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Abstract: Imbalanced data exist in many classification problems. The classification of imbalanced
data has remarkable challenges in machine learning. The support vector machine (SVM) and its
variants are popularly used in machine learning among different classifiers thanks to their flexibility
and interpretability. However, the performance of SVMs is impacted when the data are imbalanced,
which is a typical data structure in the multi-category classification problem. In this paper, we employ
the data-adaptive SVM with scaled kernel functions to classify instances for a multi-class population.
We propose a multi-class data-dependent kernel function for the SVM by considering class imbalance
and the spatial association among instances so that the classification accuracy is enhanced. Simulation
studies demonstrate the superb performance of the proposed method, and a real multi-class prostate
cancer image dataset is employed as an illustration. Not only does the proposed method outperform
the competitor methods in terms of the commonly used accuracy measures such as the F-score and
G-means, but also successfully detects more than 60% of instances from the rare class in the real data,
while the competitors can only detect less than 20% of the rare class instances. The proposed method
will benefit other scientific research fields, such as multiple region boundary detection.

Keywords: classification; data-adaptive kernel functions; image data; multi-category classifier;
predictive models; support vector machine

1. Introduction

One of the typical problems in data mining and machine learning is to classify new
instances on the basis of observed ones. A common classification problem is separating
two classes based on the estimated decision rule trained from the training data, however,
multi-class situations have been increasingly seen in various scientific areas, including
disease diagnosis in medical research [1], artificial intelligence [2], users’ preferences in
recommendation systems [3], and risk evaluation in social sciences [4]. Accordingly, tech-
niques are either derived from those binary classifiers or originally proposed specifically
for multi-category classification problems. One of the most powerful classifiers is the
support vector machine (SVM) [5], which shows its superior performance in many real
applications [6] and is known for its excellent performance in both small and big samples,
its robustness for outliers, and ease of interpretation.

The most popular framework for dealing with the multi-category classification prob-
lems is to decompose it into a series of binary classifications where the regular binary
classifiers can be directly applied. Examples of those methods include the well-known
one-versus-one [7] and one-versus-all [5] techniques. In particular, for a k-category classi-
fication case under the SVM framework, the least square SVM (LS-SVM) [8] method was
extended to the multi-class case [9]. To overcome the drawback of the original LS-SVM that
the decision function is constructed from most of the training samples, referred to as the
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non-sparseness problem, Xia and Li [10] developed a new multi-class LS-SVM algorithm
where the solution can be sparse in the weight coefficients of support vectors. Fung and
Mangasarian [11] followed the idea of proximal SVM (PSVM) in [12] to extend the PSVM
to the multi-class case. For each decomposed sub-classification problem, the solution is
similar to its binary case for classifying new samples by allocating them to the closer class
of the two parallel planes. This PSVM method turns out to be quite aligned with the one-
versus-all method. Zhang et al. [13] extended the PSVM method to include the adaptive
kernel function, which magnifies the resolution on each boundary based on weighted
factors that can be obtained from a Chi-square distribution. However, its adaptively scaled
kernel depends on a squared distance, which may not be reliable [1], and the decay rate
for each class is constant. Following the idea by Crammer and Singer [2], He et al. [14]
proposed a simplified multi-class support vector machine with a reduced dual optimiza-
tion. Their method suffers a computation burden. He et al. [14] also presented a simplified
multi-class SVM to reduce the size of the resulting dual optimization by introducing a
relaxed classification error bound, which speeds up the training process without sacrificing
classification accuracy.

However, an imbalance issue usually arises in real applications such as cancer research,
especially when dealing with multi-category classification. That is, some minority classes
may only contain very few instances in the training sample data when dealing with two cat-
egories in nature or using the one-versus-all strategy in multi-class cases. Learning from the
imbalanced data turns out to be remarkably challenging in the field of data mining with big
data [6]. Many fields have been seeing the importance and need of accurate classifiers for
imbalanced data [15], including the detection of rare but serious diseases such as cancers in
medical science, fraudulence issues in accounting [16], and risk evaluation in economics [4].
Many commonly used binary classifiers may only show limited predictive power for the
minority class when severe imbalances exist [17]. Indeed, this issue corresponds to the
unequal distribution of the sample data from different classes, where a majority of instances
belong to a specific class while the rest to others. Chawla et al. [18] and Tang et al. [19] have
discussed the issue and found that the SVM for multiple classes with imbalanced data can
be prone to generating a classifier with a strong estimation bias towards the majority class
and will give a rather poor performance. Wang and Shen [20] proposed a method that can
avoid the difficulties of the one-versus-all strategy by dealing with multiple classes in a
joint manner. Consequently, an accurate classifier is always desired when a specific class is
extremely small compared to other classes in the training data, such as the one-versus-all
case in dealing with multi-class classification.

