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Abstract: This paper describes the optimal design of a 3-DOF redundant planar parallel kinematic
mechanism (PKM) based finishing cut stage to improve the surface roughness of FDM 3D printed
sculptures. First, to obtain task-optimized and singularity minimum workspace of the redundant
PKM, a weighted grid map based design optimization was applied for a task-optimized workspace
without considering the redundancy. For the singularity minimum workspace, the isotropy and
manipulability of the end effector of the PKM were carefully modeled under the previously obtained
redundancy for optimality. It was confirmed that the workspace size increased by 81.4%, and the
internal singularity significantly decreased. To estimate the maximum rated torque and torsional
stiffness of all active joints and prevent an undesired end effector displacement of more than 200 µm,
a kinematic stiffness model composed of active and passive kinematic stiffness was derived from
the virtual work theorem, and the displacement characteristic at the end effector was examined by
applying the reaction force for the PLA surface finishing as an external force acting at the end effector.
It was confirmed that the displacement of the end effector of a 1-DOF redundant PKM was not only
less than 200 µm but also decreased from 40.9% to 67.4% compared to a nonredundant actuation.

Keywords: hybrid 3D printer; finishing cut stage; parallel kinematic mechanism; workspace opti-
mization; surface roughness

1. Introduction

To meet the demand in various fields, the global 3D printer market has grown by
more than 15% annually since 2014. In addition, 3D printers are typically classified into
fused deposition modeling (FDM), a stereolithography apparatus (SLA), and selective laser
sintering (SLS) according to the production method of the sculpture. Among them, the
FDM method, which is a method for laminating industrial plastics such as PLA and ABS
by heating at high temperatures, has a market share of more than 20% in the global market
owing to its low cost and simple lamination technology. However, the FDM method has a
slow molding speed and low surface roughness of the sculpture owing to the characteristics
of the additive manufacturing method in which materials are stacked one by one through
high heat nozzles; it is therefore necessary to develop a technology to compensate for
this [1,2].

Figure 1 shows a complex 3D printer commercially available around the world.
Figure 1a shows a Lasertec 65 3D printer of DMG-MORI, Germany, which improves the
surface roughness of metal sculptures by combining the laser metal deposition (LMD)
method of melting metal materials with a high-energy source to make sculptures with a
mechanical cutting method through an existing 5-axis cutting machine. Figure 1b shows a
LUMEX Avance-25 of Matsuura, Japan, which improves the surface roughness of metal
sculptures by combining the SLS method, which combines the materials by irradiating a
high-energy beam on the metal materials, with the mechanical cutting method. Figure 1c
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shows Stratasys’ smoothing station in the United States, which can improve the surface
roughness of 3D-printed sculptures through chemical processing. However, the Lasertec
65 3D and LUMEX Avance-25 were developed for metal molding and cutting, and thus
the strength and stiffness of the cutting mechanism are high, the installation area is wide
(i.e., 12 m2 each), and the selling price is high. In addition, in the case of the smoothing
station, because the post-process is performed through a chemical process, unintended
rounding occurs in the sculpture, and additional workspace and time are required for the
post-process. In other words, the technology required for improving the surface roughness
of a commercialized complex 3D printer is unsuitable for improving the surface roughness
of FDM-type sculptures. Therefore, to improve the surface roughness performance of
the FDM lamination method, it is necessary to design a mechanical finishing cut stage
optimized for industrial plastic processing.
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and (c) smoothing station.

The parallel kinematic mechanism (PKM) is mainly used for the cutting stage rather
than the serial kinematic mechanism (SKM) [3–6]. This is because the PKM, which is
generally composed of a fixed platform and several links, has a higher stiffness than the
SKM and is suitable for the cutting stage, where the stiffness characteristics of the tool are
important. However, owing to this structure, the PKM has a high dependence on kinematic
parameters, and thus many constraint conditions limiting the range of motion at the tool
tip exist in the PKM, and it does not have a wide workspace [7–13]. Therefore, a hybrid
mechanism that combines the SKM and the PKM has been researched and developed in a
field where a wide workspace compared to the size of the mechanism and high stiffness
is required [14–20]. However, because of the characteristics of the hybrid structure in
which the PKM and SKM are connected in series, issues regarding the area, shape, and
singularity of the workspace of the PKM are still inherent. Because these two issues
affect the performance of the hybrid mechanism independently of each other, an optimal
design that considers both should be carried out [21–26]. Huang et al. [27] defined the
average Jacobian condition number for a rectangular-shaped area in the workspace as a
GCI and the ratio of the area of a rectangular-shaped workspace to the maximum area as
an evaluation index for that workspace. In addition, a kinematic parameter optimization
was applied by maximizing the ratio of the GCI to the evaluation index of the workspace of
the symmetrical 2-DOF 5R PKM. Lara Molinar et al. [28] applied a GCI and a GGI, which
are operability evaluation indices, and a GPI, which is a force transmission rate evaluation
index, as objective functions within a cuboid-shaped workspace for the optimal design
of the 6-DOF Gough–Stewart PKM and conducted a multipurpose optimization. Huang
and Thebert [29] presented an evaluation index called the overall dexterity, including the
workspace and singularity, and optimized kinematic parameters for the optimal design of
the RRR type and RPR type 3-DOF PKM. Huang et al. [30] experimentally examined the
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ratio between kinematic parameters (dimensional synthesis) to obtain the optimum shape
that improves the operating performance while securing the cylindrical workspace of the
TriVariant, a 3-DOF PKM. Laribi [31] optimized the kinematic parameters such that the GCI
in the workspace was maximized while securing the required work area of a semispherical
shape of 3-DOF SPM-PKM. As such, many studies have been conducted to simultaneously
solve the problem of workspace and singularity of the PKM, which can also solve the
problem of the PKM inherent in the hybrid mechanism.

