+ (`+ 3)!

2
, m = r + 1 and `.

For i > 1, one has that t(r)m > 1 is odd, which forces n = 1. Thus, we have

2i−1(2r− 3) + 1 = 1! + 2! + · · ·+ (`+ 1)!

and, so
2i−1(2r− 3) = 2! + · · ·+ (`+ 1)!. (4)

If r = 2, then the equation becomes

2 = 2! + · · ·+ (`+ 1)!,

where we used that i = 2 (since 1 < i ≤ r = 2). The previous equality only holds for ` = 1,
yielding the solution (n, m, r, `) = (1, 4, 2, 1).

Supposing that r ≥ 4, then 2r− 3 is an odd number larger than 1. On the other hand,
2! + 3! and 2! + 3! + 4! are powers of 2 and so ` ≥ 4. However, if ` = 4, then

2i−1(2r− 3) = 2! + 3! + 4! + 5! = 152 = 23 · 19

yielding that 2r− 3 = 19 and, so, r = 11, which is odd (remember that our assumption
is that r is even). Thus, we may assume ` ≥ 5. Because ν2(s!) ≥ 4, for all s ≥ 6, then the
2-adic valuation of right-hand side of (4) is 3 yielding that i = 4. Therefore, we can rewrite
the previous equality as

2r− 3 = 19 +
6!
8
+ · · ·+ (`+ 1)!

8
and, then

r = 11 +
6!
16

+ · · ·+ (`+ 1)!
16

.

Now, we observe that the right-hand side is only even for ` = 5 (since 7!/16 = 315
and (`+ 1)!/16 is even, for all ` ≥ 7). Therefore, r = 11 + 6!/16 = 56, which leads to
the solution

t(56)
60 = 1! + 2! + 3! + 4! + 5! + 6!.

Therefore, let us suppose that m > 2r. In this case, by Lemma 1, together with r < m/2,
one has that

(
√

2)(m/2)−1 ≤ 3!d3,` ≤ 6(`+ 1)(`+ 3)`+3 < 6(`+ 3)`+4.

By applying the log function together with an straightforward calculation, we arrive at

m <
4

log 2
(`+ 4) log(`+ 3) +

4 log 6
log 2

+ 2 < 7.1(`+ 4) log(`+ 3).

In conclusion, we have

n ≤ 3 and r/2 < m < 7.1(`+ 4) log(`+ 3)
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as desired.

3.1.2. The Case n ≥ 4

In this case, from the equation t(r)m = n!dn,`, one deduces that 4 divides t(r)m . Accord-
ingly, by combining Lemmas 2 and 3, we have that 2(r + 1) divides m and

ν2(t
(r)
m ) = ν2(m) + ν2(k̂− 1) + 2,

where k̂ := (1− δ2,r)k and δi,j is the Kronecker delta (whose value is 1 if i = j, and 0
otherwise).

On the other hand, since dn,` is an integer,

ν2(m) + ν2(k̂− 1) + 2 = ν2(t
(r)
m ) ≥ ν2(n!) ≥ n/4,

where we used Lemma 4, since n ≥ 4. Because ν2(m) + ν2(k̂− 1) = ν2(m(k̂− 1)), we get

ν2(m(k̂− 1)) ≥ n
4
− 2.

In particular, 2b(n/4)−2c divides m(k̂− 1) and so

2(n/4)−3 < 2b(n/4)−2c ≤ m(k̂− 1),

where we used that bxc > x− 1. After some computations, we obtain

n <
4

log 2
log(m(k̂− 1)) + 12.

Because 2(2k + 1) divides m, then k̂− 1 ≤ k− 1 < 2(2k + 1) ≤ m and, hence

n <
8

log 2
log m + 12 < 11.6 log m + 12. (5)

On the other hand, it follows again from Lemma 1 that

(
√

2)m−r−1 ≤ t(r)m ≤ n!dn,` < (n + `)n+`+1.

Because 2(r + 1) ≤ m, then r + 1 ≤ m/2 and so

(
√

2)m/2 ≤ n!dn,` < (n + `)n+`+1.

After some manipulations, we get

m ≤ 4
log 2

(n + `+ 1) log(n + `).

Now, the goal is to write the previous right-hand side in a better (product) form.
For that, we shall use that x + y ≤ xy, for all x, y ∈ R≥2. From this inequality, we have
n + `+ 1 ≤ n(`+ 1) (since n ≥ 4 and `+ 1 ≥ 2). For log(n + `), we have a more delicate
issue (since ` may be equal to 1). However, we use the following trick

log(n + `) = log((n− 1) + (`+ 1)) ≤ log((n− 1)(`+ 1))

= log(n− 1) + log(`+ 1) ≤ 1.9 log(n− 1) + 2.9 log(`+ 1)

≤ 5.6 log(n− 1) log(`+ 1) < 5.6(log n) log(`+ 1),
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where we used that 1.9 log(n − 1) ≥ 1.9 log 3 > 2 and 2.9 log(` + 1) ≥ 2.9 log 2 > 2.
Therefore, we have

m ≤ 4
log 2

(n + `+ 1) log(n + `) < 32.4n(`+ 1)(log n) log(`+ 1) (6)

< 33n(`+ 1)(log n) log(`+ 1).