To overcome the effect of imbalance on classifications, Liu and He [1] proposed a new
method to enhance the performance of the SVM for imbalanced data by adaptively scaling
the kernel function obtained from a standard SVM so that the separation between two
categories can be effectively enlarged. The method also takes into account the location
of the support vectors in the feature space, which makes it more appealing when the
responses are from multiple classes. In this paper, we propose a new data-adaptive SVM
technique for multi-class problems. A new data-adaptive kernel function is proposed for
the multi-class SVM in a way that the decay rate of the scaling magnitude is more robust
and can vary along with the density of the samples in the neighborhood. Not only does
the method take the imbalance of data from a multi-class response into consideration,
but it involves spatial association of local data instances as well. By using this adaptive
kernel function, the constructed classifier shows excellent predictive power, especially for
imbalanced data, with a competitive cost of time consumption. Numerical investigations
demonstrate the superior performance of the proposed method, and a real image dataset is
employed as an illustration.

The remainder of the paper is organized as follows. Section 2 introduces the proposed
methodology for multi-category classification with class imbalance taken into account.
Numerical investigation is presented in Section 3 to demonstrate the superb prediction
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accuracy of the proposed method compared with its competitors. Concluding remarks and
discussion are described in the final section.

2. Methodology
2.1. SVM Framework and Notation

As a general method for classification proposed by Vapnik and Vapnik [5], the support
vector machine essentially uses a kernel function that maps the original input data space
into a high-dimensional feature space so that the instances from two classes are as far as
possible, preferably separable with a linear boundary in the feature space.

To start with, we consider a binary case. Given a sample {xi, yi} for i = 1, . . . , n, where
xi is a vector of predictors in the input space I = Rp and yi represents the class index, which
takes a value from {+1,−1}, a nonlinear support vector machine maps the input data
x = {x1, . . . , xn} into a high-dimensional feature space, F = Rl , using a nonlinear mapping
function s : Rp → Rl , and finds a linear boundary in the feature space F by maximizing
the smallest distance of instances to this boundary. Mathematically, the idea is equivalent
to solve

min
w,b

1
2

wTw + C
n

∑
i=1

ξi,t (1)

subject to yi(wTs(xi) + b) ≥ 1− ξi,t,

ξi,t ≥ 0, for i = 1, . . . , n,

where C is the so-called soft margin parameter that determines the trade-off between the op-
timal combinatorial choice of the margin and the classification error, and ξ = (ξ1, . . . , ξn)T

is a non-negative slack variable vector that controls misclassification. The dual procedure
of (1) is to solve

Max
α

n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjK(xi, xj), (2)

subject to
n

∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, . . . , n, (3)

where αi’s are the dual variables and the scalar function K(·, ·) is called a kernel function
defined as K(xi, xj) =< s(xi), s(xj) > with < ·, · > being the inner product operator.
Denote SV the index set of the support vectors {j | αj > 0 for j = 1, 2, . . . , n}. With all the
observations xi, i ∈ SV, the kernel form of the SVM boundary can be written as

∑
i∈SV

αiyiK(xi, x) + b = 0. (4)

Consequently, the label of an instance x is assigned by sign(D(x)), with

D(x) = ∑
i∈SV

α̂iyiK(xi, x) + b̂. (5)

where â represents the predicted value of a. Theoretically, the bias term bj is proved
identical for all instances in the SV [21]. Practically, the biased term b̂ is determined as the
average of all the estimated b̂j’s at all the support vectors, where b̂j is obtained by using the
j-th support vector xj

b̂j = yj − ∑
i∈SV

α̂iyiK(xi, xj).

A k-category classification problem with the class label yi taking value from {1, . . . , k}
can be generally decomposed into a sequence of binary classification problems using the
one-versus-all strategy. Specifically, the m-th binary classification, m = 1, . . . , k, is set up for
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a training sample {xi, y(m)
i }, where y(m)

i = I(yi = m)− I(yi 6= m) and I(·) is the indicator
function. Hence, by applying the SVM procedure for binary classification, k classifiers can
be constructed with k kernels K1, . . . , Kk, and the m-th kernel form of the SVM boundary
between the m-th class and the remaining (k− 1) classes can be written as

Dm(x) = ∑
i∈SVm

α
(m)
i y(m)

i Km(xi, x) + b(m) (6)

With the estimated decision functions from all m-th binary classifications, the final
class label of an instance can be assigned using a majority voting procedure.

