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Abstract: A computational framework for the construction of solutions to linear homogenous partial
differential equations (PDEs) with variable coefficients is developed in this paper. The considered

class of PDEs reads: B p
Bt ´

řm
j“0

´

řnj
r“0 ajrptqxr

¯

B j p
Bxj “ 0. F-operators are introduced and used to

transform the original PDE into the image PDE. Factorization of the solution into rational and
exponential parts enables us to construct analytic solutions without direct integrations. A number of
computational examples are used to demonstrate the efficiency of the proposed scheme.

Keywords: Fourier transform; operator calculus; partial differential equation; linear PDE with
variable coefficients

1. Introduction

The Fourier transform, as one of the most important concepts in signal analysis,
is widely used for the construction of solutions to partial differential equations (PDEs).
While there exist numerous classical techniques for the construction of solutions to PDEs
based on the Fourier transform, recent research demonstrates that new approaches in this
field remain an important area of investigation.

The immersed boundary smooth extension method for solving PDEs in general do-
mains is presented in [1]. This high-order accuracy numerical scheme smoothly extends
the unknown solution of the PDE from a given smooth domain to a larger computational
domain, enabling the use of Fourier spectral methods. Local fractional Fourier transform
operator via Mittag–Leffler function defined on the fractal set is used to solve PDEs in [2].
An efficient computational scheme based on a Laplace transform-based exponential time
integrator combined with a flexible Krylov subspace approach is proposed in [3] to solve
linear, time-dependent, parabolic PDEs. Fourier wavelets are used to construct solutions to
partial differential equations in [4].

Fractional higher-order Fourier transform method is proposed to solve fractional
reaction-diffusion PDE problems in [5]. The Fourier pseudospectral method is used for
developing new structure-preserving algorithms for general multi-symplectic formulations
of Hamiltonian PDEs in [6]. The modified homotopy perturbation method, combined
with the Fourier transform, is used to solve the nonlinear and singular Lane–Emden PDE
equations in [7]. Analytical solutions to the fractional heat diffusion, fractional wave,
fractional telegraph and fractional kinetic equations are obtained via the fractional Fourier
transform in [8]. A Crank–Nicholson scheme of a Fourier pseudospectral method is applied
to the fractional stationary Schrödinger equation in [9].

The derivative of the solution to linear elliptic PDEs, perpendicularly to the direction
of an arbitrary angle to the boundary, is computed without solving on the interior of the
domain in [10]. The deployment of the FFT for the solution of the associated collocation

Mathematics 2021, 9, 918. https://doi.org/10.3390/math9090918 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3348-9717
https://doi.org/10.3390/math9090918
https://doi.org/10.3390/math9090918
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9090918
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9090918?type=check_update&version=2


Mathematics 2021, 9, 918 2 of 13

linear system yields significant computational savings in [10]. Algorithm for approximate
reconstruction of transient heating curves from sparse frequency domain data by using
modified inverse Fourier transform is developed in [11]. A conservative Fourier spectral
scheme is presented for higher order Klein–Gordon–Schrödinger system with periodic
boundary conditions in [12,13].

Efficient numerical Fourier methods for coupled forward-backward stochastic DEs
are developed in [14]. The generalized Fourier transform is used for reducing the com-
putational cost and memory requirements of radial basis function methods for multi-
dimensional option pricing in [15]. A general algorithm, including a transformation of
the Black–Scholes equation into the heat equation, that can be used in any number of
dimensions is also developed in [15].

In this paper, a scheme for the construction of analytic solutions to linear homogenous
PDEs with variable coefficients is proposed. The scheme is based on F-operators that enable
the realization of the Fourier transform without direct integration. Derived operators are
used to transform the original PDEs into image PDEs. Generalized Gaussian analytic
solutions that are factored into rational and exponential parts are considered. Application
of the F-operator scheme enables the construction of analytical solutions without direct
integration of the original PDE.

The paper is organized as follows. Section 2 contains the necessary preliminary
definitions and introduces F-operators. Main results on the realization of the Fourier
transform using F-operators are given in Section 3. A scheme for the construction of
analytic solutions to homogenous linear PDEs with variable coefficients is derived in
Section 4. Section 5 contains computational examples that demonstrate the efficiency of the
proposed scheme. Section 6 contains concluding remarks.

2. Preliminaries
2.1. Generalized Gaussian Functions

Definition 1. The linear operators

Ft :“ iptx´Dxq, pFt :“ i
ˆ

Dx ´
x
t

˙

, (1)

where Dx is the directional derivative operator with respect to x and i2 “ ´1 are called forward and
backward F-operators, respectively.