Summarizing, we obtained that

m < 33n(`+ 1)(log n) log(`+ 1). (7)

By combining (5) and (7), we get

n− log(n log n) < 52.6 + log((`+ 1) log(`+ 1)). (8)

We claim that log(n log n) < n/2, for all n ≥ 4. Indeed, let us consider the function
g : (1,+∞)→ R, as defined by g(x) := xe−x/2 log x. Thus,

g′(x) = e−x/2
(

log x− x log x
2

+ 1
)

.

However, (x log x)/2 > log x + 1 = log(ex), if and only if xx−2 > e2, which is true for
all x ≥ 4. Subsequently, g′(x) < 0, for all x ≥ 4 and, so, g is a decreasing function in the
interval [4,+∞). In particular, for n ≥ 4, we have

ne−n/2 log n = g(n) ≤ g(4) =
4 log 4

e2 < 0.75 . . . < 1,

which yields n log n < en/2 and, finally, log(n log n) < n/2 as claimed (we point out
that to use the easier inequality ex > 1 + x + x2/2, for x > 0, is not satisfactory, since
1 + n/2 + n2/8 > n log n, only for n > 19).

By returning to (8), we deduce that

n < 2 log((`+ 1) log(`+ 1)) + 105

as desired. The proof is then complete (by considering the inequality in (6)).

3.2. The Proof of Theorem 2

If n ≤ 3 and m ≤ 2r, then we have the following solutions that arise from (2):

(n, m, r, `) ∈ {(3, 17, 16, 1), (3, 77, 76, 2), (3, 437, 436, 3), (3, 2957, 2956, 4), (3, 23117, 23116, 5)}.

Furthermore, the solutions (n, m, r, `) = (1, 4, 2, 1) and (n, m, r, `) = (1, 60, 56, 5) were
detected in the proof of Theorem 1.

For the case in which either n ∈ Z≥4 or (n, m) ∈ {1, 2, 3} ×Z>2r, we use the estimates
that are provided in Theorem 1 (for ` ≤ 5) to infer that

n ≤ 109, m ≤ 3276 and r ≤ 1638.

For dealing with these remaining cases, we wrote two simple routines in Wolfram
Mathematica software. First, the nth term of the sequence (t(r)n )n can be defined as

t[n_, r_] :=
t[n, r] =
Which[n == 0, 0, 0 < n < r, 1, n >= r,
Sum[t[n - i, r], {i, 1, r}]];

Afterwards, we shall use the following command to search for all solutions of

t(r)m = n! + (n + 1)! + · · ·+ (n + `)!



Mathematics 2021, 9, 962 8 of 9

in the range 1 ≤ n ≤ 109, r < m ≤ 3276 and 2 ≤ r ≤ 1638 (r even) when either n ∈ Z≥4 or
(n, m) ∈ {1, 2, 3} ×Z>2r.

For the case n ≥ 4, the routine

Catch[Do[{ n, m, r,l};
If[t[m,r] == Sum[Factorial[n+i], {i,0,l}],
Print[{n,m,r,l}]], {l,1,5}, {n, 4, 109},{r, 2, 1638,2}, {m, r+1, 3276}]]

returns {4, 12, 2, 1} as the only solution.
For the case n ≤ 3 and m > 2r, the routine

Catch[Do[{ n, m, r,l};
If[t[m,r] == Sum[Factorial[n+i], {i,0,l}],
Print[{n,m,r,l}]], {l,1,5}, {n, 1, 3}, {r, 2, 1638,2}, {m, 2r+1, 3276}]]

returns {2, 6, 2, 1} and {2, 10, 4, 3} as solutions. This finishes the proof.
The calculation took roughly 2 h on 2.5 GHz Intel Core i5 4 GB Mac OSX. The proof is

then complete.

4. Conclusions

In this paper, we work on searching for the terms of the Fibonacci sequence of order
r, (t(r)n )n, which can be written as sum of consecutive factorials, where t(r)n = ∑r

j=1 t(r)n−j

with t(r)0 = 0 and t(r)1 = · · · = t(r)r−1 = 1. More precisely, we prove that, for any given
` ≥ 1, there exists a positive explicit constant C, depending only on `, for which all triples
(n, m, r) ∈ Z3

≥1 (with r even) of solutions of the Diophantine equation t(r)m = ∑`
j=0(n + j)!

must satisfy max{n, m, r} < C. The methods that are presented in this work combine upper
bounds for the 2-adic valuation of t(r)n together with some estimates and a computational
approach. This may benefit future research concerning similar problems for other linear
recurrence sequences (or even for (t(r)n ) in the case of an odd r).
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