Quite a few typical kernels are available for the SVM procedure. One is the radial
kernel K(x, x′) = f (−‖x− x′‖2/2), such as the Gaussian Radial Basis Function kernel,

K(x, x′) = exp(−‖x− x′‖2/2σ2).

Another type of kernel takes a form of the inner product K(x, x′) = f (< x, x′ >), such
as a polynomial kernel with degree d,

K(x, x′) = (1+ < x, x′ >)d.

2.2. Conformal Transformation and Adaptive Kernel Machine

From the geometrical point of view, when the feature space F is the Euclidean space,
the Riemannian metric is induced in the input space I. Take a two-dimensional case, for
instance, a small change d(x) in the input space will be mapped as ds(x) in the feature space

ds(x) = ∇s · dx, (7)

where

∇s =

(
∂ s(x)

∂ x

)
=


∂ s1(x)

∂ x1
. . . ∂ s1(x)

∂ xp
...

...
...

∂ sl(x)
∂ x1

. . . ∂ sl(x)
∂ xp

. (8)

Thus, the squared length of ds(x) can be written in the quadratic form as

‖ds(x)‖2 = (ds(x))Tds(x) = ∑
ij

sij(x)dxi dxj, (9)

where
sij(x) = (∇s)T · (∇s). (10)

Lemma 1 ([1]). Suppose K(p, q) is a kernel function, and s(·) is the corresponding mapping in the
support vector machine. Then

sij(p) =
∂

∂pi

∂

∂qj
K(p, q)|q=p. (11)

Detailed proof is given in Appendix A.
Though the parameters of kernel functions are able to manipulate the geometric char-

acteristics of the feature space F to some degree, conformal transformation on the original
kernel function can further contribute to great adaptability. Conformal transformation is a
function mapping that projects the original input space to a new feature space with the
angles between vectors being preserved in a local area [1]. Define

s̃(x) = c(x)s(x) (12)
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and
K̃(x, x′) =< s̃(x), s̃(x)′) >= c(x)c(x′) < s(x), s(x′) >= c(x)c(x′)K(x, x′), (13)

then K̃(x, x′) corresponds to the mapping s̃ that may increase the separation for a properly
chosen positive scalar function c(x) which has larger values at the support vectors identified
using the kernel K(x, x′). Furthermore, K̃ can be easily shown to satisfy the Mercer positivity
condition, the sufficient condition for being a kernel function. Specifically, we employ the
L1-norm adaptive radial basis function (RBF) kernel proposed in [1]:

c(x) = e−|D(x)|dM(x) (14)

where
dM(x) = AVGi∈{‖s(xi)−s(x)‖2<M, yi 6=y}(‖s(xi)− s(x)‖2), (15)

and M can be regarded as the distance between the nearest and the farthest support
vectors under the original mapping s(x). In this way, the average on the right-hand side
can comprise all the support vectors different from the currently considered instance in
the neighborhood of s(x) within the radius of M. This takes into account the spatial
distribution of the support vectors in the feature space F, and hence partially reflects the
spatial association of the instances in the training set. This method turns out to be robust
and efficient [1].

2.3. Adaptive Kernel Machine for Multi-Class Cases

To apply the adaptive kernel machine to a multi-class classification problem, we first
apply the basic SVM to all k classes of a training sample by employing the one-versus-all
strategy, and obtain k initial decision boundaries as well as the predicted labels of all
instances. We then split the training sample in k datasets using the label of class ŷi from the
initial round SVM, represented by S1, S2, . . . , Sk, respectively. This step is essential in the
sense of finding the approximated locations of support vectors and the initial boundaries.
Similar to the idea of conformal transformation in the binary case, the adaptive data-
dependent kernel transformation function is defined as

c(x) =


exp(−p1(x)|D1(x)|), if x ∈ S1

exp(−p2(x)|D2(x)|), if x ∈ S2

. . .
exp(−pk(x)|Dk(x)|), if x ∈ Sk

(16)

where pm(x), m = 1, . . . , k, are functions of data that will be determined to control the
decay rates and hence further affect the performance of the classifier.

2.4. Specification of Functions pm(x)

In an imbalanced data classification, determination of appropriate weights for each
category is important so that the problem can be transferred back to the approximately
balanced case. Generally, there are two requirements for the choice of weights. One is
that the data in the majority class should be allocated with a smaller weight than those
in the minority class so that the data are somewhat balanced in the contribution to the
decision function. The other is the natural restriction that the sum of the weights should be
1. Essentially, for imbalanced data, the weights can be set as the reciprocal of the sizes of
the classes in the training sample. Let nm denote the training sample size for the m-th class,
m = 1, . . . , k. Then the weightings are defined as

wm =
1/n2

m

∑k
i=1 1/n2

m
. (17)
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In this way, wms show the sparse distribution nature of each category. Note that a
L2-norm is adopted when building wm in (17). Although Lp-norm (p > 0) can be applied
in general, such as the L1-norm, in real applications, we found the L2-norm would show
the best empirical performance.

