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Abstract: Warped products are the most natural and fruitful generalization of Riemannian products.
Such products play very important roles in differential geometry and in general relativity. After
Bishop and O’Neill’s 1969 article, there have been many works done on warped products from
intrinsic point of view during the last fifty years. In contrast, the study of warped products from
extrinsic point of view was initiated around the beginning of this century by the first author in a
series of his articles. In particular, he established an optimal inequality for an isometric immersion of
a warped product N1 × f N2 into any Riemannian manifold Rm(c) of constant sectional curvature c
which involves the Laplacian of the warping function f and the squared mean curvature H2 . Since
then, the study of warped product submanifolds became an active research subject, and many papers
have been published by various geometers. The purpose of this article is to provide a comprehensive
survey on the study of warped product submanifolds which are closely related with this inequality,
done during the last two decades.

Keywords: warped products; warped product immersion; inequality; space forms; space of quasi-
constant curvature; eigenfunction; Laplacian

MSC: 53A07; 53C40; 53C42; 53B25

1. Introduction

For two given Riemannian manifolds, B and F, of positive dimensions, endowed with
Riemannian metrics, gB and gF, respectively, and, for a positive smooth function, f on B,
the warped product N = B× f F is, by definition, the manifold B× F equipped with the
warped product Riemannian metric g = gB + f 2gF (see Reference [1]). The function f is
called the warping function of the warped product.

The warped products play important roles in differential geometry, as well as in
physics, especially in general relativity. For instance, the best relativistic model of the
Schwarzschild spacetime that describes the out space around a massive star or a black hole
can be described as a warped product (see Reference [2,3]). (For recent surveys on warped
products as Riemannian submanifolds, we refer to Reference [2,4]).

One of the most fundamental problems in the theory of submanifolds is the im-
mersibility of a Riemannian manifold into a Euclidean m-space Em (or more generally,
into a real space form Rm(c) of constant sectional curvature c). According to J. F. Nash’s
embedding theorem [5], every Riemannian manifold can be isometrically immersed into
some Euclidean space with sufficiently high codimension. The Nash’s theorem was aimed
for in the hope that, if Riemannian manifolds could always be regarded as Riemannian
submanifolds, this would then yield the opportunity to use help from submanifold theory.

Based on Nash’s theorem, one of the first author’s research programs posted in
Reference [6] is:
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“To search for control of extrinsic quantities in relation to intrinsic quantities of Riemannian
manifolds via Nash’s theorem and to search for their applications”.

Since Nash’s embedding theorem implies that every warped product N1 × f N2 can
always be regarded as a Riemannian submanifold in some Euclidean space, a special case
of the research program posted in Reference [6] is to study the two following fundamental
problems:

Problem 1.
∀ N1 × f N2

isometric−−−−−→
immersion

Em or Rm(c) =⇒ ???.

Problem 2. Let N1× f N2 be an arbitrary warped product isometrically immersed into Em (or into
Rm(c)) as a Riemannian submanifold. What are the relationships between the warping function f
and the extrinsic structures of N1 × f N2?

In the beginning of this century, the first author provided several solutions to these
two fundamental problems in a series of his articles (see Reference [6–10]). For instance,
he established in Reference [6,10] some sharp relationships between the Laplacian of
the warping function and the squared mean curvature of warped product submanifolds
N1 × f N2 in real space forms. As an immediate application, he proved that, if the warping
function f of the warped product N1 × f N2 is harmonic, then there do not exist any
isometric minimal immersion from N1 × f N2 into a hyperbolic space. Since then, there are
many interesting results in warped products in this respect obtained by many authors.

The main purpose of this article is to provide a comprehensive survey on the study of
warped product submanifolds which are closely related with this inequality mentioned in
abstract, which have been done during the last two decades.

2. Preliminaries

We follow the notations from the books of References [2,11,12]. Let N be an n-
dimensional submanifold of a Riemannian m-manifold M̃. Denote by ∇ and ∇̃ the Levi-
Civita connections of N and M̃, respectively. We choose a local field of orthonormal frame
e1, . . . , en, en+1, . . . , em in M̃ such that, restricted to N, the vectors e1, . . . , en are tangent to
N and en+1, . . . , em are normal to N.

The Gauss and Weingarten formulas are given, respectively, by

∇̃XY = ∇XY + h(X, Y), (1)

∇̃Xξ = −Aξ X + DXξ, (2)

for any vector fields X, Y tangent to N and ξ normal to N, where h denotes the second
fundamental form, D the normal connection, and A the shape operator of the submanifold.
Let {hr

ij}, i, j = 1, . . . , n; r = n + 1, . . . , m, denote the coefficients of the second fundamental
form h with respect to e1, . . . , en, en+1, . . . , em.

The mean curvature vector
−→
H is defined by

−→
H =

1
n

trace h =
1
n

n

∑
i=1

h(ei, ei), (3)

where {e1, . . . , en} is a local orthonormal frame of the tangent bundle TN of N. A submani-
fold N is said to be minimal in M̃ if the mean curvature vector vanishes identically.

The squared mean curvature is given by H2 = 〈−→H ,
−→
H〉, where 〈 , 〉 is the inner product.

An isometric immersion ψ : N → M̃ between Riemannian manifolds is called pseudo-
umbilical if its shape operator A−→H at the mean curvature vector

−→
H satisfies A−→H X = λX

for any vector field X tangent to N, where λ is a smooth function on N. Similarly, an im-
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mersion φ : N1 × f N2 → M̃ is called N2-pseudo-umbilical if its shape operator A−→H satisfies
A−→H Z = λZ for any vector field Z tangent to N2.

Let R and R̃ be the Riemann curvature tensor of N and M̃, respectively. Then, the
equation of Gauss is given by

R(X, Y; Z, W) = R̃(X, Y; Z, W) + 〈h(X, W), h(Y, Z)〉 − 〈h(X, Z), h(Y, W)〉 (4)

for vector fields X, Y, Z, W tangent to N. In particular, if the ambient space M̃ is a Rieman-
nian m-manifold Rm(c) of constant sectional curvature c, then we have

R(X, Y; Z, W) = c {〈X, W〉〈Y, Z〉 − 〈X, Z〉〈Y, W〉}
+ 〈h(X, W), h(Y, Z)〉 − 〈h(X, Z), h(Y, W)〉.

(5)

For any n-dimensional submanifold N of a Riemannian manifold M̃, Equation (4) of
Gauss gives

2τ = n2H2 − ‖h‖2 + ∑
1≤i,j≤n

K̃(ei ∧ ej), (6)

where τ = ∑1≤i<j≤n K(ei ∧ ej) is the scalar curvature of M, and K and K̃ denote the sectional
curvature of M and M̃, respectively.

For a smooth function ϕ on N, the Laplacian of ϕ is defined by

∆ϕ =
n

∑
j=1
{(∇ej ej)ϕ− ej(ej ϕ)}. (7)

If N is compact, then every eigenvalue of ∆ is non-negative.
The ordinary warped product N1 × f N2 has been extended to multiply warped prod-

uct N1 × f2 N2 × · · · × f` N` in a natural way with the warping functions f2, . . . , f`, ` ≥ 2,
equipped with the multiply warped metric

g = g1 + f 2
2 g2 + · · ·+ f 2

` g`, (8)

where f2, . . . , f` are positive smooth functions on N1, and g1, . . . , g` denote the Riemannian
metrics of N1, . . . , N`, respectively.

For a multiply warped product N1 × f2 N2 × · · · × f` N`, we denote by D1, . . . ,D` the
distributions given by the vector fields tangent to N1, . . . , N`, respectively.

Remark 1. Throughout this paper, for a warped product N1 × f N2, we denote the dimensions
of N1 and N2 by n1 and n2, respectively, and the tangent bundles of N1 and N2 by D1 and
D2, respectively.

3. δ-Invariants and Basic Inequalities

Let N be an n-dimensional Riemannian manifold. Denote by K(π) the sectional
curvature associated with a 2-plane section π ⊂ TpN, p ∈ N. For an r-dimensional
subspace L ⊂ TpN with r ≥ 2, the scalar curvature τ(L) of L is defined by

τ(L) = ∑
1≤α<β≤r

K(eα ∧ eβ),

where {e1, . . . , er} is an orthonormal basis of L. In particular, τ(p) = τ(TpN) is the scalar
curvature of N at the point p ∈ N.

For an integer k ≥ 0, we denote by S(n, k) the set consisting of unordered k-tuples
(n1, . . . , nk) of integers ≥ 2 satisfying n > n1 and n1 + · · ·+ nk ≤ n. Let S(n) denote the
set of unordered k-tuples with k ≥ 0.
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For each k-tuple (n1, . . . , nk) ∈ S(n), the first author introduced the notion of δ-
invariant δ(n1, . . . , nk)(p) which is defined by (see Reference [13–15])

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)}, (9)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpN such that dim Lj =
nj, j = 1, . . . , k. In particular, we have

δ(∅) = τ (the trivial δ-invariant),

δ(2) = τ − inf K,

δ(n− 1)(p) = max Ric(p),

where K is the sectional curvature.

The non-trivial δ-invariants defined above are very different in nature from the “clas-
sical” scalar and Ricci curvatures, since scalar and Ricci curvatures are “total sum” of
sectional curvatures on a Riemannian manifold. In contrast, the δ-invariants are obtained
from the scalar curvature by deleting a certain amount of sectional curvatures.

Some other invariants of similar nature, i.e., invariants obtained from the scalar
curvature by removing a certain amount of sectional curvatures, are also known as δ-
invariants. For instance, one also has affine δ-invariants, warped product δ-invariant,
submersion δ-invariant, etc. (see Reference [12]).

For δ-invariants, we have the following optimal universal inequalities for any Rieman-
nian submanifold.

Theorem 1. Refs [12,15]: For any isometric immersion of a Riemannian n-manifold N into a
Riemannian m-manifold M̃, we have:

δ(n1, . . . , nk) ≤
n2(n + k− 1−∑k

j=1 nj)

2(n + k−∑k
j=1 nj)

H2 +
1
2

{
n(n− 1)−

k

∑
j=1

nj(nj − 1)

}
max K̃ (10)

for each k-tuple (n1, . . . , nk) ∈ S(n), where max K̃(p) denotes the maximum of the sectional
curvatures of M̃ restricted to 2-plane sections of TpN.