In this paper, a new 3-DOF planar hybrid finishing cut stage that expands the
workspace by combining a 2-DOF PKM at the end effector of a constrained 1-DOF ro-
tary motion is presented, and an optimization method to simultaneously improve the
work area efficiency and singularity characteristics is presented. In Section 2, a kinematic
analysis applied to the workspace and a singularity analysis of the proposed mechanism
are described, and in Section 3, an optimization of the kinematic design parameters and
singularity analysis conducted to expand the workspace area are detailed. In Section 4, a
mechanical stiffness model is established based on the virtual work theory, and the end
effector displacement characteristics of the PLA materials are reviewed when considering
the cutting reaction force.

2. Kinematic Analysis of Hybrid “Serial–Parallel” 3-DOF Parallel
Kinematic Mechanism
2.1. Structure of 3-DOF Planar PKM

As shown in Figure 2, the proposed mechanism is a structure in which a gosselin-
based 2-DOF planar parallel mechanism with an arc-shaped frame as the base frame is
connected to a circular guide. The arc-shaped frame rotates about the z-axis at the center
of the circular guide, and at the same time, the planar PKM rotates along the frame. The
2-DOF planar PKM is a structure in which two 2-bar serial chains and one 1-bar serial
chain are connected to a triangular platform, unlike the existing gosselin 3-RRR planar
PKM. To drive this, nine rotation joints are needed: one rotation joint q1 is fixed to {B},
which is the center of the circular guide, and the other eight rotation joints are composed of
three rotation joints Bi(i = 1, 2, 3) in an arc-shaped frame, two rotation joints Si(i = 1, 2)
connecting B and the 2-bar serial chain, and three rotation joints Pi(i = 1, 2, 3) located at
the vertices of the triangular platform.
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Figure 2. Kinematic model of 3-DOF planar parallel kinematic mechanism.
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2.2. Kinematic Analysis

To analyze the workspace and singularity properties of the planar PKM, the relation-
ship between the joint value and the posture of the end effector must be determined, which
can be achieved through a kinematic analysis.

2.2.1. Inverse Kinematic

The purpose of the inverse kinematic analysis is to express the value of each joint in
an analytic form, given the position and orientation of the end effector. It is calculated
using the constraint conditions of the planar PKM structure.

First, as shown in Figure 3, a rotation matrix R representing the relationship between
the posture of the tool frame {T} and the posture of the base frame {B}, which changes
according to the posture at the end effector, is calculated. Because the proposed mechanism
is a planar mechanism, the rotation matrix R rotates only along the z-axis.

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(1)
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To calculate the position of joint T P i(i = 1, 2, 3) on the triangular platform with
respect to {T}, the height (t2) and length (t1) of the triangular platform and the length (le) of
the end-mill are used.

T P i =

[
le

−(1/2)t1

]
, T P2 =

[
le

(1/2)t1

]
, T P3 =

[
le + t2

0

]
(2)

Using the rotation matrix R of (1), the position of the joint T P i(i = 1, 2, 3) on the
triangular platform with respect to {T} can be expressed as BP i(i = 1, 2, 3) w.r.t. {B}.

T P i =

[
xt
yt

]
+ R

(
T P i

)
, (i = 1, 2, 3) (3)

The rotation angle (q1) of the arc-shaped frame at the center of the circular slide, the
value (q2, q3, q4) of the rotational joint Bi(i = 1, 2, 3) on the arc-shaped frame, the value
(q5, q6) of the joint Si(i = 1, 2) connecting the 2-bar serial chain, and the value (q7, q8, q9) of
the joint Pi(i = 1, 2, 3) on the triangular platform can be calculated. First, q1 is calculated
using the constraint condition based on the difference between the position vector of the B3
joint with respect to {B} with the size of the circular guide radius r and the position vector
of P3, also with respect to {B}.