As wms do not involve the information of x, we further introduce the idea of construct-
ing c(x) in the binary case to include information from x. Define

dm(x) = AVGj∈SVm(‖sm(xj)− sm(x)‖2) = AVGj∈SVm

(
Km(xj, xj) + Km(x, x)− 2Km(xj, x)

)
(18)

where SVm is the support vector set from the initial SVM with the binary SVM procedure
in the m-th class, Km(·, ·) is the kernel function adopted in the m-th binary SVM and
sm(·) is its corresponding mapping function. In practice, we adopt a common kernel
function Km(·, ·), m = 1, . . . , k, such as the popular Gaussian kernel function, to simplify
the calculation. Consequently, we define

pm(x) = wm · dm(x) (19)

so that the influence from the size of the class is taken into account.
Another potential choice of pm(x) could be

pm(x) = AVGi∈{‖sm(xi)−sm(x)‖2<Qm , yi 6=y}(‖sm(xi)− sm(x)‖2), (20)

where the tuning parameter Qm can also be regarded as the distance between the nearest
and the farthest support vector in SVm from sm(x) within the same class. When k is small
or moderate, this setting can be meaningful. However, when k is large, the computational
cost may arise since more tuning parameters need to be determined. To avoid the problem,
we propose to use a universal control Q while taking the weights wm into account. The
final version of pm(x) is constructed as

pm(x) = AVGi∈{‖sm(xi)−sm(x)‖2<Q·wm , yi 6=y}(‖sm(xi)− sm(x)‖2) (21)

In this way, the classification can be more robust to extreme cases in spatial distribu-
tion, which may push the classification boundaries towards the majority classes, while
the weights are considered to balance the training set so that the performance of the
classification is enhanced.

Some other techniques are seen in the literature, though they may show some draw-
backs in different situations for imbalanced data. For example, Wu and Amari [22] made
some improvements by introducing different tuning parameters for different classes so
that the local density of support vectors can be accommodated. With the heavy com-
putational cost it brings, the performance in high-dimension cases turns out uncertain.
Williams et al. [23] also extended their binary scaling SVM technique to the multi-class
case; however, its distance tuning parameter, corresponding to the value of Q · wm in our
case, is fixed throughout the whole region. This inflexible setting cannot reflect the local
information, especially when the density of support vectors is quite high. Also, using
L2-norm of D(x) may lead to unstable classification performance in high dimensional cases
due to a faster decay rate to a constant e−k compared with our proposed method.

2.5. Data-Adaptive SVM Algorithm for Multi-Class Case

With c(x) constructed in (16), we conformally transfer the k kernels trained from the
initial round of multi-class SVM, K1, . . . , Kk into

K̃m(xi, xj) = c(xi)c(xj)K(xi, xj), (22)

where m = 1, . . . , k, c(·) is defined in (16) with pm(x) as (21). Km(·, ·) is usually set as the
Gaussian kernel function during the first round of SVM. The performance of using the
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form in (19) is similar empirically. Based on the updated kernels, the second round SVM is
then conducted and predictions of labels for all instances are obtained. It is seen that

1. The magnification will be almost constant along the separating surface D(x) = 0 for
each boundary;

2. The magnification will be largest where the contours are closest locally. (See more
details in the Appendices.)

Thus, as long as the parameters C and σ in the kernel machine (and the controlling
parameter Q if the form of pm(x) in (21) is adopted) are tuning adaptively with data, the
classifiers can be trained, and hence the subjects’ labels can be predicted.

To conclude the section, the algorithm of the whole procedure of the multi-label
classification problem is described as follows. A regular SVM classifier is trained with an
ordinary Gaussian radial basis kernel function, and the support vectors are found so that the
separating boundaries can be approximately determined using the one-versus-all technique
in the first stage. Based on the spatial information of the support vectors, the conformal
transformations will be constructed, and the original kernel functions are updated. Then a
new round of SVM optimization problems is conducted with the updated kernel function
so that the boundary in each one-versus-all strategy can be found. Consequently, the
predicted labels for subjects can be estimated. The whole procedure is summarized in
Algorithm 1.

Algorithm 1. Multi-class data adaptive kernel scaling support vector machine (SVM).