The equality case of (10) holds at a point p ∈ N if and only if the following two conditions hold:

(1) there exists an orthonormal basis {e1, . . . , em} such that the shape operator A at p takes
the form:

Aer =


Ar

1 . . . 0
...

. . .
... 0

0 . . . Ar
k

0 µr I

, r = n + 1, . . . , m, (11)

where I is an identity matrix, and Ar
j is a symmetric nj×nj submatrix satisfying trace (Ar

1) =

· · · = trace (Ar
k) = µr;

(2) for any k mutual orthogonal subspaces L1, . . . , Lk of TpN satisfying

δ(n1, . . . , nk) = τ −∑k
j=1τ(Lj)

at p, we have K̃(eαi , eαj) = max K̃(p) for any αi ∈ ∆i, αj ∈ ∆j with 1 ≤ i 6= j ≤ k + 1,
where ∆1, . . . , ∆k+1 are given by

∆1 = {1, . . . , n1}, . . .

∆k = {n1+ · · ·+nk−1+1, . . . , n1+ · · ·+nk},
∆k+1 = {n1+ · · ·+nk+1, . . . , n}.
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If the ambient space M̃m is a Riemannian manifold Rm(c) of constant sectional curva-
ture c, then Theorem 1 reduces to:

Theorem 2. Ref [15]: For any isometric immersion of a Riemannian n-manifold N into a Rieman-
nian m-manifold Rm(c) of constant sectional curvature c, we have:

δ(n1, . . . , nk) ≤
n2(n + k− 1−∑k

j=1 nj)

2(n + k−∑k
j=1 nj)

H2 +
1
2

{
n(n− 1)−

k

∑
j=1

nj(nj − 1)

}
c. (12)

The equality case of (12) holds at a point p ∈ N if and only if there exists an orthonormal basis
{e1, . . . , em} such that the shape operator A at p takes the form as in statement (1) of Theorem 1.

Remark 2. For Lagrangian version of Theorem 2, see Reference [16,17].

4. Warped Product Immersions

Let ψ : N → M̃ be an isometric immersion between two Riemannian manifolds and
let f be a smooth function on M̃. Denote by ∇ f the gradient of f and by D f the normal
component of ∇ f restricted on N. Assume that M̃ = M1 ×ρ M2 is a warped product and
φi : Ni → Mi, i = 1, 2, are isometric immersions between Riemannian manifolds. We define
a positive function f on N1 by f = ρ ◦ φ1. Then, the map

φ : N1 × f N2 → M1 ×ρ M2 (13)

given by φ(x1, x2) = (φ1(x1), φ2(x2)) is an isometric immersion, which is called a warped
product immersion (see Reference [18,19]).

The first author proved the following results on warped product immersions in
Reference [20].

Theorem 3. Let φ = (φ1, φ2) : N1× f N2 → M1×ρ M2 be a warped product immersion between
two warped product manifolds. Then, we have:

(1) φ is a mixed totally geodesic immersion;
(2) the squared norm of the second fundamental form of φ satisfies

‖h‖2 ≥ n2||D(ln ρ)||2 (14)

with the equality holding if and only if φ1 : N1 → M1 and φ2 : N2 → M2 are both totally
geodesic immersions;

(3) φ is N1-totally geodesic if and only if φ1 : N1 → M1 is totally geodesic;
(4) φ is N2-totally geodesic if and only if φ2 : N2 → M2 is totally geodesic and (∇(ln ρ))|N1 =

∇(ln f ) holds, i.e., the restriction of the gradient of ln ρ to N1 is the gradient of ln f , or
equivalently, D(ln ρ) = 0;

(5) φ is a totally geodesic immersion if and only if φ is both N1-totally geodesic and N2-
totally geodesic.

Theorem 4. A warped product immersion φ = (φ1, φ2) : N1 × f N2 → M1 ×ρ M2 between two
warped product manifolds is totally umbilical if and only if we have:

(1) φ1 : N1 → M1 is a totally umbilical immersion with mean curvature vector given by
−D(ln ρ), and

(2) φ2 : N2 → M2 is a totally geodesic immersion.

Theorem 5. Let φ = (φ1, φ2) : N1× f N2 → M1×ρ M2 be a warped product immersion between
two warped product manifolds. Then, we have:

(1) the partial mean curvature vector
−→
H 1 is equal to the mean curvature vector of φ1 : N1 → M1;

thus, φ is N1-minimal if and only if φ1 : N1 → M1 is a minimal immersion;
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(2) φ is N2-minimal if and only if φ2 : N2 → M2 is a minimal immersion and (∇(ln ρ))|N1 =
∇(ln f ) holds;

(3) φ is a minimal immersion if and only if φ2 : N2 → M2 is a minimal immersion and the mean
curvature vector of φ1 : N1 → M1 is given by (n2/n1)D(ln ρ).

Theorem 6. Let φ = (φ1, φ2) : N1 × f N2 → M1 ×ρ M2 be a warped product immersion from a
warped product N1 × f N2 into a warped product representation M1 ×ρ M2 of a real space form
Rm(c). Then, we have:

(1) the shape operator of φ satisfies

A−→H 1
Z =

(
∆ f
n1 f
− c
)

Z (15)

for Z in D2, where ∆ is the Laplacian on N1;
(2) for any X, Y ∈ D1 and Z ∈ D2, DZh(X, Y) = 0 holds, where D is the normal connection of

φ. In particular, we have DZ
−→
H 1 = 0;

(3) the two partial mean curvature vectors
−→
H 1 and

−→
H 2 are orthogonal to each other if and only if

the warping function f is an eigenfunction of the Laplacian operator ∆ with eigenvalue n1c;
(4) the warping function f is an eigenfunction of ∆ with eigenvalue n1c if and only if either

φ1 : N1 → M1 is a minimal immersion or (∇(ln ρ))|N1 = ∇(ln f ) holds;
(5) when c = 0, the two partial mean curvature vectors

−→
H 1 and

−→
H 2 are orthogonal to each other

if and only if the warping function f is a harmonic function;
(6) if φ1 : N1 → M1 is a non-minimal immersion and the two partial mean curvature vectors

−→
H 1 and

−→
H 2 are parallel at each point, then φ is N2-pseudo-umbilical and φ2 : N2 → M2 is

a minimal immersion.

5. The First Solutions to Problems 1 and 2

An isometric immersion of a warped product manifold N1 × f N2 into a Riemannian
manifold is called mixed totally geodesic if its second fundamental form h satisfies h(X, Z) = 0
for any vector fields X tangent to N1 and Z tangent to N2.

For orthonormal bases {e1, . . . , en1} and {en1+1, . . . , en1+n2} of N1 and N2, the partial
traces of h restricted to N1 and N2 are defined, respectively, by

trace h1 =
n1

∑
i=1

h(ei, ei), trace h2 =
n1+n2

∑
j=n1+1

h(ej, ej).

The notions of mixed totally geodesic warped product submanifolds and partial traces
of the second fundamental form can be extended to multiply warped product submanifolds
N1 × f2 N2 × · · · × f` N` in a Riemannian manifold in a natural way.

5.1. The First Solutions

The first solution to Problems 1 and 2 is given by the following.

Theorem 7. Ref [6]: Let φ : N1 × f N2 → Rm(c) be an isometric immersion of a warped product
into a Riemannian m-manifold of constant sectional curvature c. Then, we have:

∆ f
f
≤ (n1 + n2)

2

4n2
H2 + n1c, (16)

where H2 is the squared mean curvature of φ and ∆ denotes the Laplacian on N1.
The equality case of (16) holds identically if and only if φ : N1 × f N2 → Rm(c) is a mixed

totally geodesic immersion satisfying trace h1 = trace h2, where h1 and h2 denote the restrictions
of h to N1 and N2, respectively.
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Remark 3. The proof of Theorem 7 given in Reference [6] relied on detailed investigation of the
warped product δ-invariant δN1× f N2 defined by

δN1× f N2 = τ(N1 × f N2)− τ(N1)− τ(N2)

for the warped product N1 × f N2.

In terms of warped product immersions, Theorem 7 can be restated as the following.

Theorem 8. Ref [20]: Let φ : N1 × f N2 → Rm(c) be an isometric immersion of a warped product
into a Riemannian m-manifold of constant sectional curvature c. Then, we have:

∆ f
f
≤ (n1 + n2)

2

4n2
H2 + n1c. (17)

The equality case of (17) holds identically if and only if exactly one of the following two
cases occurs:

(1) the warping function f is an eigenfunction of the Laplacian operator ∆ with eigenvalue n1c
and φ is a minimal immersion;

(2) ∆ f 6= (n1c) f and locally φ is a non-minimal warped product immersion (φ1, φ2) : N1 × f
N2 → M1 ×ρ M2 of N1 × f N2 into some warped product representation M1 ×ρ M2 of
Rm(c) such that φ2 : N2 → M2 is a minimal immersion and the mean curvature vector of
φ1 : N1 → M1 is given by −(n2/n1)D(ln ρ).

There are examples which satisfy either case (1) or case (2) of Theorem 8 for c = 0,
c > 0 and c < 0. For instance, the following examples are given in Reference [20].

Example 1. There exist many minimal isometric immersions from some warped products
N1 × f N2 with harmonic warping function f into a Euclidean space. For instance, if N2 is a
minimal submanifold of the unit (m− 1)-hypersphere Sm−1 in Em centered at the origin
o, then the minimal cone C(N2) over N2 with vertex at o ∈ Em is the warped product
R+ ×s N2 with warping function f = s, which is a harmonic function. Here, s is the
coordinate function of the positive real line R+. This example provides many isometric
immersions of warped products in a real space form which satisfy the case (1) of Theorem 8.

Example 2. Let S2n1 be the unit 2n1-sphere equipped with the metric:

g = du2
1 + cos2 u1du2

2 + · · ·+
2n1−1

∏
k=1

cos2 uk du2
2n1

. (18)

If we put

g1 = du2
1 + cos2 u1du2

2 + · · ·+
n1−1

∏
k=1

cos2 uk du2
n1

,

g2 = du2
n1+1 + cos2 un1+1du2

n1+2 + · · ·+
2n1−1

∏
k=n1+1

cos2 uk du2
2n1

,

then S2n1 is locally isometric to N1 × f N2, where f = cos u1 · · · cos un1 , N1 = (Sn1 , g1) and
N2 = (Sn1 , g2). Further, the warping function f satisfies ∆ f = n1 f .