In the following computation, powers of the operators Ft and pFt are applied to the
unit. The results read:

F0
t 1 “ 1, Ft1 “ itx, F2

t 1 “ Ftitx “ t´ t2x2, . . . ; (2)

pF
0
t 1 “ 1, pFt1 “ ´

ix
t

, pF
2
t 1 “ pFt

ˆ

´
ix
t

˙

“
1
t
´

x2

t2 , . . . . (3)

Note that Fj
t1 can be expressed in terms of Hermite polynomials [16]:

Fj
t1 “ ijt

j
2 Hej

´?
tx
¯

, j “ 0, 1, . . . (4)

where Hejpxq, j “ 0, 1, . . . are probabilistic Hermite polynomials.

Definition 2. Consider the following set of rational functions:

Mt “

#

řm
k“0 αktk

řn
l“0 βltl

ˇ

ˇ

ˇ
m, n P Z0; αk, βl P C; t P R

+

. (5)
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The function Qpx, tq is a carrier polynomial in x, defined as:

Qpx, tq “
r
ÿ

j“0

ajptqxj, (6)

where
ajptq PMt, j “ 0, 1, . . . . (7)

The image pQpx, tq of the carrier polynomial Qpx, tq can be constructed using (6) and (2):

pQpx, tq :“ QpFt, tq1 “
r
ÿ

j“0

ajptq
´

Fj
t1
¯

“

r
ÿ

j“0

pajptqxj. (8)

Definition 3. The generalized Gaussian function p “ ppx, tq is defined as:

ppx, tq “
1

?
2πt

Qpx, tq exp

˜

´
x2

2t

¸

. (9)

For brevity, the notation p0px, tq “ 1?
2πt

exp
´

´ x2

2t

¯

will be used further.

2.2. The Fourier Transform—Classical Formulas

For any generalized Gaussian function ppx, tq, the Fourier transform yields the image
pppx, tq:

pppx, tq “ F
`

p
˘

“

ż `8

´8

exp
`

ixy
˘

ppy, tqdy. (10)

The inverse transform reads:

ppx, tq “ F´1`
pp
˘

“
1

2π

ż `8

´8

exp
`

´ixy
˘

pppy, tqdy. (11)

Note that:

pp0px, tq “ F
`

p0
˘

“ exp

˜

´
tx2

2

¸

. (12)

The following equalities do hold:

F
`

xp
˘

“ ´iDxF
`

p
˘

, F
`

Dx p
˘

“ ´ixF
`

p
˘

; (13)

F´1`xpp
˘

“ iDxF´1`
pp
˘

, F´1`Dxpp
˘

“ ixF´1`
pp
˘

; (14)

F
`

tp
˘

“ tF
`

p
˘

, F
`

Dt p
˘

“ DtF
`

p
˘

; (15)

F´1`tpp
˘

“ tF´1`
pp
˘

, F´1`Dtpp
˘

“ DtF´1`
pp
˘

. (16)

3. Main Results

The Fourier transform of generalized Gaussian functions is considered in this section.
It is shown that the Fourier transform can be realized using the forward and backward
F-operators (1) and that it is enough to consider the action of (1) on the carrier polynomials
Qpx, tq, pQpx, tq.

3.1. The Fourier Transform of the Generalized Gaussian Function

Theorem 1. The Fourier transform of the generalized Gaussian function p “ ppx, tq has the
following form:

pppx, tq “ pQpx, tqpp0px, tq, (17)

where pQpx, tq “ QpFt, tq1.
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Proof. The theorem is proved using mathematical induction.
Let Qnpxq :“ xn, n “ 0, 1, . . . and pnpx, tq :“ Qnpxqp0px, tq. The Fourier transform of

pn reads:

F
`

pn
˘

“

ż `8

´8

exp
`

ixy
˘

yn p0py, tqdy “ p´iDxq
n
ż `8

´8

exp
`

ixy
˘

p0py, tqdy

“ p´iDxq
n
pp0px, tq.

(18)

For n “ 0, the theorem holds true. Taking n “ 1 yields:

F
`

xp0
˘

“ p´iDxq exp

˜

´
tx2

2

¸

“ itx exp

˜

´
tx2

2

¸

“
`

iptx´Dxq1
˘

pp0px, tq

“ pFt1qpp0px, tq.

(19)

Let us denote pQnpx, tq :“ Fn
t 1, n “ 2, 3, . . .. Suppose that equalities

ppkpx, tq “ pQkpx, tqpp0px, tq, k “ 1, 2, . . . , n, (20)

hold true. Then the Fourier transform of pn`1px, tq reads:

F
´

xn`1 p0

¯

“ p´iDxq
n`1

pp0px, tq “ ´iDx
`

p´iDxq
n p0px, tq

˘

“ ´iDx

´

pQnpx, tqpp0px, tq
¯

“ ´i
ˆ

´

Dx pQnpx, tq
¯

pp0px, tq ´ tx pQnpx, tqpp0px, tq
˙

“

“

´

`

iptx´Dxq
˘

Qnpx, tq
¯

pp0px, tq “
´

`

iptx´Dxq
˘n`11

¯

pp0px, tq

“ pQn`1px, tqpp0px, tq.