Input: yi, xi, i = 1, ..., n; a Gaussian kernel functionK(·, ·)
1: A regular SVM classifier is trained with an ordinary Gaussian radial basis kernel function;
2: Based on the spatial information of these support vectors, the conformal transformation

is constructed, and the original kernel function is updated;
3: A new round of SVM optimization problems is conducted with the updated kernel

function, and the boundaries for different classes are found;
4: The predicted class labels for instances are determined by majority voting.

3. Numerical Investigation

In this section, we conduct intensive numerical experiments to evaluate the per-
formance of the proposed classification procedure and compare them with the existing
competitors. The whole study will be divided into two parts, one for simulated data and
the other for a real image dataset. We will compare the proposed method with four existing
methods, including the traditional SVM and methods from Wu [22], William [23] and
Maratea [24].

We assess the performance of the classifiers using various quantitative measures. One
of them is the overall accuracy, defined by

Poverall =
TP + TN

TP + FP + TN + FN
=

TP + TN
n

,

where TP, FN, FP and TN represent the number of instances of true positive, false negative,
false positive and true negative in the test sample, respectively. However, for imbalanced
data, the overall accuracy rate may not be sufficient [24]. We further adopt two other
measurements on classifiers’ performance for imbalanced data, namely the F-score and the
G-mean, respectively [25]. Specifically, the F-score is defined as

Fscore =
2× Ppre × Pspe

Ppre + Psen
,

and G-mean as
Gmean =

√
Psen × Pspe,
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where Ppre, Psen and Pspe are the precision, the sensitivity and the specificity, respectively.
They are obtained by

Ppre =
TP

TP + FP
,

Psen =
TP

TP + FN
,

and
Pspe =

TN
TN + FP

.

Note that F-score measures the harmonic mean of the precision and sensitivity, while
G-mean is constructed as the geometric mean of the sensitivity and the specificity, giving a
more fair comparison between the positive and negative classes, regardless of its size. To
further evaluate the numerical performance of the multi-category classification, we employ
the multi-class ROC and the AUC measures [25].

3.1. Simulation Study

First, we conduct simulation studies to evaluate the performance of the proposed
method and compare it with the competitors in the literature. Three scenarios are con-
sidered. Each of them includes the balanced, moderately imbalanced, and extremely
imbalanced cases, respectively. The Gaussian RBF kernel is employed during the first
round of classification, if not mentioned elsewhere.

For convenience, the input space is 2-dimensional, and all training data are generated
using three classes of bivariate Gaussian distributions with means vectors (2, 2), (4, 3), (3, 2),
and identical covariance matrix γ · Σ, where γ is a nuisance parameter that controls the
overlapping proportion of the classes. Moderate covariance is incorporated for all pairs
with a correlation coefficient ρ = 0.3, and the variance of all variables is 1.

The overall sample size for the training data is set as 600 and is separated into
three classes by different weights in three different scenarios. The class size is (200, 200, 200)
in Scenario 1, (100, 200, 300) in Scenario 2, and (20, 100, 480) in Scenario 3. In each scenario,
different combinations of parameters that need to be tuned will be considered. The cost
parameter C is chosen from the set {0.1, 0.2, 0.5, 1, 5, 8, 40, 100, 500} and σ takes value from
the set {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100}. As Q is the threshold controlling the size of the local
neighborhood, it is chosen by a grid search from the set {0.1, 0.2, . . . , 1} times the maximal
Euclidean distance between all pairs of data points in the sample. All classifiers are tuned
properly with respect to the corresponding measures.

The classification procedure is as follows. First, we train the classifiers with the
traditional SVM using the one-versus-all strategy, and the support vectors are identified
approximately. The kernel functions for all the methods are then updated adaptively by
conformal transformation with different scalar function c(x), using pm defined in (21). A
second round of SVM is then conducted, and the estimated class labels for observations in
the test sample will be given and consequently compared with the true labels. Five-fold
cross validation is employed to obtain the misclassification rate for each simulated dataset,
and the whole process is repeated 1000 times. With the accuracy measures defined above,
the performance of all the classifiers is shown in Tables 1–3, and Figures 1–3. Similar results
are seen in the proposed method with the other way of defining pm.
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Table 1. F-score (F), G-mean (G) and the AUC (A) measures for all five classification methods in Scenario 1 for n1 = 200,
n3 = 200 and n3 = 200, respectively. Max margin is 0.02.