L31 = ‖P3 − B3‖ (4)

Equation (4) is decomposed using the x, y components and is summarized as shown
in Equation (5) below.

(P3x − B3x )
2 +

(
P3y − B3y

)2
− l2

31 = 0 (5)

In Equation (5), the vector of B3 is expressed as B3,x = r cos(q1), B3,y = r sin(q1),
through the rotational radius of the circular guide r and joint value q1 by substituting
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sin(q1) =
2T

1+T2 , cos(q1) =
1−T2

1+T2 and can be expressed as a quadratic equation for T. Among
the two solutions of the quadratic equation, q1 is selected as the one that minimizes the
distance between P2 and B3.

q1 = arctan2
(

2T
1 + T

,
1− T2

1 + T2

)
(6)

Knowing the value of q1, the position of Bi(I = 1, 2, 3) can be calculated using Equa-
tion (7).

B1 =

[
r cos(q1 + B)
r sin(q1 + B)

]
, B2 =

[
r cos(q1 + A)
r sin(q1 + A)

]
, B3 =

[
r cos(q1)
r sin(q1)

]
(7)

Using Equations (7) and (8), which give a constraint in which the distance between
joint Si and Pi is li2, q2 and q3 can be calculated as in Equation (9). The calculation process
uses a substitution similar to the process when calculating q1.

Li2 = ‖Si − Pi‖ (i = 1, 2) (8)

qi+1 = arctan2
(

2T
1 + T

,
1− T2

1 + T2

)
(9)

Using the previously calculated q1, q2, q3 and the kinematics of each serial chain, the
values of the remaining six joints can be calculated.

q4 = arctan2

(
(y)P3

− (y)B3

L31
,

(x)P3
− (x)B3

L31

)
(10)

qi+4 = arctan2
(

(y)Pi
−Li1 sin(qi+1)−(y)Bi

Li2
,

(x)Pi
−Li1 cos(qi+1)−(x)Bi

Li2

)
− qi+1(i = 1, 2) (11)

q7 = arctan2

(
(y)Pt

− (y)P3

L32
,

(x)Pt
− (x)P3

L32

)
− q4 (12)

qi+7 = arctan2

(
(y)Pt

− (y)Pj

Lj3
,

(x)Pt
− (x)Pj

Lj3

)
− qj+4 − qj+1(j = 1, 2) (13)

2.2.2. Forward Kinematic

Through the forward kinematic analysis, the position and orientation of the end
effector can be calculated from the values of all joints. As shown in Figure 4, three forward
kinematic solutions exist as in Equations (14)–(16) because of the characteristics of a parallel
mechanism in which three series linkages are constrained to each other.
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Figure 4. Position of end effector in base coordinate frame according to a serial chain for solving direct kinematic: (a)
l21 − l23, (b) l31 − l32, and (c) l11 − l13 serial chains.
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Pt =

 Xt
Yt
θt

 =

 r cos(q1) + l31 cos(q4) + l32 cos(q4 + q7)
r sin(q1) + l31 sin(q4) + l32 sin(q4 + q7)

q4 + q7 + π

 (14)

Pt =

 Xt
Yt
θt

 =

 r cos(q1 + B) + l11 cos(q2) + l12 cos(q2 + q5) + l13 cos(q2 + q5 + q8)
r sin(q1 + B) + l11 sin(q2) + l12 sin(q2 + q5) + l13 sin(q2 + q5 + q8)

q2 + q5 + q8 + arccos
(

le
l13

)
− π

 (15)

Pt =

 Xt
Yt
θt

 =

 r cos(q1 + A) + l21 cos(q3) + l22 cos(q3 + q6) + l23 cos(q3 + q6 + q9)
r sin(q1 + A) + l21 sin(q3) + l22 sin(q3 + q6) + l23 sin(q3 + q6 + q9)

q3 + q6 + q9 − arccos
(

le
l23

)
− π

 (16)

2.3. Jacobian Analysis

Because the parallel mechanism has a singularity in the workspace, it is necessary
to review the singularity and manipulability through a Jacobian analysis. The Jacobian is
a type of transformation matrix used for a linear transformation between the joint space
representing the velocity of the tool tip. For analysis, all joint vectors qi(i = 1–9) are
expressed as Equation (17). The relocation matrix U, which divides the dependent and
independent joints, and the selection matrix, V, which converts the entire joint vector into
an active joint vector, is defined in Equation (18).