Let φ : N1 × f N2 → E2n1+1 be the inclusion of S2n1 in E2n1+1. Then, we have H2 = 1.
Thus, we obtain the equality case of (17). Since φ is non-minimal, Theorem 8 shows that φ
satisfies case (2) of Theorem 8.
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Example 3. Let N1 × f N2 denote the warped product representation of the unit 2n1-sphere
S2n1 with f = cos u1 · · · cos un1 , N1 = (Sn1 , g1) and N2 = (Sn1 , g2) given as in Example 2.
Let us consider a totally umbilical immersion:

φ : N1 × f N2 → H2n1+1(c), c < 0.

Then, H2 = 1 − c. Since ∆ f = n1 f , the equality case of (17) holds. Since φ is a
non-minimal immersion, φ : N1 × f N2 → H2n1+1(c) satisfies the case (2) of Theorem 8.

Example 4. Let N1 × f N2 denote the same warped product representation of S2n1 as given
in Examples 3 and 4. Let us consider a totally umbilical immersion:

φ : N1 × f N2 → S2n1+1(c), c < 1.

Then, H2 = 1− c. Since ∆ f = n1 f , the equality case of (17) holds. Now, it is easy to
verify that φ : N1 × f N2 → S2n1+1(c) satisfies the case (2) for 0 < c < 1.

5.2. Some Early Extensions of Theorem 7

Theorem 7 was extended to the following.

Theorem 9. Refs [21–23]: Let φ : N1 × f2 N2 × · · · × f` N` → M̃ be an isometric immersion of a
multiply warped product N = N1 × f2 N2 × · · · × f` N` into an arbitrary Riemannian manifold
M̃, where f2, . . . , f` are positive smooth functions on N1. Then, we have:

`

∑
j=2

nj
∆ f j

f j
≤ n2(`− 1)

2`
H2 + n1(n− n1)max K̃, (19)

where n = ∑`
j=1 nj and max K̃(p) denotes the maximum of the sectional curvature K̃ of M̃

restricted to plane sections in TpN at p ∈ N.
The equality case of (19) holds identically if and only if the following two conditions hold:

(1) φ is a mixed totally geodesic immersion satisfying trace σ1 = · · · = trace σ`;
(2) at each point p ∈ N, we have K̃(u, v) = max K̃(p), for any unit vector u ∈ Tp1 N1 and unit

vector v ∈ T(p2,...,p`)(N2 × · · · × N`).

This theorem was proved by modifying the proof of Theorem 7. In particular, if ` = 2,
Theorem 9 reduces to

Theorem 10. Refs [21–23]: Let φ : N1 × f N2 → M̃ be an isometric immersion of a warped
product N = N1 × f N2 into an arbitrary Riemannian manifold M̃. Then, we have:

∆ f
f
≤ n2

4n2
H2 + n1 max K̃, (20)

where max K̃(p) denotes the maximum of the sectional curvature K̃ of M̃ restricted to plane sections
in TpN at p ∈ N.

The equality case of (20) holds identically if and only if the following two conditions hold:

(1) φ is a mixed totally geodesic immersion satisfying trace σ1 = trace σ2;
(2) at each point p ∈ N, we have K̃(u, v) = max K̃(p) for any unit vector u ∈ Tp1 N1 and unit

vector v ∈ Tp2 N2.

The next result was obtain by B. D. Suceavă and M. B. Vajiac in Reference [24].
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Theorem 11. Let φ : N1 × f N2 → M̃ be an isometric immersion of a warped product N =

N1 × f N2 into an arbitrary Riemannian manifold M̃. Then, at each point p ∈ N1 × f N2, the
following inequality holds:

n2
∆ f
f

+ scal(TpN1) + scal(TpN2) ≤
n(n− 1)

2
‖H‖2 + ∑

1≤i<j≤n
K̃(ei ∧ ej), n = n1 + n2,

where {e1, . . . , en} is an orthonormal basis of N1 × f N2 at p, and scal denotes the scalar curvature
corresponding to the indicated tangent space with respect to the warped product metric.

Equality holds at a point p if and only if p is a umbilical point.

The proof of this theorem is based on the method used in Reference [25]. For some
further results on warped product submanifolds, also see Reference [26].

5.3. Several Direct Applications of Theorem 7

The following are some very easy applications of Theorems 7 and 9 (see Reference [2,6]).

Corollary 1. If N1× f N2 is a warped product of Riemannian manifolds in which warping function
f is a harmonic function, then we have:

(1) N1 × f N2 admits no isometric minimal immersion into any Riemannian manifold of negative
sectional curvature;

(2) every isometric minimal immersion from N1 × f N2 into a Euclidean space is a warped
product immersion.

Corollary 2. Let f be an eigenfunction of the Laplacian ∆ on N1 with positive eigenvalue λ. Then,
every Riemannian warped product N1 × f N2 does not admit any isometric minimal immersion into
any Riemannian manifold of non-positive sectional curvature.

Corollary 3. Let N1 be a compact manifold. Then,

(1) every Riemannian warped product N1 × f N2 does not admit an isometric minimal immersion
into any Riemannian manifold of negative sectional curvature;

(2) every Riemannian warped product N1 × f N2 does not admit an isometric minimal immersion
into a Euclidean space.

Example 5. There exist many minimal immersions of a warped product N1 × f N2 with harmonic
warping function f into a Euclidean space. For instance, if N2 is a minimal submanifold of the unit
(m− 1)-hypersphere Sm−1(1) ⊂ Em centered at the origin, then the minimal cone C(N2) over N2
with vertex at the origin of Em is a warped product R+ ×s N2 in which warping function f = s is
a harmonic function. Here, s is the coordinate function of the positive real line R+. This provides
many examples of minimal warped products in Em which satisfy the equality case of (16).

Example 5 implies that Theorem 7 and Corollary 1 are optimal. Examples 10.2, 10.3,
and 10.4 of Reference [2] showed that Corollaries 2 and 3 are optimal, as well.

5.4. Growth Estimates for Warping Functions of Warped Products

Let N1 be a complete non-compact Riemannian manifold. A function f on N1 is called
an Lp-function if

‖ f ‖Lp :=
(∫

N1

| f |pdv
)1/p

converges.
From Theorem 6.2 and Remark 8 of Reference [23], we know that, if f is an Lp-function

on N1 for some p > 1, then, for any Riemannian manifold N2, the warped product N1× f N2
does not admit any isometric minimal immersion into any Riemannian manifold with
non-positive sectional curvature.
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S. W. Wei, J. Li, and L. Wu [27] extended the scope of Lp or p-integrable functions on
complete non-compact Riemannian manifolds by generalizing them, for each given q > 1,
to “p-finite, p-mild, p-obtuse, p-moderate and p-small” functions that depend on p and
introducing the concepts of their counterparts “p-infinite, p-severe, p-acute, p-immoderate
and p-large” growth.

For instance, if N is a complete non-compact Riemannian manifold and B(x0; r) is the
geodesic ball of radius r centered at x0 ∈ N, then, for each q > 1, a function f on N is said
to have p-finite growth (or, simply, is p-finite) if there exists x0 ∈ N such that

lim
r→∞

1
rp

∫
B(x0;r)

| f |qdv < ∞,

and f has p-infinite growth (or, simply, is p-infinite) otherwise.
The first author and S. W. Wei discovered in Reference [23] some dichotomy between

constancy and “infinity” of the warping functions on complete non-compact Rieman-
nian manifolds for an appropriate isometric immersion. For instance, they have applied
Theorem 9 to prove the following result in Reference [23].

Theorem 12. Suppose q > 1 and that the warping function f of N1 × f N2 is one of the following:
2-finite, 2-mild, 2-obtuse, 2-moderate and 2-small. If N2 is compact, then there does not exist an
isometric minimal immersion from N1 × f N2 into any Euclidean space.

For further results in this respect, see Reference [23,28,29].

6. Another Early Solution to Problems 1 and 2

Besides Theorems 7–10, there is another solution to Problems 1 and 2 obtained in
Reference [10] for a warped product in a real space form.

Theorem 13. For any isometric immersion φ : N1 × f N2 → Rm(c), the scalar curvature τ of the
warped product N1 × f N2 satisfies

τ ≤ ∆ f
n1 f

+
n2(n− 2)
2(n− 1)

H2 +
1
2
(n + 1)(n− 2)c. (21)

If n = 2, the equality case of (21) holds automatically.
If n ≥ 3, the equality case of (21) holds identically if and only if one of the following two

statement occurs:

(1) N1 × f N2 is of constant sectional curvature c, the warping function f is an eigenfunction
with eigenvalue c, i.e., ∆ f = c f , and N1 × f N2 is immersed as a totally geodesic submanifold
in Rm(c);

(2) locally, N1 × f N2 is immersed as a rotational hypersurface into a totally geodesic submanifold
Rn+1(c) of Rm(c) with a geodesic of Rn+1(c) as its profile curve.

By applying the method given in the proof of Theorem 9 and using (6), Theorem 7
was extended in Reference [30] to the following.

Theorem 14. For any isometric immersion φ : N1 × f N2 → M̃ of N1 × f N2 into a Riemannian
manifold M̃, we have

∆ f
f
≥ n1n2

2(n− 1)
H2 − n1

2
‖h‖2 + n1 min K̃. (22)

Several applications of Theorem 14 were given in Reference [30].

Example 6. Any Riemannian manifold of constant sectional curvature c can be locally
expressed as a warped product in which warping function satisfies ∆ f = c f , e.g., the
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unit n-sphere Sn(1) is locally isometric to (0, ∞)×cos x Sn−1(1); the Euclidean n-space En

is locally isometric to (0, ∞) ×x Sn−1(1); the unit hyperbolic n-space Hn(−1) is locally
isometric to R×ex En−1. Besides these, there exist other warped product decompositions of
real space forms Rn(c) of constant sectional curvature c in which warping function satisfies
∆ f = c f .