SVM Wu [22] William [23] Maratea [24] Our Method

C σ F G A F G A F G A F G A F G A

8 0.1 0.39 0.38 0.52 0.43 0.43 0.54 0.59 0.59 0.61 0.71 0.70 0.75 0.78 0.79 0.80
8 0.5 0.43 0.42 0.55 0.47 0.46 0.56 0.66 0.66 0.69 0.75 0.75 0.78 0.81 0.81 0.83
8 5.0 0.47 0.46 0.56 0.53 0.52 0.59 0.68 0.68 0.72 0.78 0.77 0.81 0.84 0.83 0.85

40 0.1 0.45 0.45 0.55 0.44 0.43 0.54 0.61 0.61 0.66 0.73 0.72 0.75 0.81 0.81 0.85
40 0.5 0.53 0.52 0.57 0.51 0.50 0.55 0.67 0.67 0.71 0.75 0.75 0.78 0.84 0.83 0.88
40 5.0 0.56 0.55 0.59 0.62 0.62 0.67 0.71 0.72 0.78 0.78 0.78 0.81 0.86 0.86 0.88

100 0.1 0.52 0.51 0.57 0.61 0.59 0.62 0.64 0.63 0.68 0.78 0.79 0.81 0.84 0.85 0.88
100 0.5 0.60 0.58 0.62 0.67 0.65 0.69 0.77 0.67 0.76 0.79 0.80 0.83 0.86 0.86 0.90
100 5 .0 0.69 0.66 0.71 0.71 0.70 0.73 0.79 0.72 0.80 0.81 0.82 0.84 0.88 0.88 0.92

Table 2. F-score (F), G-mean (G) and the AUC (A) measures for all five classification methods in Scenario 2 for n1 = 100,
n3 = 200 and n3 = 300, respectively. Max margin is 0.04.

SVM Wu [22] William [23] Maratea [24] Our Method

C σ F G A F G A F G A F G A F G A

8 0.1 0.29 0.30 0.51 0.40 0.40 0.52 0.49 0.49 0.55 0.62 0.60 0.63 0.77 0.76 0.80
8 0.5 0.32 0.32 0.51 0.42 0.42 0.55 0.58 0.57 0.63 0.66 0.65 0.71 0.78 0.78 0.82
8 5.0 0.36 0.36 0.52 0.48 0.49 0.55 0.61 0.60 0.67 0.71 0.72 0.77 0.80 0.80 0.84

40 0.1 0.40 0.40 0.54 0.54 0.53 0.57 0.57 0.58 0.62 0.65 0.66 0.71 0.80 0.80 0.83
40 0.5 0.50 0.42 0.52 0.59 0.58 0.64 0.65 0.64 0.69 0.68 0.67 0.73 0.81 0.80 0.85
40 5.0 0.56 0.56 0.61 0.62 0.60 0.64 0.68 0.66 0.72 0.72 0.73 0.77 0.82 0.82 0.88

100 0.1 0.42 0.39 0.54 0.57 0.55 0.61 0.65 0.64 0.69 0.66 0.68 0.75 0.84 0.83 0.88
100 0.5 0.52 0.50 0.59 0.63 0.65 0.71 0.70 0.69 0.75 0.71 0.72 0.77 0.85 0.84 0.89
100 5.0 0.59 0.61 0.66 0.68 0.70 0.74 0.75 0.76 0.79 0.75 0.74 0.81 0.86 0.87 0.91

Table 3. F-score (F), G-mean (G) and the AUC (A) measures for all five classification methods in Scenario 3 for n1 = 20,
n3 = 100 and n3 = 480, respectively. Max margin is 0.05.

SVM Wu [22] William [23] Maratea [24] Our Method

C σ F G A F G A F G A F G A F G A

8 0.1 0.25 0.23 0.50 0.34 0.32 0.51 0.45 0.46 0.53 0.58 0.57 0.61 0.75 0.74 0.79
8 0.5 0.28 0.27 0.51 0.37 0.38 0.53 0.54 0.52 0.60 0.62 0.64 0.69 0.77 0.77 0.82
8 5.0 0.32 0.29 0.51 0.46 0.44 0.53 0.57 0.58 0.62 0.68 0.66 0.72 0.79 0.79 0.84

40 0.1 0.35 0.34 0.51 0.51 0.49 0.54 0.53 0.54 0.59 0.60 0.59 0.64 0.79 0.78 0.84
40 0.5 0.47 0.45 0.54 0.55 0.54 0.60 0.59 0.58 0.63 0.64 0.64 0.71 0.80 0.80 0.85
40 5.0 0.51 0.52 0.58 0.57 0.55 0.62 0.63 0.62 0.68 0.68 0.69 0.75 0.81 0.81 0.84