qall =
[

q1 q2 q3 q4 q5 q6 q7 q8 q9
]T (17)

qall = U
[

qu
qv

]
, qr = Vqall

(
U ∈ R9×9, V ∈ R3×9

)
(18)

2.3.1. Constrained Jacobian

The constrained Jacobian represents the relationship between the speed of the inde-
pendent joint and the speed of the dependent joint. As shown in Figure 5, the constraint
Jacobian can be obtained through the constraint condition in which the position and posture
of the tool tip with respect to the reference coordinate system obtained through each serial
chain structure is always constant, which can be expressed through Equation (19).

g(qall) = 0 :



g1
g2
g3
g4
g5
g6

 =



x3 − x1
y3 − y1

φ3 − φ1 − tan−1( t2/2
le

)

x3 − x2
y3 − y2

φ3 − φ2 + tan−1( t2/2
le

)


=



0
0
0
0
0
0


 xi : x position o f chain i

yi : y position o f chain i
φi : angle o f chain i

 (19)

Equation (20) is a process of differentiating the constraint with respect to time, and
through this, it is possible to calculate the constraint Jacobian analytically, as in Equation
(21). Here, Gu is the Jacobian term for the independent joint vector, and Gv is the Jacobian
term for the dependent joint vector.

dg(qall)

dt
=

∂g(qall)

∂qall

dqall
dt

= G
.
qall = 0 ,

(
G ∈ R6×9

)
(20)

[
Gu Gv

][ .
qu.
qv

]
= 0 → .

qv = −G−1
v Gu

.
qu = Φ

.
qu (21)
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2.3.2. Forward Jacobian 
The forward Jacobian can be obtained through a forward kinematic analysis and 
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kinematic equations for the position and orientation of the end effector with respect to 
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Figure 5. Schematics of six constraint equations considering the posture of the end effector calculated
for each serial chain with respect to the base coordinate frame: (a) schematics of each serial chain, (b)
calculated angle of chain 1, (c) calculated angle of chain 2.

2.3.2. Forward Jacobian

The forward Jacobian can be obtained through a forward kinematic analysis and
constrained Jacobian. From the value of each joint, by differentiating the forward kinematic
equations for the position and orientation of the end effector with respect to time, the
Jacobian, which represents the speed of all joints with respect to the position and orientation
speed of the end effector, can be calculated. By substituting the constrained Jacobian, which
represents the relationship between the speed of the independent joint and the speed of
the dependent joint, as shown in Equation (22), the relationship between the position and
orientation speed of the end effector are represented, and the speed of the independent
joint is calculated using Equation (23):

dPt

dt
=

∂Pt

∂qu

dqu

dt
+

∂Pt

∂qv

dqv

∂qu

dqu

dt
= Ju

.
qu + Jvφ

.
qu, (22)

dPt

dt
= (Ju + JvΦ)

.
qu = J f

.
qu, (23)

where Ju is the Jacobian representing the speed of the position, the orientation of the end
effector, and the speed of the independent joint, and Jv is the Jacobian representing the
speed of the position, the orientation of the end effector, and the speed of the dependent
joint.

3. Workspace Analysis

As described above, the PKM is discontinuous and has a small workspace compared
to the size of the mechanism, and thus the design efficiency is low; thus, it does not
generally have a workspace suitable for the purpose of the mechanism. Therefore, to
increase the design efficiency of the device and secure the desired dexterous workspace for
the mechanism, a workspace analysis was conducted, and the kinematic design parameters
were optimized.

3.1. Workspace Shape and Condition of Initial Design

The workspace of the proposed parallel kinematic machine has a shape that is rota-
tionally symmetric about the fixed coordinate system centered on the circular guide owing
to the hybrid structure. Therefore, the workspace analysis proceeded only in a rectangular
area within the range of 0 ≤ x ≤ 0.3 [m], −0.3 ≤ y ≤ 0.3 [m] based on the fixed coordinate
system, divided the inside into 5 mm intervals, and an inverse kinematic analysis was
conducted on all points. In addition, by setting the angular range of the end effector of
the mechanism to −35◦ to 35◦ and conducting a workspace analysis at intervals of 5◦,
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the workspace that satisfies all ranges of the end effector in common was defined as the
workspace of the mechanism.

To select the initial value of the optimization design parameter, several initial values
were defined as summarized in Table 1, and the workspace analysis was conducted and
shown in Figure 6. The initial value of 3, which was the largest required workspace, was
set as the initial value of the optimization design parameter.

Table 1. Initial value of optimization design parameter.