For example, let {x1, . . . , xn1} be a Euclidean coordinate system of a Euclidean n1-
space En1 and let

f =
n1

∑
j=1

ajxj + b,

where a1, . . . , an1 , b are real numbers satisfying ∑n1
j=1 a2

j = 1. Then, the warped product
En1 × f Sn2(1) is a flat space in which warping function is a harmonic function. In fact, those
are the only warped product decompositions of flat spaces in which warping functions are
harmonic functions.

7. Geometric Inequalities for Warped Products in Spaces of Quasi-Constant Curvature

In this section, we present some extensions of Theorem 7 to warped product submani-
folds in spaces of quasi-constant curvature.

7.1. Spaces of Quasi-Constant Curvature

The notion of Riemannian manifolds of quasi-constant curvature was given in Refer-
ence [31]; namely, a Riemannian m-manifold (M̃, g) is said to be of quasi-constant curvature
if there exist a unit vector field G, called the generator, and two smooth functions κ, µ on M̃
such that the Riemann curvature tensor R̃ of (M̃, g) satisfies

R̃(X, Y)Z = κ{g(Y, Z)X− g(X, Z)Y}+ µ{g(Y, Z)ζ(X)G

− g(X, Z)ζ(Y)G + ζ(Y)ζ(Z)X− ζ(X)ζ(Z)Y},
(23)

for any vector fields X, Y, Z tangent to M̃, where ζ is the 1-form dual to G. We simply
denote such a Riemannian manifold by M̃m

κ,µ(G).
It is known that every Riemannian m-manifold of quasi-constant curvature with

κ 6= constant is a warped product of the form I × f Wm−1, where Wm−1 is a space of
constant sectional curvature (see Reference [32,33]).

A remarkable class of Riemannian manifolds of quasi-constant curvature is the class
of subprojective Riemannian manifolds. By definition, a Riemannian m-manifold M̃ of
dimension m ≥ 4 is called subprojective if it is conformally flat and its Cotton tensor L
satisfies (see Reference [34–36]):

L = αg + β(dα)⊗ (dα) (24)

for some functions α and β = β(α).
It is known from Reference [33] that a Riemannian manifold (M̃, g) is subprojective if

and only if it is a space of quasi-constant curvature such that the 1-form ζ in (23) is closed.
For further results on subprojetive spaces, see Reference [33,34,36], among some others.

7.2. Warped Product Submanifolds of Spaces of Quasi-Constant Curvature

S. Sular extended Theorem 7 to warped products in spaces of quasi-constant curvature
as follows.

Theorem 15. Ref [37]: Let φ : N1 × f N2 → M̃m
κ,µ(G) be an isometric immersion of a warped

product into a Riemannian manifold M̃m
κ,µ(G) of quasi-constant curvature. Then, we have:

∆ f
f
≤ n2

4n2
H2 + n1κ − µ

n2

n1

∑
i=1

n

∑
j=n1+1

{ζ(ei)
2 + ζ(ej)

2}+ µ

n2
(n− 1)‖G‖2, (25)
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where {e1, . . . , en1} and {en1+1, . . . , en} are orthonormal frames of TN1 and TN2, respectively.
The equality case of (25) holds if and only if φ is a mixed totally geodesic immersion satisfying

trace h1 = trace h2, where h1 and h2 denote the restrictions of h to N1 and N2, respectively.

7.3. Warped Product Submanifolds of Spaces of Nearly Quasi-Constant Curvature

In 2009, U. C. De and A. K. Gazi [38] introduced the notion of a Riemannian manifold
(M̃, g) of nearly quasi-constant curvature as a Riemannian manifold with the curvature tensor
satisfying the condition:

R̃(X, Y; Z, W) = κ{g(X, W)g(Y, Z)− g(X, Z)g(Y, W)}
+ µ{g(Y, Z)B(X, W)− g(Y, W)B(X, Z)

+ g(X, W)B(Y, Z)− g(X, Z)B(Y, W)}
(26)

for vector fields X, Y, Z, W tangent to M̃, where B is a nonzero symmetric (0, 2)-tensor field.
A non-flat Riemannian m-manifold (M̃, g) (m ≥ 3) defines a nearly quasi-Einstein

manifold if its Ricci tensor satisfies the condition [38]

Ric = cg + dE,

where c and d are nonzero scalar functions, and E is a nonzero symmetric (0, 2)-tensor
field.

The following example of spaces of nearly quasi-constant curvature was given by U.
C. De and A. K. Gazi in Reference [38].

Example 7. Let (M̃4, g) be a Riemannian manifold endowed with the metric given by

g = (x4)
4
3

[
(dx1)

2 + (dx2)
2 + (dx3)

2
]
+ (dx4)

2.

Then, (M̃4, g) is a Riemannian manifold of nearly quasi-constant curvature with nonzero and
non-constant scalar curvature which is not a quasi-Einstein manifold.

The following result was proved by P. Zhang in Reference [39].

Theorem 16. Let φ : N1 × f N2 → M̃ be an isometric immersion of a warped product into a
Riemannian manifold M̃ of nearly quasi-constant curvature. Then, we have:

∆ f
f
≤ n2

4n2
H2 + n1κ +

µ

n2
(n2 trace B1 + n1 trace B2), (27)

where B1 and B2 denote the restrictions of B to N1 and N2, respectively.
The equality case of (27) holds if and only if φ is a mixed totally geodesic immersion satisfying

trace h1 = trace h2.

8. Geometric Inequalities for Warped Products in Almost Hermitian Manifolds

An almost Hermitian manifold is an even-dimensional Riemannian 2m-manifold (M̃2m, g)
such that there exists a (1, 1)-tensor field J on M̃2m which satisfies

J2 = −I, g(JX, JY) = g(X, Y),

for any vector fields X, Y tangent to M̃2m.

8.1. Warped Products in Complex Space Forms

For warped products in complex hyperbolic spaces, we have the following result from
Reference [40].
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Theorem 17. Let φ : N1 × f N2 → CHm(−4c) (c > 0) be an isometric immersion of a warped
product N1 × f N2 into the complex hyperbolic m-space CHm(−4c) of constant holomorphic
sectional curvature −4c. Then, we have:

∆ f
f
≤ n2

4n2
H2 − n1c. (28)

The equality case of (28) holds if and only if φ is a mixed totally geodesic immersion satisfying
trace h1 = trace h2, and JD1 ⊥ D2, where J is the almost complex structure of CHm(−4c).

By applying Theorem 17, we have the next three corollaries from Reference [40].

Corollary 4. Let N1 × f N2 be a Riemannian warped product in which warping function f is
harmonic. Then, N1 × f N2 does not admit any isometric minimal immersion into any complex
hyperbolic space.

Corollary 5. If f is an eigenfunction of the Laplacian on N1 with eigenvalue λ > 0, then N1× f N2
does not admit an isometric minimal immersion into any complex hyperbolic space.

Corollary 6. If N1 is compact, then every Riemannian warped product N1 × f N2 does not admit
an isometric minimal immersion into any complex hyperbolic space.

For warped product submanifolds in a complex space form, A. Mihai proved the fol-
lowing.

Theorem 18. Ref [41]: Let φ : N1 × f N2 → M̃(4c) be an isometric immersion of a warped
product N1 × f N2 into the complex space form M̃(4c) of constant holomorphic sectional curvature
4c with JD1 ⊥ D2. Then, we have:

∆ f
f
≤ n2

4n2
H2 + n1c. (29)

The equality case of (29) holds identically if and only if φ is a mixed totally geodesic immersion
satisfying trace h1 = trace h2.

For warped product submanifolds in the complex projective m-space CPm(4), we also
have the following result.

Theorem 19. Ref [9]: Let φ : N1 × f N2 → CPm(4) be an isometric immersion of a warped
product into the complex projective m-space CPm(4). Then, we have:

∆ f
f
≤ n2

4n2
H2 + 3 + n1. (30)

The equality case of (30) holds identically if and only if the following three conditions hold:

(1) n1 = n2 = 1,
(2) f is an eigenfunction of the Laplacian on N1 with eigenvalue 4, and
(3) φ is a totally geodesic and holomorphic immersion.

Theorem 19 implies the following result.

Corollary 7. If f is a positive smooth function on a Riemannian n1-manifold N1 such that
∆ f > (3 + n1) f at a point p ∈ N1, then, for any Riemannian manifold N2, the warped product
N1 × f N2 does not admit any minimal immersion into CPm(4) for any m.
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A submanifold Nn of an almost Hermitian manifold (M̃m, J, g) is called totally real if it
satisfies J(TpNn) ⊂ T⊥p Nn, where T⊥p Nn denotes the normal space of Nn at a point p ∈ Nn.
In particular, a totally real submanifold Nn in M̃m is called a Lagrangian submanifold if
dimR Nn = dimC M̃m (see, e.g., Reference [42,43]).

A submanifold N of an almost Hermitian manifold M̃ is called a CR-submanifold [44,45]
if there is a holomorphic distribution H on N in which orthogonal complement H⊥ is a
totally real distribution, i.e., JH⊥p ⊂ T⊥p N. A CR-submanifold N is called anti-holomorphic if
JH⊥p = T⊥p N.

For totally real submanifolds in a complex projective m-space CPm(4), Theorem 16
was sharpen in Reference [2] (Theorem 10.7) as follows.

Theorem 20. Let φ : N1 × f N2 → CPm(4) be a totally real immersion of a warped product into
CPm(4). Then, we have:

∆ f
f
≤ n2

4n2
H2 + n1. (31)

The equality case of (31) holds identically if and only if φ is a mixed totally geodesic immersion
satisfying trace h1 = trace h2.

Theorem 20 implies the following.

Corollary 8. If f is a positive smooth function on a Riemannian n1-manifold N1 such that
∆ f > n1 f at a point p ∈ N1, then, for any Riemannian manifold N2, the warped product
N1 × f N2 does not admit any totally real minimal immersion into CPm(4) for any m.