100 0.1 0.38 0.37 0.51 0.54 0.52 0.58 0.61 0.60 0.64 0.62 0.63 0.70 0.82 0.82 0.85
100 0.5 0.45 0.45 0.55 0.59 0.57 0.64 0.65 0.64 0.72 0.67 0.67 0.74 0.84 0.84 0.87
100 5.0 0.55 0.55 0.60 0.62 0.63 0.68 0.71 0.71 0.76 0.71 0.70 0.75 0.85 0.86 0.91
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It is seen that all methods considered here have improved performances comparing to
the ordinary SVM in almost all scenarios with different combinations of the parameters C
and σ. In general, the proposed method outperforms all the other classifiers considered,
especially in the imbalanced data. When σ gets larger with fixed C, the misclassification
rate tends to decrease in all the methods compared. When σ is relatively small, the
proposed method performs better than those of Wu and Williams’ methods, while if σ is
relatively large, all the methods are nearly the same. This is because when σ is large, the
feasible solution set gets large, and all of the methods tend to find the optimal solution.
Correspondingly, when C increases, the budget for misclassification gets bigger, which
means more tolerance is permitted so that the two classes can be separated. In this scenario,
we found that pm is roughly the same, approximately the reciprocal of |D|max. This makes
sense because in the balanced-data case, the density of the distributed SVs is roughly
uniform, and hence the averages of the distance in the feature space for each data point are
roughly the same.

For imbalanced scenarios the performances of all methods turn out to be a bit worse
than the balanced case with no surprise due to the non-uniformly distributed support
vectors. The change of the misclassification rate with C and σ is similar to that in the
balanced data case. The proposed method performs the best among all the methods.

Figure 1. Performance of the competitor methods for Scenario 1.
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Figure 2. Performance of the competitor methods for Scenario 2.

Figure 3. Performance of the competitor methods for Scenario 3.
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3.2. A Real Prostate Caner MRI Dataset

In this section, we apply the proposed method to a prostate cancer MR image dataset.
The study aims to find statistical methods to classify cancer and non-cancer areas or grades
of cancer by the imaging data obtained by imaging collection equipments. In this case, nine
common classes are labeled and listed as follows, indicating different levels of severity
of cancer.

• Atrophy: As means literally (non-cancer);
• EPE: Prostatic intraepithelial neoplasia (non-cancer);
• PIN: Prostatic intraepithelial neoplasia (non-cancer);
• G3: Tumour focus that is all Gleason 3 (cancer);
• G4: Tumour focus that is all Gleason 4 (cancer);
• G3+4: Tumour focus all predominately G3 with intermingled G4 (cancer);
• G4+3: Tumour focus all predominately G4 with intermingled G3 (cancer);
• G4+5: Tumour focus all predominately G4 with intermingled G5 (cancer);
• OtherProstate: Prostate tissue that does not fall into the other categories (non-cancer).

Note that the labels are given at the voxel level. That is, for a specific patient, it is
very likely to have different voxels (indicating different positions of the prostate tissue)
with different classes. A patient that has G3 + 4-type cancer in some areas is likely to have
G3-type cancer as well as OtherProstate-type of voxels in other areas. Our objective is to
predict class labels at the voxel level. There are several labels associated with G5, however,
the whole dataset contains only one patient with a very tiny area of G5 and the associated
type of cancer. Therefore, G5 is extremely imbalanced.

In the first phase of the study, 21 patients are involved and more than 400 images
are collected. Predictors on each voxel are the three-dimensional intensity measures from
MRIs, denoted as T2W intensity, ADC intensity and C-Grade intensity. Other measures
such as DCE and DWI are only available to part of the patients and hence are not included
in the training process.

To adopt the proposed data-adaptive scaling in this multi-class case, two-stage SVMs
are required. During the first stage, a standard SVM with the selected kernel is conducted
so that the support vectors from the original dataset can be found. Based on the identified
support vectors, the kernel functions are updated. Then, a second-stage SVM is conducted
with the updated kernel, and the resulting estimated boundary will be used as the rule for
classification. In terms of choosing appropriate tuning parameters for each method, 7-fold
cross validation is conducted for 500 times at the patient level.

To assess the performance, we compare our proposed methods with both traditional
and data-adaptive multi-category classification methods. In terms of the traditional meth-
ods, one-versus-one (1vs1) and one-versus-all (1vsA) from indirect methods, and the
Crammer and Singer’s (CS) direct methods and He’s Simplified SVM (simSVP) will be
included, while for the data-adaptive methods, Amari’s and William’s adaptively scaling
will be included. In terms of the criterion of the classification performance, misclassification
rate, percentage of support vectors in the whole dataset, F-score and G-means along with
their margins are reported.