Design Parameters L11 L12 L21 L22 L31 A B

Initial value 1 0.10 m

35◦ –35◦
Initial value 2 0.11 m

Initial value 3 0.12 m

Initial value 4 0.13 m
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3.2. Workspace Optimization

To overcome the issues related to the workspace and singularity of the PKM and to
obtain the optimal workspace for the design purpose, the kinematic parameter was defined
as an optimization design parameter, and an optimization based on a genetic algorithm [32]
was performed.

3.2.1. Definition of Objective Function

In this study, a weight grid map (WGM) was used to secure an area with a diameter of
200 mm at the center of the circular guide as the optimal workspace for the mechanism. As
shown in Figure 7, the WGM is an area where the angle of both sides of the triangle forming
the vertex from the center of the circular guide is 60◦, and the color of the WGM is a weight
that linearly decreases from 1 to zero as it leaves the triangular required workspace. Based
on the WGM, the optimization objective function (O.F.) is defined as in Equation (24) such
that the design efficiency that minimizes the sum of the linkages of the mechanism while
securing the required workspace of the mechanism is maximized. The denominator and
numerator of the objective function are normalized to the initial design parameter values to
evenly distribute the influence resulting from the unit difference of the design parameters
during the optimization process.

O.F. = − log


(

60
∑

i=1

120
∑

j=1
Aij × wij

)
/

(
60
∑

i=1

120
∑

j=1
Aij × wij

)
initial

(l11 + l12 + l21 + l22 + l31)/(l11 + l12 + l21 + l22 + l31)initial

+ σg (24)
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In Equation (24), Aij is the unit area of the workspace grid, which is the i-th in the
x-axis and the j-th in the y-axis, wij is the weight value of the WGM in the grid, and σ and
g are the penalty coefficient and penalty condition, respectively.

3.2.2. Optimization Result

Optimization was conducted using the genetic algorithm of the MATLAB optimization
toolbox. At this time, since there was a risk of falling into the local optimum if the condition
parameter of GA was incorrectly set, it was tuned as shown in Table 2 so that global
optimum could be achieved through several trial and errors in advance. In addition, the
pseudocode representing the optimization process of the workspace based on the genetic
algorithm is shown in Algorithm 1. The optimization results are shown in Table 3, and the
workspaces before and after optimization are shown in Figure 8. Through optimization, the
area of the optimized workspace within the required workspace of 0.0081 m2 increased by
81.4% compared to the initial design, and the sum of the optimized link lengths increased
by 11.6%, resulting in a 20.4% increase in the design efficiency. As a result, 96.3% of the
required workspace, i.e., an area of 0.0078 m2, could be used as the workspace of the
mechanism.

Algorithm 1. Optimization algorithm based on genetic algorithm

While function value
Do {

1. Set the design parameters and position of the
end effector

for orientation of the end-effector(θt) = −10:1:10
(1) Calculate the workspace by weighted grid
(2) Sum the length of links

(l11 + l12 + l21 + l22 + l31)
(3) Calculate the value of objective function

end
2. Find the minimum value of objective function

}
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Table 2. Condition of genetic algorithm for optimization.

Number of Variables 7(L11, L12, L21, L22, L31, A, B)

Lower bound 0.04 0.04 0.04 0.04 0.04 20 −20]

Upper bound [0.24 0.24 0.24 0.24 0.24 60 −60]

Population type Double vector

Population size 200

Creation function Constraint dependent

Fitness scaling Proportional

Selection Uniform

Mutation Adaptive feasible

Crossover Scattered

Stopping criteria Function tolerance: 1 × 10−4

Table 3. Optimization results: value of design parameter, required workspace, sum of link length.

Design Parameters l11[m] l12[m] l21[m] l22[m] l31[m] A [◦] B [◦]

Initial variables 0.15 0.15 0.15 0.15 0.15 40 −40

Optimized variables 0.1092 0.1431 0.0697 0.1995 0.1624 29.49 −38.26
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3.3. Singularity Analysis

A singularity analysis was conducted to remove the uncontrollable area within the
workspace of the PKM. For a singularity analysis, the isotropy and manipulability, which
are quantified singularity evaluation indicators, were defined, and a singularity analysis
according to the active joint combination for the optimized workspace obtained in the pre-
vious section was conducted in the case of 1-DOF redundant actuation and nonredundant
actuation.

3.3.1. Isotropy and Manipulability

In many studies, evaluation of the singularity area within the workspace of the PKM
has been generally conducted using the eigenvalue. In this study, as in the above studies, a
singularity point analysis was applied using the eigenvalue and eigenvector of the forward
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Jacobian matrix, and the eigenvalues and eigenvectors of the forward Jacobian matrix were
calculated through the eigenvalue decomposition, as shown in Equation (25).