8.2. Warped Products in Generalized Complex Space Forms

An almost Hermitian manifold (M̃, J, g) is called an RK-manifold if its curvature tensor
R̃ is invariant under the action of J, i.e.,

R̃(JX, JY; JZ, JW) = R̃(X, Y; Z, W), (32)

for any vector fields X, Y, Z, W tangent to M̃. An almost Hermitian manifold (M̃, J, g) is
said to be of pointwise constant type if, for any x ∈ M̃ and X ∈ Tx M̃, we have

λ(X, Y) = λ(X, Z), (33)

with
λ(X, Y) = R̃(X, Y; JX, JY)− R̃(X, Y; X, Y),

whenever the planes defined by X, Y and X, Z are totally real and with g(Y, Y) = g(Z, Z).
An almost Hermitian manifold M̃ is said to be of constant type if, for any unit vector

fields X, Y on M̃ with 〈X, Y〉 = 〈JX, Y〉 = 0, λ(X, Y) is a constant function.
A generalized complex space form is an RK-manifold of constant holomorphic sectional

curvature and of constant type. Every complex space form is obviously a generalized
complex space form, but the converse is not true. And the 6-sphere S6 endowed with the
standard nearly Kaehler structure is known to be an example of generalized complex space
form which is not a complex space form.

In the following, we denote by M̃(c, α) a generalized complex space form of constant
holomorphic sectional curvature c and constant type α. The Riemann curvature tensor R̃ of
M̃(c, α) has the following expression (see Reference [46]):

R̃(X, Y)Z =
c + 3α

4
{〈Y, Z〉X− 〈X, Z〉Y}

+
c− α

4
{〈X, JZ〉JY− 〈Y, JZ〉JX + 2〈X, JY〉JZ}.

(34)
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For a submanifold N of an almost Hermitian manifold (M̃, J, g) and for a vector
X ∈ TN, we put

JX = TX + FX, (35)

where TX and FX denote the tangential and the normal components of JX.
For warped products in a generalized complex space form, A. Mihai obtained the

following result.

Theorem 21. Ref [47]: Let φ : N1 × f N2 → M̃(c, α) be an isometric immersion of a warped
product into a generalized complex space form. Then, we have:

(1) If c < α, then

∆ f
f
≤ n2

4n2
H2 + n1

c + 3α

4
. (36)

The equality case of (36) holds identically if and only if φ is a mixed totally geodesic immersion
satisfying trace h1 = trace h2, and JD1 ⊥ D2.

(2) If c = α, then

∆ f
f
≤ n2

4n2
H2 + n1

c + 3α

4
. (37)

The equality case of (37) holds identically if and only if φ is a mixed totally geodesic immersion
satisfying trace h1 = trace h2.

(3) If c > α, then

∆ f
f
≤ n2

4n2
H2 + n1

c + 3α

4
+ 3

c− α

8
‖T‖2, (38)

where T is defined by (35).
The equality case of (38) holds identically if and only if φ is a mixed totally geodesic immersion
satisfying trace h1 = trace h2, and N1, N2 are both totally real submanifolds.

As applications of Theorem 21, we have the following non-existence results.

Corollary 9. Let M̃(c, α) be a generalized complex space form, N1 an n1-dimensional Riemannian
manifold and f a smooth function on N1. If there is a point p ∈ N1 such that (∆ f )(p) >
c+3α

4 n1 f (p), then there do not exist any minimal CR-warped product submanifold N1 × f N2

into M̃(c, α).

Corollary 10. Let M̃(c, α) be a generalized complex space form, with c > α, N1 an n1-dimensional
totally real submanifold of M̃(c, α) and f a smooth function on N1. If there is a point p ∈ N1 such
that (∆ f )(p) > c+3α

4 n1 f (p), then there do not exist any totally real submanifold N2 in M̃(c, α)

such that N1 × f N2 be a minimal warped product submanifold into M̃(c, α).

8.3. Warped Products in Locally Conformal Kaehler Space Forms

A locally conformally Kaehler manifold (M̃, J, g) is a Hermitian manifold which is locally
conformal to a Kaehler manifold. This is equivalently to say that there is an open cover
{Ui}i∈I of M̃ and a family { fi}i∈I of smooth functions fi : Ui → R such that gi = e− fi g|Ui

is a Kaehlerian metric on Ui, i.e., ∇̃J = 0, where ∇̃ is the covariant differentiation with
respect to g (see, e.g., Reference [48]). The fundamental 2-form ω of a locally conformally
Kaehler manifold (M̃, J, g) is given by

ω(X, Y) = g(JX, Y), (39)
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for any vector fields X, Y tangent to M̃.
The next result can be found in Reference [48].

Proposition 1. A Hermitian manifold (M̃, J, g) is a locally conformal Kaehler manifold if and
only if there exists a global closed 1-form α satisfying

(∇̃Zω)(X, Y) = β(Y)g(X, Z)− β(X)g(Y, Z) + α(Y)ω(X, Z)− α(X)ω(Y, Z),

for any vector fields X, Y, Z tangent to M̃, where ∇̃ is the Levi-Civita connection and β is the
1-form given by β(X) = −α(JX).

A typical example of a compact locally conformally Kaehler manifold is a Hopf manifold
which is diffeomorphic to S1 × S2n−1. It is known that a Hopf manifold admits no Kaehler
structure (see Reference [49]).

The 1-form α is called the Lee form and its dual vector field is called the Lee vector field.
A locally conformal Kaehler manifold which has parallel Lee form is called a generalized
Hopf manifold.

On a locally conformal Kaehler manifold (M̃, J, g), there exists a symmetric (0, 2)-
tensor field P defined by

P(X, Y) = −(∇̃Xα)Y− α(X)α(Y) +
1
2
‖α‖2g(X, Y),

and another (0, 2)-tensor P defined by P(X, Y) = P(JX, Y), where ‖α‖2 is the squared
norm of α with respect to g.

A locally conformal Kaehler manifold with constant holomorphic sectional curvature
c, denoted by M̃(c), is called a locally conformal Kaehler space form. The Riemann curvature
tensor R̃ of M̃(c) is given by (see, e.g., Reference [50–52])

R̃(X, Y)Z =
c
4
{g(Y, Z)X− g(X, Z)Y + ω(Y, Z)JX−ω(X, Z)JY− 2ω(X, Y)JZ}

+
3
4
{g(Y, Z)P1X− g(X, Z)P1Y + P(Y, Z)X− P(X, Z)Y}

− 1
4
{ω(Y, Z)P1X−ω(X, Z)P1Y + P(Y, Z)JX− P(X, Z)JY

− 2P(X, Y)JZ− 2ω(X, Y)P1Z},

where g(P1X, Y) = P(X, Y) and g(P1X, Y) = P(X, Y).
Y. H. Kim and D. W. Yoon proved the following result for warped product submani-

folds in locally conformal Kaehler space forms.

Theorem 22. Ref [52]: Let φ : N1× f N2 → M̃(c) be an isometric immersion of a warped product
into a locally conformal Kaehler space form M̃(c). Then,

∆ f
f
≤ n2

4n2
H2 +

n1

4
(c + 3σ), (40)

where σ = ρ̃1
n1

+ ρ̃2
n2

and ρ̃i is the partial trace of P restricted to Ni, i = 1, 2.
The equality case of (40) holds identically if and only if φ is a mixed totally geodesic immersion

satisfying trace h1 = trace h2.

The following results are immediate consequences of Theorem 22.

Corollary 11. Let N1 × f N2 be a warped product in which warping function f is harmonic. Then,

(1) N1 × f N2 admits no minimal totally real immersion into a locally conformal Kaehler space
form M̃(c) with c < −3σ;
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(2) every minimal totally real immersion of N1 × f N2 into a Euclidean space is a warped prod-
uct immersion.

Corollary 12. If the warping function f of a warped product N1 × f N2 is an eigenfunction of the
Laplacian on N1 with corresponding eigenvalue λ > 0, then N1 × f N2 does not admit a minimal
totally real immersion into a locally conformal Kaehler space form M̃(c) with c < −3σ.

Corollary 13. Let N1 × f N2 be a compact minimal totally real warped product submanifold in a
locally conformal Kaehler space form M̃(c) of holomorphic sectional curvature c satisfying c ≤ −3σ.
Then, N1 × f N2 is a Riemannian product.

9. Warped Products in Quaternionic Space Forms

Let M̃4m be a 4m-dimensional almost quaternionic Hermitian manifold with metric
tensor g. Then, there exists a rank 3 vector bundle Σ of tensors of type (1, 1) with local
basis of almost Hermitian structures J1, J2, J3 such that

(1) g(JαX, JαY) = g(X, Y), and
(2) J2

α = −I, Jα Jα+1 = −Jα+1 Jα = Jα+2,

for α ∈ {1, 2, 3}, where I is the identity transformation on TM̃4m and the indices are
taken from {1, 2, 3} modulo 3. If the bundle Σ is parallel with respect to the Levi-Civita
connection of g, then (M̃4m, Σ, g) is said to be a quaternionic Kaehler manifold.

For a quaternionic Kaehler manifold (M̃4m, Σ, g), let X be a nonzero vector in TM̃.
The 4-plane Q̃(X) spanned by {X, J1X, J2X, J3X}, is called a quaternionic 4-plane. Any
2-plane in Q̃(X) is called a quaternionic plane. The sectional curvature of a quaternionic
plane is called a quaternionic sectional curvature. A quaternionic Kaehler manifold is said
to be a quaternionic space form if its quaternionic sectional curvatures are equal to a constant.

A quaternionic space form of constant quaternionic sectional curvature c is denoted
by M̃4m(c). The curvature tensor R̃ of M̃4m(c) satisfies

R̃(X, Y)Z =
c
4
{g(Z, Y)X− g(X, Z)Y

+
3

∑
α=1

[g(Z, JαY)JαX− g(Z, JαX)JαY + 2g(X, JαY)JαZ]

}
.

For warped product submanifolds in quaternionic space forms, A. Mihai proved the
following results in Reference [53].

Theorem 23. Let φ : N1 × f N2 → M̃4m(c) be an isometric immersion of an n-dimensional
warped product into a 4m-dimensional quaternionic space form M̃4m(c) with c > 0. Then,

∆ f
f
≤ n2

4n2
‖H‖2 +

n1

4
c. (41)

The equality case of (41) holds identically if and only if φ is a mixed totally geodesic immersion
satisfying trace h1 = trace h2, and JαD1 ⊥ D2, for any α = 1, 2, 3.