Table 4 presents the assessment measures for all the methods considered. Obviously,
the proposed method performs almost the best among all the compared methods. A
highlight point is that the proposed method has the smallest margins in all performance
measures, resulting from the property of the robust decay of the magnification effect from
the proposed data-adaptive kernel. In terms of the accuracy, the proposed method has a
similar misclassification rate to the indirect methods, which is significantly smaller than the
rest of the methods. F-score and G-means are the largest for the proposed method, much
larger than other data-adaptive kernel methods. The percentage of support vectors that are
used for constructing the classifiers is the smallest for the proposed method.
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Table 4. Outcomes of multi-class prediction on the Prostate Cancer Program.

Methods Error(%) SV(%) F-Score G-Means

Proposed 8.06± 0.58 17.46± 0.57 0.84± 0.05 0.81± 0.04
Amari 11.88± 1.12 21.33± 1.27 0.70± 0.09 0.66± 0.10
William 10.21± 0.97 18.93± 1.65 0.74± 0.12 0.71± 0.08
CS 9.20± 1.22 17.57± 1.12 0.77± 0.06 0.73± 0.06
simSVM 9.33± 1.20 18.29± 1.07 0.78± 0.10 0.74± 0.09
1vs1 8.20± 1.26 25.41± 2.87 0.81± 0.06 0.77± 0.07
1vsA 8.25± 1.57 24.16± 2.62 0.82± 0.06 0.76± 0.06

It is worth pointing out that among those wrongly predicted labels, G4 + 3 is the
dominant class. In other words, the misclassification always happens in G4 + 3 type cancer.
This is because this type of cancer is really rare in the training sample, taking only 1–2%
among all the labels. These extremely imbalanced data have made it very difficult to be
detected with a high accuracy. The proposed method can detect around 60% among this
type, while other data adaptive (Amari’s and William’s) methods can only find less than
20%. All other methods cannot detect this class. Also, only our method detects the G5 class
from the only one patient, while all competitor methods fail.

4. Concluding Remarks

In this paper, we developed a new data-dependent SVM construction technique for
the multi-category classification problem. Based on the data-adaptive kernel SVM for the
binary case, we proposed a new method to construct the data-dependent kernel for the
multi-class setting, especially when the data are imbalanced. The data-dependent kernel
functions have a more robust decay rate and can vary along with the density of the size
of neighbors. Thus, the kernel can be adapted optimally for a specific dataset. Numerical
results from both synthetic and real datasets have shown the excellent performance of
the proposed method. Not only does the proposed method outperform in terms of the
commonly used accuracy measures such as the F-score and G-means, compared with the
competitors, but also successfully detects more than 60% of instances from the rare class in
the real data, while the competitors can only detect less than 20%. A possible future work
is to select relevant predictors for the multi-class kernel functions and consider the spatial
association between different images. It is worth noting that the misclassification rate will
be affected by the distance of the mean vectors. For instance, the misclassification will not
occur if the centers of the three Gaussian distributions are sufficiently far from each other
when the covariance matrix is set as unity. The proposed method may be useful in other
scientific research fields, such as detecting the boundaries of multiple regions of interest.
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Appendix A. Proof of Lemmas and Theorems

Appendix A.1. Proof of Lemma 1

Proof. By the definition of a reproducing kernel function K(x, z) with its values λk and the
corresponding scalar eigenfunctions gk(x), we have∫

K(x, z) · gk(z) dz = λk · gk(x)

where k = 1, 2, . . . , l. Then the kernel is represented as

K(x, z) = ∑
k

λk · gk(x) · gk(z).

By rescaling the function gk(·) as sk(x) =
√

λkgk(x), the kernel function can be further
presented as

K(x, z) = ∑
k

sk(x) · sk(z) = [s(x)]T · [s(z)]

where [s(x)]T = (s1(x), s2(x), . . . , sl(x)) and [·]T is the transpose operator. Thus, if we
further define

∇s =

(
∂ s(x)

∂ x

)
=


∂ s1(x)

∂ x1
. . . ∂ s1(x)

∂ xp
...

...
...

∂ sl(x)
∂ x1

. . . ∂ sl(x)
∂ xp


and

sij(x) =

(
∂

∂xi
s(x)

)T
·
(

∂

∂xj
s(x)

)

=

(
∂s1(x)

∂xi
, . . . ,

∂sl(x)
∂xi

)
·
(

∂s1(x)
∂xj

, . . . ,
∂sl(x)

∂xj

)T

,

as in (8) and (10), it follows that

∂

∂xi

∂

∂zj
K(x, z)|z=x = [∇s(x)]T · ∇s(z) =

(
∂

∂xi
s(x)

)T
·
(

∂

∂xj
s(x)

)
= sij(x). ]

The lemma shows how a mapping s is associated with the corresponding kernel
function K.
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