J f = UΣVT , Σ =


σ1 · · · 0 0

σ2 0
...

. . . ... 0
0 · · · σn 0

(n : DOF o f PKM) (25)

where the matrices U and V are the left and right eigenvectors, respectively, and matrix ∑
is an eigenvalue matrix in the form of a diagonal matrix. The isotropy of the velocity(s) at a
point in the workspace is defined as the condition number of the forward Jacobian, as in
Equation (26), and the manipulability is defined as the product of all eigenvalues of the
forward Jacobian matrix, as in Equation (27).

s =
1
κ
=

λmin

λmax
, 0 ≤ s ≤ 1 (26)

w =
√

detJ f JT
f = λ1λ2 · · · λn (n : dimension) (27)

Figure 9 shows an example of the singularity analysis of the case in which the mech-
anism does and does not have a singularity. The velocity ellipsoid attached to the end
effector is a tool for visualizing the isotropy and manipulability. The isotropy is defined
as the ratio of the size of the major axis to the minor axis of the velocity ellipsoid and is
the ratio of the maximum and minimum velocities that can be instantaneously moved at a
point in the workspace. By contrast, the manipulability is defined as the product of the
magnitudes of all axes of the velocity ellipsoid and is the product of all velocities at a point
in the workspace.
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3.3.2. Analysis Results According to the Combination of Active Joints

The active joint combination considers six combinations of nonredundant cases, as
shown in Table 4. The singularity analysis was conducted through the isotropy and
manipulability analysis of these six combinations, and 1-DOF redundancy was considered
for the combination with the best singularity area removal performance.

Table 4. Set of active joint.

Set 1 Configuration Set 2 Configuration

Combination between
joints on arc-shaped

frame

q1 − q2 − q3 Combination
according to the serial

chain structure

q1 − q2 − q5
q1 − q2 − q4 q1 − q3 − q6
q1 − q3 − q4 q1 − q4 − q7
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Table 5 shows the mean and standard deviation of isotropy and manipulability for the
singularity analysis results. A singularity analysis was conducted for −30◦, 0◦, and 30◦ of
the end effector angles, and the results are shown in Appendix A. The average isotropy
increased from a minimum of 1.098× 103% to a maximum of 1.275× 103% through 1-DOF
redundancy, and the standard deviation of manipulability was highly reduced. This means
that the size ratio of the minor axis and the major axis of the velocity ellipsoid in the
singularity area decreased, and the manipulability for the minor axis direction in which the
mechanism cannot move instantaneously increased. As a result, it was possible to remove
the singularity area through 1-DOF redundancy.

Table 5. Analysis result of isotropy and manipulability: average and deviation.

Actuate Set
Nonredundant Redundant

q1 − q2 − q4 q1 − q2 − q4 − q7

Index Isotropy Manipulability Isotropy Manipulability

Angle of end effector

–30◦ 0.0045 ± 0.0024 0.7473 ± 4.1905 0.0619 ± 0.0080 0.0446 ± 0.0081

0◦ 0.0050 ± 0.0028 1.7840 ± 35.6422 0.0632 ± 0.0062 0.0475 ± 0.0069

30◦ 0.0053 ± 0.0034 0.9262 ± 5.4762 0.0635 ± 0.0066 0.0474 ± 0.0081

4. Kinematic Stiffness Analysis

For the cases of nonredundancy and 1-DOF redundancy, the distribution of the dis-
placement of the end effector over the entire workspace was analyzed. Therefore, the
mechanism stiffness model of the end effector for a given cutting reaction was defined
for the nonredundant case and the 1-DOF redundant case to analyze the difference be-
tween them.

The mechanism stiffness was divided into structural stiffness and kinematic stiffness,
of which the latter was obtained by the sum of the active stiffness determined by the active
joint combination and passive stiffness determined by the rotational stiffness of the active
joint. Unlike structural stiffness, which considers the deformation of the mechanical parts
by external force, kinematic stiffness is calculated by assuming that the parts are rigid
bodies. Because the link part of the PKM has a much higher stiffness than the joint part, this
study assumed that the link part is a rigid body and only considered this kinematic stiffness.

4.1. Kinematic Stiffness Modeling for Nonredundant Case

As described above, the kinematic stiffness is classified into passive and active stiffness
depending on whether control through redundancy is possible. Because passive stiffness is
determined by the rotational stiffness of the drive motor and the shape of the mechanism,
control through redundancy is impossible, but active stiffness can be adjusted through
torque control of the drive motor. Before the kinematic stiffness analysis, the virtual work
theory was applied through Equation (28) below to express the relationship between the
force applied on the end effector in the Cartesian coordinate space and the torque of the
driving joint in the joint space.