Theorem 24. Let φ : N1 × f N2 → M̃4m(c) be an isometric immersion of an n-dimensional
warped product into a 4m-dimensional quaternionic space form M̃4m(c) with c < 0. Then,

∆ f
f
≤ n2

4n2
‖H‖2 +

n1

4
c +

3c
4

min
{

n1

n2
, 1
}

. (42)

The equality case of (42) holds identically if and only if φ is a mixed totally geodesic immersion
satisfying trace h1 = trace h2, and JαD1 ⊥ D2, for any α = 1, 2, 3.
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Theorem 25. Let φ : N1 × f N2 → M̃4m(c) be an isometric immersion of an n-dimensional
warped product into a 4m-dimensional quaternionic space form M̃4m(c) with c > 0 such that
JαD1 ⊥ D2 for any α = 1, 2, 3. Then,

∆ f
f
≤ n2

4n2
‖H‖2 +

n1

4
c. (43)

The equality case of (43) holds identically if and only if φ is a mixed totally geodesic immersion
satisfying trace h1 = trace h2.

A submanifold N in a quaternionic Kaehler manifold M̃4m is called a quaternionic CR-
submanifold [54] if it admits a smooth quaternionic distribution D such that its orthogonal
complementary distribution D⊥ is totally real, i.e., JαDp ⊂ T⊥p N for any p ∈ N, where
T⊥p N denotes the normal space of N at p ∈ N.

A warped product N1 × f N2 in a quaternionic Kaehler manifold M̃4m is called a
quaternionic CR-warped product if it is a quaternionic CR-submanifold with D = TN1 and
D⊥ = TN2.

Remark 4. Theorem 25 implies that inequality (43) holds for every quaternionic CR-warped
product in a quaternionic space form M̃4m(c), c > 0.

10. Geometric Inequalities for Warped Products in Almost Contact Metric Manifolds

An almost contact metric manifold is an odd-dimensional Riemannian (2m+ 1)-manifold
(M̃2m+1, g) such that there exist a (1, 1)-tensor field ϕ, a vector field ξ, and a 1-form η on
M̃2m+1 which satisfy (see, e.g., Reference [55])

η(ξ) = 1, φ2(X) = −X + η(X)ξ, ϕξ = 0, η ◦ ϕ = 0,

g(ϕX, φY) = g(X, Y)− η(X)η(Y), η(X) = g(X, ξ),

for any vector fields X, Y tangent to M̃2m+1. The vector field ξ is called the structure vector
field or Reeb vector field.

For a submanifold N of an almost contact metric manifold (M̃2m+1, ϕ, ξ, η, g) and for
a vector X ∈ TN, we put

ϕX = TX + FX, (44)

where TX and FX denote the tangential and the normal components of ϕX.

10.1. Warped Products in Sasakian Space Forms

An almost contact metric manifold (M̃2m+1, ϕ, ξ, η, g) is said to be a Sasakian manifold
if it satisfies

(∇̃X ϕ)Y = g(X, Y)ξ − η(Y)X,

for any vector fields X, Y tangent to M̃2m+1.
A Sasakian space form is a Sasakian manifold with constant ϕ-sectional curvature. It

is known that the curvature tensor of a Sasakian space form M̃(c) of constant ϕ-sectional
curvature c is given by

R̃(X, Y)Z =
c + 3

4
{

g(Y, Z)X− g(X, Z)Y
}

+
c− 1

4
{

g(X, ϕZ)ϕY− g(Y, ϕZ)ϕX + 2g(X, ϕY)ϕZ
}

+
c− 1

4
{

η(X)η(Z)Y− η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ
}

.
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Sasakian space forms M̃2m+1(c) can be modeled based on c > −3, c = −3 or c < −3.
We denote by R2m+1 the Sasakian space form which has constant φ-sectional curvature
−3, while S2m+1 denotes the Sasakian space form of constant φ-sectional curvature 1 (see
Reference [55]).

A submanifold Nn of an almost contact metric manifold M̃2m+1 is called C-totally real
if its structure vector field ξ is normal to Nn. For C-totally real submanifolds Nn of M̃2m+1,
we have φ(TpNn) ⊂ T⊥p Nn, for any p ∈ Nn. A C-totally real submanifold is said to be a
Legendrian submanifold if n = m holds. Therefore, Legendrian submanifolds are C-totally
real submanifolds with the smallest possible codimension.

Theorem 7 was extended by K. Matsumoto and I. Mihai [56] to warped product
submanifolds in Sasakian space forms as follows.

Theorem 26. Let φ : N1× f N2 → M̃2m+1(c) be a C-totally real isometric immersion of a warped
product into a (2m + 1)-dimensional Sasakian space form. Then, we have:

∆ f
f
≤ n2

4n2
‖H‖2 + n1

c + 3
4

. (45)

The equality case of (45) holds identically if and only if φ is a mixed totally geodesic immersion
satisfying trace h1 = trace h2.

Theorem 27. Let M̃2m+1(c) be a Sasakian space form and N1× f N2 a warped product submanifold
such that the Reeb vector field ξ is tangent to N1. Then, N2 is a C-totally real submanifold and
we have

∆ f
f
≤ n2

4n2
‖H‖2 + n1

c + 3
4
− c− 1

4
. (46)

The equality case of (46) holds identically if and only if N1 × f N2 is a mixed totally geodesic
submanifold satisfying trace h1 = trace h2.

Theorem 28. Any warped product submanifold N1 × f N2 of a Sasakian space form M̃2m+1(c)
such that ξ is tangent to N2 is a Riemannian product. Moreover, N1 is a C-totally real submanifold.

The notion of a generalized Sasakian space form was introduced by P. Alegre, D. E.
Blair, and A. Carriazo in Reference [57]. An odd-dimensional manifold M̃2m+1 equipped
with an almost contact metric structure (φ, ξ, η, g) is called generalized Sasakian space form if
there exist three functions f1, f2, f3 on M̃2m+1 such that

R̃(X, Y)Z = f1
{

g(Y, Z)X− g(X, Z)Y
}

+ f2
{

g(X, ϕZ)ϕY− g(Y, ϕZ)ϕX + 2g(X, ϕY)ϕZ
}

+ f3
{

η(X)η(Z)Y− η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ
}

.

We denote such a manifold by M̃2m+1( f1, f2, f3).
A generalized Sasakian space form M̃2m+1( f1, f2, f3) reduces to a Sasakian space

form if f1 = c+3
4 and f2 = f3 = c−1

4 , where c is a constant. Kenmotsu space forms and
cosymplectic space forms are special cases of generalized Sasakian space forms. In fact,

(i) a Kenmotsu space form is a generalized Sasakian space form with f1 = c−3
4 and f2 =

f3 = c+1
4 , and

(ii) a cosymplectic space form is a generalized Sasakian space form with f1 = f2 = f3 = c
4 .

In Reference [58], D. W. Yoon and K. S. Cho extended Theorem 7 further to warped
products in generalized Sasakian space forms.
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10.2. Warped Products in Kenmotsu Space Forms

An almost contact metric manifold (M̃2m+1, ϕ, ξ, η, g) is said to be a Kenmotsu manifold
if it satisfies

(∇̃X ϕ)Y = g(ϕX, Y)ξ − η(Y)ϕX,

where ∇̃ is the Levi-Civita connection of g.
If M̃2m+1 is a Kenmotsu manifold of dimension ≥ 5, then M̃2m+1 is called a pointwise

Kenmotsu space form if the ϕ-sectional curvature function c(X) of ϕ-holomorphic plane
Span{X, ϕX} depends only on the point x ∈ M̃2m+1, not on the choice of X at x. If c is
globally constant, then M̃2m+1(c) is nothing but a Kenmotsu space form.

It is known that a Kenmotsu manifold M̃2m+1 is a pointwise Kenmotsu space form if
and only if there exists a function c such that the Riemann curvature tensor R̃ of M̃2m+1

satisfies (see Reference [59])

R̃(X, Y)Z =
c− 3

4
{g(Y, Z)X− g(X, Z)Y}

+
c + 1

4
{η(X)η(Z)Y− η(Y)η(Z)X + η(Y)g(X, Z)ξ

− η(X)g(Y, Z)ξ − g(ϕX, Z)ϕY + g(ϕY, Z)ϕX + 2g(X, ϕY)ϕZ}.

C. Murathan, K. Arslan, R. Ezentas, and I. Mihai [60] extended Theorem 7 to warped
product submanifolds in Kenmotsu space forms to the following.

Theorem 29. Let φ : N1× f N2 → M̃2m+1(c) be a C-totally real isometric immersion of a warped
product into a Kenmotsu space form M̃2m+1(c) with c < −1. Then, we have:

∆ f
f
≤ n2

4n2
‖H‖2 + n1

c− 3
4
− c + 1

4
. (47)

The equality case of (47) holds identically if and only if φ is a mixed totally geodesic immersion
satisfying trace h1 = trace h2, and ϕ(TN1) and TN2 are orthogonal.

Theorem 30. Let φ : N1× f N2 → M̃2m+1(c) be a C-totally real isometric immersion of a warped
product into a Kenmotsu space form M̃2m+1(−1) such that the Reeb vector field ξ is tangent to N1.
Then, we have:

∆ f
f
≤ n2

4n2
‖H‖2 − n1. (48)

The equality case of (48) holds identically if and only if φ is a mixed totally geodesic immersion
satisfying trace h1 = trace h2.

Theorem 31. Let φ : N1 × f N2 → M̃2m+1(c) be an isometric immersion of a warped product
into a Kenmotsu space form M̃2m+1(c) with c > −1 such that the Reeb vector field ξ is tangent to
N1. Then,

∆ f
f
≤ n2

4n2
‖H‖2 + n1

c− 3
4

+

(
3
n2
‖T‖2 − 1

)
c + 1

4
, (49)

where T is defined by (44).
The equality case of (49) holds identically if and only if φ is a mixed totally geodesic immersion

satisfying trace h1 = trace h2, and both N1 and N2 are anti-invariant submanifolds of M̃2m+1(c).

Theorem 32. There do not exist warped product submanifolds N1 × f N2 in a Kenmotsu space
form such that the Reeb vector field is tangent to N2.
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10.3. Warped Products in Cosymplectic Space Forms

An almost contact metric manifold is said to be an almost cosymplectic manifold if it
satisfies dη = 0 and dϕ = 0. In particular, an almost cosymplectic manifold is called
cosymplectic if it satisfies (see Reference [55])

∇̃ϕ = 0, ∇̃ξ = 0. (50)

Theorem 7 was extended by D. W. Yoon [61] to warped product submanifolds in
cosymplectic space forms as follows.