τTdqr + FTdx = 0 (28)

The left term refers to the work caused by the driving joint, and the rightmost term
refers to the work owing to the external force applied to the end effector. In the case of
nonredundancy, because the driving joint is the same as the independent joint, τT and dqr
denote the 3 × 1 driving torque vector in the joint space and the 3 × 1 micro displacement
vector of the driving joint, respectively, and the microdisplacement vector of the driving
joint can be expressed as Equation (29) through the forward Jacobian. Equation (30)
summarizes this for the external forces.

τT(J−1
f )dx + FTdx = 0 (29)
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F = (J−1
f )

T
(−τ) (30)

Because stiffness is the magnitude of the external force for unit deformation, Equation
(30) can be differentiated with respect to the spatial displacement and expressed as the
stiffness of the end effector of the mechanism, as shown in Equation (31) below. As shown
in Equation (32), it can be divided into two terms by expanding it through a chain rule:

K =
d f
dx

=
d(J−1

f )
T
(−τ)

dx
(31)

K =
d(J−1

f )
T

dx
⊗ (−τ) + (J−1

f )
T d(−τ)

dx
(32)

The driving torque can be expressed as Equation (33) below as a vector of the rotational
stiffness of the driving motor and a small displacement of the driving joint. The rotational
stiffness of the drive motor is a 3 × 3 diagonal matrix, and the diagonal matrix element
represents the rotational stiffness of each drive motor. Substituting this equation into
Equation (32), the result can be expressed as Equation (34):

τ = Kτdqτ (33)

K =
d(J−1

f )
T

dqu
J−1

f ⊗ (−τ) + (J−1
f )

T
Kτ J−1

f (34)

In Equation (34), the left term is the active stiffness, and the right term is the passive
stiffness. In the case of nonredundancy, the active stiffness and passive stiffness are
dependent on the forward Jacobian, and thus it becomes a function of the shape of the
mechanism and cannot be controlled by the drive motor.

4.2. Kinematic Stiffness Modeling for 1-DOF Redundancy Case

In 1-DOF redundancy, the driving joint vector includes not only the independent joint
vector but also the dependent joint vector. To express the relationship between the driving
joint vector and the independent joint vector, a new Jacobian Γ is defined as Equation (35)
below:

Γ = VU
[

I3
Φ

]
(35)

In the case of 1-DOF redundancy, Equation (28) is used to obtain the kinematic stiffness,
as with nonredundancy. In addition, τT and dqr denote the 4 × 1 driving torque vector and
the 4 × 1 microdisplacement vector of the drive joint in the joint space, respectively, and
the microdisplacement vector of the drive joint can be expressed as Equation (36) below
through Γ.

τTΓ(J−1
f )dx + FTdx = 0 (36)

After summarizing this for the external force, the stiffness for the end effector can
be obtained as Equation (37) by differentiating it for the displacement in the Cartesian
coordinate space. The term multiplied by the Jacobian Γ and the forward Jacobian’s
inverse matrix can be expressed simply as Equation (38) by defining a 4 × 3 Jacobian ψ,
which is the relationship between the driving joint and the displacement of the Cartesian
coordinate space, and can be expressed as Equation (39) by developing the derivative using
a chain rule.

K =
d f
dx

=
d(Γ(J−1

f ))
T
(−τ)

dx
(37)

K =
d f
dx

=
d(ψ)T(−τ)

dx
(38)



Mathematics 2021, 9, 961 14 of 19

K =
d(ψ)T(−τ)

dx
=

d(ψ)T

dx
⊗ (−τ) + (ψ)T d(−τ)

dx
(39)

As described above, the driving torque is the same as the rotational stiffness of the
driving motor and the microdisplacement vector of the driving joint as in Equation (33),
and the rotational stiffness of the driving motor is a 4 × 4 diagonal matrix that is different
from the nonredundancy case. Therefore, by substituting this into Equation (39), it can
be expressed in terms of active and passive stiffness, as in Equation (40). The Jacobian ψ,
which represents the displacement relationship between the driving joint and the Cartesian
coordinate space, is dependent on the shape of the mechanism. The rotational stiffness
matrix Kr of the drive motor is determined by the characteristics of the motor, and thus
the passive stiffness term is independent of the displacement of the Cartesian coordinates.
By contrast, in the active stiffness term, Jacobian ψ is differentiated with respect to the
driving joint such that the value of the active stiffness changes according to the minute
displacement of the driving joint. In this study, the active stiffness was calculated using the
least-squares method.

K =
d(ψ)T

dqr
ψ⊗ (−τ) + (ψ)TKrψ (40)

4.3. Displacement Analysis

The amount of displacement for kinematic stiffness for the entire workspace was
analyzed by dividing into a case of nonredundancy and 1-DOF redundancy and analyzing
the isotropy and magnitude of the stiffness matrix. The isotropy and magnitude analysis
of the stiffness matrix was conducted by analyzing the eigenvalues and eigenvectors of
the stiffness matrix using the same method as described in the singularity analysis. The
reaction force considered in the displacement analysis was set to 7N by applying a safety
factor of 2 to the cutting reaction force [28] for the 0.5 mm cutting depth of the PLA material,
which is an industrial plastic. In addition, the rotation direction displacement was not
considered owing to the characteristics of the cutting tool composed of a ball end mill,
and the driving joint set applied to the simulation was q2 − q3 for the nonredundancy
and q2 − q3 − q4 for the 1-DOF redundancy. The results of the analysis of stiffness and
displacement according to the angle of the end effector are shown in Appendix B, and the
results of the displacement amount, isotropy, and magnitude of the stiffness as well as a
torque analysis are shown in Table 6.

Table 6. Analysis results: displacement amount, magnitude, and isotropy of stiffness, along with the maximum and
minimum of torque.

Tool
Angle

Driving
Method

Stiffness Displacement
Amount [µm]

Torque Norm
[Nm]

Actuator Torque [Nm] Torque Norm at
Global Maxima

[Nm]Magnitude Isotropy q2 q3 q4

−30◦
Nonredundant 2.76 × 1010 5.50 × 10−2 78.0 1.169 –

1.090
–

0.421 - 1.169

1-redundant 4.21 × 1010 3.13 × 10−2 46.1 0.920 –
0.562

–
0.552 0.474 0.926

0◦
Nonredundant 3.17 × 1010 6.86 × 10−2 70.9 1.037 –

0.959
–

0.393 - 1.037

1-redundant 5.32 × 1010 5.86 × 10−2 40.2 0.822 –
0.477

–
0.556

–
0.373 0.834

30◦
Nonredundant 3.20 × 1010 4.72 × 10−4 101.9 1.289 –

1.280 0.128 - 1.289

1-redundant 5.97 × 1010 4.14 × 10−4 33.2 0.739 –
0.473

–
0.472

–
0.316 0.739

From the results shown in Appendix B, it can be seen that the size of the minor axis
and the major axis of the velocity ellipsoid increased through 1-DOF redundancy, but it
is difficult to confirm the decrease in the ratio. In other words, it can be seen that the
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magnitude of the stiffness generally improved through 1-DOF redundancy, but the stiffness
isotropy meant there was no significant change.

As shown in Table 6, the displacement amount decreased by 40.9%, 43.3%, and 67.4%,
respectively, and the required torque decreased by 21.3%, 20.7%, and 42.7%, through 1-DOF
redundant compared to nonredundant within the required work area. As a result, it can be
confirmed theoretically that the magnitude of the stiffness is improved and the amount of
displacement at the end effector is reduced through 1-DOF redundancy.

5. Conclusions

In this study, the optimal design of a cutting stage based on 3-DOF redundant PKM
for improving the surface roughness of FDM-type sculptures was examined. While the
proposed cutting stage satisfied the required workspace of a triangular shape with an
area of 0.0081 m2, the design efficiency including a WGM was presented as an objective
function to minimize the size of the PKM, and the optimization of the workspace based
on the genetic algorithm was performed. As a result, the efficiency of the optimal design
increased by 20.4% compared to the initial design, and an optimal design was derived with
an area of 0.0078 m2, which was 96.3% of the required workspace, as the workspace of
the PKM.

In addition, velocity isotropy and manipulability were applied as evaluation indices
to analyze the area singularity existing in the optimized workspace. A singularity analysis
was conducted according to the driving joint, and the optimal combination of driving
joints based on 1-DOF redundancy that maximizes the velocity isotropy and manipulability
while removing the singularity was derived.

Finally, based on the virtual work theory, a kinematic stiffness model was established
for the external force applied to the end effector. The cutting reaction force against the
PLA material was applied as an external force, and the displacement characteristics at the
end effector were examined for each case of 1-DOF redundancy and nonredundancy. As
a result, the amount of displacement decreased by 40.9%, 43.3%, and 67.4%, respectively,
through 1-DOF redundancy.

Future research on this topic should focus on actually fabricating and experimenting
with PKM with optimized parameters. The vibration characteristics at the singular point in
the workspace of the cutting part PKM end effector can be checked and compared with
the simulation result, and based on this, it is possible to check whether there is room for
improvement for the development of the next version in the future.
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Figure A2. Stiffness analysis result according to the angle of the end effector. (a–c) results of stiffness isotropic analysis at 
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