Theorem 33. Let φ : N1 × f N2 → M̃2m+1(c) be an isometric immersion of a warped product
into a cosymplectic space form M̃2m+1(c) such that the Reeb vector field ξ is tangent to N1. Then,
we have:

∆ f
f
≤ n2

4n2
‖H‖2 +

c
4
(n1 + 2). (51)

Theorem 34. Let φ : N1 × f N2 → M̃2m+1(c) be an isometric immersion of a warped product
into a cosymplectic space form M̃2m+1(c) such that the Reeb vector field ξ is tangent to N2. Then,
we have:

∆ f
f
≤ n2

4n2
‖H‖2 +

(
3 + n1 −

n1

n2

)
c
4

. (52)

Several applications of Theorems 33 and 34 were also given in Reference [61].
M. M. Tripathi studied in Reference [62] a similar problem for C-totally real warped

product submanifolds in a (κ, µ)-space form.

11. Doubly Warped Product Submanifolds

Let (N1, g1) and (N2, g2) be two Riemannian manifolds and let f1 : N1 → (0, ∞) and
f2 : N2 → (0, ∞) be two smooth functions. Then, the doubly warped product f2 N1 × f1 N2 is
the product manifold N1 × N2 endowed with the doubly warped product metric

g = f 2
2 g1 + f 2

1 g2.

Obviously, the doubly warped product f2 N1 × f1 N2 is an ordinary warped product if
either f1 or f2 is a constant positive function.

The following result of A. Olteanu [63] extended Theorem 4 from ordinary warped
product submanifolds to doubly warped product submanifolds in Riemannian manifolds.

Theorem 35. Let φ : f2 N1 × f1 N2 → M̃m be an isometric immersion of a doubly warped product
N = f2 N1 × f1 N2 into an arbitrary Riemannian m-manifold. Then, we have:

n2
∆1 f1

f1
+ n1

∆2 f2

f2
≤ n2

4
H2 + n1n2 max K̃, (53)

where ∆i denotes the Laplacian on Ni, i = 1, 2, and K̃ the sectional curvature of M̃m.
The equality case of (53) holds identically if and only if the following two statements hold:

(1) φ is a mixed totally geodesic immersion satisfying trace h1 = trace h2;
(2) at each point p = (p1, p2) ∈ N, the function K̃ satisfies K̃(u, v) = max K̃(p) for each unit

vector u in Tp1 N1 and unit vector v in Tp2 N2.

As an immediate consequence of Theorem 35, one has the following extension of
Theorem 7.
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Theorem 36. Let φ : f2 N1 × f1 N2 → Rm(c) be an isometric immersion of a doubly warped
product f2 N1× f1 N2 into a Riemannian m-manifold Rm(c) of constant sectional curvature c. Then,
we have:

n2
∆1 f1

f1
+ n1

∆2 f2

f2
≤ n2

4
H2 + n1n2c, (54)

where ∆i denotes the Laplacian on Ni, i = 1, 2.
The equality case of (54) holds identically if and only if φ is a mixed totally geodesic immersion

satisfying trace h1 = trace h2.

A. Olteanu also showed in Reference [63] that the same result holds for an anti-
invariant doubly warped product f2 N1 × f1 N2 in a generalized Sasakian space form such
that the Reeb vector field ξ is normal to f2 N1 × f1 N2. In Reference [64], she obtained similar
inequalities for doubly warped products isometrically immersed into locally conformal
almost cosymplectic manifolds. In addition, in Reference [65], she derived similar inequali-
ties for doubly warped products isometrically immersed into S-space forms. Further, A.
Olteanu derived similar inequalities for multiply warped products in Kenmotsu space
forms.

A contact metric manifold (M̃2m+1, ϕ, ξ, η, g) is called a (κ, µ)-manifold if its Riemann
curvature tensor satisfies

R̃(X, Y)ξ = κ{η(Y)X− η(X)Y}+ µ{η(Y)hX− η(X)hY},

where h = 1
2Lξ ϕ and L denotes the Lie derivative. By definition, a (κ, µ)-space form is a

(κ, µ)-manifold which has constant ϕ-sectional curvature [55].
S. Sular and C. Özgür derived in Reference [66] similar sharp inequalities for C-totally

real doubly warped product submanifolds in (κ, µ)-space forms and in non-Sasakian (κ, µ)-
contact metric manifolds. In addition, M. Faghfouri and A. Majidi [67] extended the results
for warped product immersions given in Section 4 to doubly warped product immersions.

12. Geometric Inequalities for Warped Products in Affine Spaces
12.1. Basics of Affine Differential Geometry

Let N be an n-manifold. Consider a non-degenerate hypersurface φ : N → Rn+1 of
the affine (n + 1)-space in which position vector field is nowhere tangent to N. Then, φ
can be consider as a transversal field along N. We call ξ = −φ the centroaffine normal and
the φ together with this normalization is called a centroaffine hypersurface.

The centroaffine structure equations are given by (see, e.g., Reference [68])

DXφ∗(Y) = φ∗(∇XY) + σ(X, Y)ξ, (55)

DXξ = −φ∗(X), (56)

where D is the canonical flat connection of Rn+1,∇ is a torsion-free connection on N, called
the induced centroaffine connection, and σ is a nondegenerate symmetric (0, 2)-tensor field,
called the centroaffine metric.

Let us assume that the centroaffine hypersurface is definite, i.e., σ is definite. In case
that σ is negative definite, we shall replace ξ = −φ by ξ = φ for the affine normal. In this
way, the second fundamental form σ is always positive definite. In both cases, (55) holds.
Equation (56) changes the sign. In case ξ = −φ, we call N positive definite; in case ξ = φ,
we call N negative definite.

Denote by ∇̂ the Levi-Civita connection of σ. The difference tensor K is given by

KXY = K(X, Y) = ∇XY− ∇̂XY. (57)
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The difference tensor K and the cubic form C are related by

C(X, Y, Z) = −2σ(KXY, Z).

Thus, for each X, KX is self-adjoint with respect to σ. The Tchebychev 1-form T and the
Tchebychev vector field T# are defined, respectively, by (see, e.g., Reference [68,69])

T(X) =
1
n

trace KX , (58)

σ(T#, X) = T(X). (59)

If the Tchebychev form vanishes and if we consider N as a hypersurface of the
equiaffine space, then N is a so-called proper affine hypersphere centered at the origin. If the
difference tensor K vanishes, then N is a quadric, centered at the origin, in particular an
ellipsoid if N is positive definite and a two-sheeted hyperboloid if N is negative definite.

An affine hypersurface φ : N → Rn+1 is said to be a graph hypersurface if the transversal
vector field ξ is a constant vector field. From a result of Reference [70], we know that a
graph hypersurface is locally affine equivalent to the graph immersion of a certain function
F. In the case that σ is nondegenerate, it defines a pseudo-Riemannian metric, known as
the Calabi metric of the graph hypersurface. If T = 0, a graph hypersurface is called an
improper affine hypersphere.

Let N1 and N2 be two improper affine hyperspheres in Rp+1 and Rq+1 defined, respec-
tively, by the equations:

xp+1 = F1(x1, . . . , xp), yq+1 = F2(y1, . . . , yq).

One can define an improper affine hypersphere N in Rp+q+1 by

z = F1(x1, . . . , xp) + F2(y1, . . . , yq),

where (x1, . . . , xp, y1, . . . , yq, z) are the coordinates on Rp+q+1 and the Calabi normal of N
is given by (0, . . . , 0, 1). Clearly, the Calabi metric on N is the direct product metric. This
composition is called the Calabi composition of N1 and N2 (see Reference [71]).

12.2. A Realization Problem in Affine Geometry

For a Riemannian n-manifold (N, g) with Levi-Civita connection ∇, É. Cartan and A.
P. Norden studied nondegenerate affine immersions φ : (N,∇)→ Rn+1 with a transversal
vector field ξ and with ∇ as the induced connection. The Cartan-Norden theorem states
that if f is such an affine immersion, then either ∇ is flat and φ is a graph immersion or ∇ is not
flat and Rn+1 admits a parallel Riemannian metric relative to which φ is an isometric immersion
and ξ is orthogonal to φ(N) (see, e.g., Reference [68], p. 159).

The first author investigated in Reference [72,73], from a view point different from
Cartan-Norden, Riemannian hypersurfaces in some affine spaces. More precisely, he
studied the following.

Realization Problem: Which Riemannian manifolds (N, g) can be immersed as affine hypersur-
faces in an affine space in such a way that the fundamental form σ, induced via the centroaffine
normalization or a constant transversal vector field, is the given Riemannian metric g?

Here, a Riemannian manifold (N, g) said to be realized as an affine hypersurface if there
exists a codimension one affine immersion of N into some affine space in such a way that
the induced affine metric σ is exactly the Riemannian metric g of N (notice that we do not
put any assumption on the affine connection). In this respect, we mentioned that the first
author proved in Reference [72] that every Robertson-Walker spacetime can be realized as
a centroaffine or as a graph hypersurface in some affine space.

For warped products in affine spaces, we have the following results from Reference [73].
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Theorem 37. Ref [73]: If a warped product manifold N1 × f N2 can be realized as a graph hyper-
surface in Rn+1, then the warping function satisfies

∆ f
f
≥ − (n1 + n2)

2

4n2
h(T#, T#). (60)

The following result characterizes affine hypersurfaces which verify the equality case
of inequality (60) identically.

Theorem 38. Ref [73]: Let φ : N1 × f N2 → Rn+1 be a realization of a warped product manifold
as a graph hypersurface. If the warping function satisfies the equality case of (60) identically, then
we have:

(1) the Tchebychev vector field T# vanishes identically;
(2) the warping function f is a harmonic function;
(3) N1 × f N2 is realized as an improper affine hypersphere.

An immediate application of Theorem 37 is the following.

Corollary 14. Ref [73]: If N1 is a compact Riemannian manifold, then every warped product
manifold N1 × f N2 cannot be realized as an improper affine hypersphere in Rn+1.

As another application of Theorems 37 and 38, we have:

Theorem 39. Ref [73]: If the Calabi metric of an improper affine hypersphere in an affine space is
the Riemannian product metric of k Riemannian manifolds, then the improper affine hypersphere is
locally the Calabi composition of k improper affine spheres.

Theorem 37 also implies the following.

Corollary 15. If the warping function f of a warped product manifold N1 × f N2 satisfies ∆ f < 0
at some point on N1, then N1 × f N2 cannot be realized as an improper affine hypersphere in Rn+1.

For centro-affine hypersurfaces we have the following results from Reference [73].

Theorem 40. If a warped product manifold N1× f N2 can be realized as a centroaffine hypersurface
in Rn+1, then the warping function satisfies

∆ f
f
≥ n1ε− (n1 + n2)

2

4n2
h(T#, T#), (61)

where ε = 1 or −1 according to whether the centroaffine hypersurface is elliptic or hyperbolic.

Theorem 41. Let φ : N1 × f N2 → Rn+1 be a realization of a warped product manifold N1 × f N2
as a centroaffine hypersurface. If the warping function satisfies the equality case of (61) identically,
then we have:

(1) the Tchebychev vector field T# vanishes identically;
(2) the warping function f is an eigenfunction of the Laplacian ∆ with eigenvalue n1ε;
(3) N1 × f N2 is realized as a proper affine hypersphere centered at the origin.

Four other consequences of Theorem 40 are the following.

Corollary 16. If the warping function f of a warped product manifold N1 × f N2 satisfies ∆ f ≤ 0
at some point on N1, then N1 × f N2 cannot be realized as an elliptic proper affine hypersphere
in Rn+1.
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Corollary 17. If the warping function f of a warped product manifold N1× f N2 satisfies (∆ f )/ f <
−n1 at some point on N1, then N1× f N2 cannot be realized as a hyperbolic proper affine hypersphere
in Rn+1.

Corollary 18. If N1 is a compact Riemannian manifold, then every warped product manifold
N1× f N2 with arbitrary warping function cannot be realized as an elliptic proper affine hypersphere
in Rn+1.

Corollary 19. If N1 is a compact Riemannian manifold, then every warped product manifold
N1 × f N2 cannot be realized as an improper affine hypersphere in an affine space Rn+1.

Several examples were provided in Reference [73] to show that the results given above
are all sharp.

13. Some Closely Related Geometric Inequalities

In this section, we briefly present some closely related geometric inequalities for
warped product submanifolds.

13.1. CR-Warped Products

In Reference [74], the first author proved that, if N⊥ × f N> is a warped product
submanifold of a Kaehler manifold M̃ such that N⊥ is a totally real submanifold and N>

is a complex submanifold of M̃, then N⊥ × f N> is always non-proper, i.e., the warping
function f must be constant. If the warping f is equal to 1, then the CR-warped product
becomes a CR-product N⊥ × N> (see Reference [44,75,76]).

On the other hand, he proved that there exist abundant warped product submanifolds
of the form N> × f N⊥ in Kaehler manifolds. He simply called such warped product
submanifolds CR-warped products.

For any CR-warped product in a Kaehler manifold, we have the following.

Theorem 42. Refs [74,77]: Let N = N> × f N⊥ be a CR-warped product in a Kaehler manifold
M̃. Then, we have:

(1) The squared norm of the second fundamental form h of N satisfies

‖h‖2 ≥ 2q‖∇(ln f )‖2, (62)

where ∇(ln f ) is the gradient of ln f and q = dim N⊥.
(2) If the equality case of (62) holds identically, then N> is a totally geodesic submanifold and

N⊥ is a totally umbilical submanifold of M̃; moreover, N is a minimal submanifold in M̃.
(3) When M is anti-holomorphic and q > 1, then equality case of (62) holds identically if and

only if N⊥ is a totally umbilical submanifold of M̃.
(4) Let N be anti-holomorphic with q = 1. Then, the equality case of (62) holds identically if the

characteristic vector field Jξ of M is a principal vector field with zero as its principal curvature.
Conversely, if the equality case of (62) holds, then the characteristic vector field Jξ of N is a
principal vector field with zero as its principal curvature only if N = N> × f N⊥ is a trivial
CR-warped product immersed in M̃ as a totally geodesic hypersurface. In addition, when N is
anti-holomorphic with q = 1, the equality case of (62) holds identically if and only if N is a
minimal hypersurface in M̃.

Many further results concerning CR-warped products in Kaehler manifolds have been
obtained in Reference [74,78–83].
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13.2. CR-Products in Kaehler Manifolds

For CR-products in Kaehler manifolds, we have the following optimal geometric in-
equalities.

Theorem 43. Refs [75,76]: Let N = N> × N⊥ be a CR-product in a complex projective m-space
CPm(4) of constant holomorphic sectional curvature 4. Then, we have:

‖h‖2 ≥ 4pq, (63)

where p = dimC N> and q = dimR N⊥.
If the equality case of (63) holds identically, then N> and N⊥ are totally geodesic in CPm(4).

Further, the immersion is rigid. Moreover, in this case N> is a complex space form of constant
holomorphic sectional curvature 4, and N⊥ is a real space form of constant sectional curvature one.

Theorem 44. Ref [75]: If N = N> × N⊥ is a minimal CR-product in a complex projective
m-space CPm(4), then the scalar curvature of N satisfies

τ ≤ 2p(p + 1) +
1
2

q(q− 1), (64)

with the equality case holding identically if and only if ‖h‖2 = 4pq.

In 1891, C. Segre [84] introduced the following embedding:

Shp : CPp(4)× CPq(4)→ CPp+q+pq(4), (65)

defined by

Spq(z0, . . . , zp; w0, . . . , wq) =
(
zjwt

)
0≤j≤p,0≤t≤q,

where (z0, . . . , zp) and (w0, . . . , wq) are the homogeneous coordinates of CPp(4) and CPq(4),
respectively. This embedding Spq is a Kaehlerian embedding which is well-known as the
Segre embedding.

In 1981, the first author applied Theorem 42 to establish the following “converse of
the Segre embedding”.

Theorem 45. Ref [75]: Let N = N1 × N2 be the Riemannian product of two Kaehler manifolds
with dimC N1 = p and dimC N2 = q. If N admits a Kaehlerian immersion into CPp+q+pq(4),
then N1 and N2 are open submanifolds of totally geodesic CPp(4) and CPq(4) in CPp+q+pq(4).
Moreover, the immersion is locally a Segre embedding.

Theorem 45 was later extended by the first author and W. E. Kuan [85,86] for Kaehle-
rian immersions of Riemannian products N1 × · · · × Nk of Kaehler manifolds into some
complex space forms with k > 2.

13.3. Extensions of Theorem 42

Among some others, Theorem 42 was also extended by numerous mathematicians to
CR-warped products in several classes of Riemannian manifolds:

1. CR-warped products in Kaehler and para-Kaehler manifolds [83,87–89].

2. CR-warped products of nearly Kaehler manifolds [90–92].

3. CR-warped products in locally conformal Kaehler manifolds [93–97].

4. CR-warped products in Sasakian manifolds [98–102].

5. CR-warped products in Kenmotsu manifolds [103–107].

6. CR-warped products in several other classes of contact metric manifolds [108–127].
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13.4. Further Extensions of Theorem 42

Let N be a submanifold of almost Hermitian manifold (M̃, J, g). For a nonzero vector
X ∈ TpN at an arbitrary point p ∈ N, the angle θ(X) between JX and the tangent space
TpN is called the Wirtinger angle of X. The submanifold N is called slant if its Wirtinger
angle θ(X) is independent of the choice of X ∈ TpN and also of p ∈ N. The Wirtinger
angle of a slant submanifold is called the slant angle [128]. A slant submanifold with slant
angle θ is simply called θ-slant (see Reference [11,128]). A slant submanifold is called proper
if it is either totally real or holomorphic. Similar notions applied to a distribution on N.
In 1996, A. Lotta [129] extended the notion of slant submanifolds in the framework of
contact geometry.

The first results on slant submanifolds were collected by the first author in his book [11]
published in 1990. Later, slant submanifolds have been studied by various authors and
since then many results in slant submanifolds have been obtained.

Slant submanifolds were extended to pointwise slant submanifolds in Reference [130,131].
Namely, a submanifold N of an almost Hermitian manifold M̃ is called pointwise slant if,
for each given point p ∈ N, the Wirtinger angle θ(X) is independent of the choice of the
nonzero tangent vector X ∈ TpN. In this case, θ defines a function on N, called the slant
function of the pointwise slant submanifold.

By applying the notion of slant distributions, CR-warped products have been extended
by A. Carriazo [132] to bi-slant warped products.

Definition 1. A submanifold N of an almost Hermitian manifold (M̃, J, g) is called bi-slant if
there exists a pair of orthogonal distributions D1 and D2 on N such that

(1) TN = D1 ⊕D2;
(2) JD1 ⊥ D2 and JD2 ⊥ D1;
(3) the distributions D1, D2 are slant with slant angles θ1, θ2, respectively.

The pair {θ1, θ2} of slant angles of a bi-slant submanifold is called the bi-slant angles. In
particular, a bi-slant submanifold with bi-slant angles {θ1, θ2} satisfying θ1 = π

2 and θ2 ∈ (0, π
2 )

(respectively, θ1 = 0 and θ2 ∈ (0, π
2 )) is called a hemi-slant submanifold (respectively, semi-slant

submanifold). A bi-slant submanifold N is called proper if its bi-slant angles satisfy 0 < θ1, θ2 < π
2 .

Similar definitions apply to pointwise bi-slant submanifolds. In particular, we have the notions of
pointwise hemi-slant and pointwise semi-slant submanifolds.

Definition 2. A warped product N1 × f N2 of two slant submanifolds N1 and N2 of an almost
Hermitian manifold (M̃, J, g) is called a warped product bi-slant submanifold. A warped product
bi-slant submanifold N1 × f N2 is called a warped product hemi-slant submanifold (respectively,
warped product semi-slant submanifold) if N1 is totally real (respectively, holomorphic) in M̃.

As extensions of CR-warped products, there are numerous articles which studied
pointwise bi-slant warped product submanifolds (in particular, bi-slant warped product
submanifolds and contact bi-slant warped product submanifolds) in various ambient spaces
during the last two decades. For results in this respect, we refer to References [133–138],
among many others.
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