(21)

Thus,
F
`

xn p0
˘

“
`

Fn
t 1
˘

pp0, n “ 0, 1, . . . . (22)

Finally, (22) yields:

F
`

p
˘

“ F

¨

˚

˝

¨

˝

n
ÿ

j“0

ajptqxj

˛

‚p0px, tq

˛

‹

‚

“

n
ÿ

j“0

F
´

xj p0

¯

“

n
ÿ

j“0

ajptq
´

Fj
t1
¯

pp0 “
`

QpFt, tq1
˘

pp0

“ pQpx, tqpp0px, tq.

(23)

Let
pQpx, tq “

n
ÿ

j“0

pajptqxj, (24)

where pajptq PMt, j “ 0, . . . , n.

Theorem 2. The inverse Fourier transform of pppx, tq reads:

ppx, tq “ Qpx, tqp0px, tq, (25)

where Qpx, tq “ pQ
´

pFt, t
¯

1.
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The proof of this Theorem is analogous to the proof of the Theorem 1.

Theorems 1 and 2 yield the following corollaries.

Corollary 1. The carrier polynomials Qpx, tq and pQpx, tq are related by the following equalities:

pQpx, tq “ QpFt, tq1; Qpx, tq “ pQ
´

pFt, t
¯

1. (26)

Furthermore, degrees of carrier polynomials Q and pQ in x are equal:

degx Qpx, tq “ degx
pQpx, tq. (27)

Remark 1. Note that (27) is a completely nontrivial result. As shown in the preceding derivations,
the computation of the Fourier transform for generalized Gaussian functions can be performed
without the use of integral calculus.

Example 1. Let us consider the following generalized Gaussian function:

ppx, tq “

˜

1`
x2

t

¸

1
?

2πt
exp

˜

´
x2

2t

¸

. (28)

Then the carrier polynomial reads:

Qpx, tq “ 1`
x2

t
. (29)

The image carrier polynomial is obtained by the Fourier transform of (28):

pQpx, tq “ QpFt, tq1 “
ˆ

1`
1
t

F2
t

˙

1 “ 1`
1
t

F2
t 1 “ 2´ tx2. (30)

Equations (17) and (30) yield the Fourier transform of (28):

pppx, tq “
´

2´ tx2
¯

exp

˜

´
tx2

2

¸

. (31)

The inverse Fourier transform of (31) can be realized using (25) of Theorem 2:

Qpx, tq “ pQ
´

pFt, t
¯

1 “
ˆ

2´ tpF
2
t

˙

1 “ 2´ tpF
2
t 1 “ 1`

x2

t
. (32)

This example demonstrates that the Fourier transforms of generalized Gaussian functions
can be computed using the forward and backward F-operators without a direct application of
integral calculus.

3.2. Differentiation of the Fourier Transform

Corollary 2. Partial derivatives of the generalized Gaussian functions and their Fourier
transform read:

Dn
t
`

Qp0
˘

“
`

Rn
t Q

˘

p0, Dm
x
`

Qp0
˘

“
`

Rm
x Q

˘

p0; (33)

Dn
t

´

pQpp0

¯

“

´

pR
n
t
pQ
¯

pp0, Dm
x

´

pQpp0

¯

“

´

pR
m
x
pQ
¯

pp0, (34)
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where n, m P Z0 and

Rt :“ Dt `
1
2

˜

x2

t2 ´
1
t

¸

, Rx :“ Dx ´
x
t

; (35)

pRt :“ Dt ´
x2

2
, pRx :“ Dx ´ tx. (36)

Proof. The first equality of (33) will be proven. The remaining relations can be
proved analogously.

Dt
`

Qp0
˘

“ pDtQqp0 `Q ¨

¨

˝Dt
1

?
2πt

exp

˜

´
x2

2t

¸

˛

‚

“ pDtQqp0 `Q ¨

˜

x2

2t2 ´
1
2t

¸

p0

“

¨

˚

˝

¨

˝Dt `
1
2

˜

x2

t2 ´
1
t

¸

˛

‚Q

˛

‹

‚

p0 “ pRtQqp0.

(37)

Equation (37) yields:

D2
t
`

Qp0
˘

“ Dt
`

pRtQqp0
˘

“

´

R2
t Q

¯

p0;

Dn
t
`

Qp0
˘

“
`

Rn
t Q

˘

p0.
(38)

Corollary 3. The Fourier transform of generalized Gaussian functions with the differentiated
carrier polynomial reads:

F
´

`

Dn
t Q

˘

p0

¯

“ Φn
t F

`

Qp0
˘

, F
´

`

Dm
x Q

˘

p0

¯

“ Φm
x F

`

Qp0
˘

; (39)

F´1
ˆ

´

Dn
t
pQ
¯

pp0

˙

“ pΦn
t F´1

´

pQpp0

¯

, F´1
ˆ

´

Dm
x
pQ
¯

pp
˙

“ pΦm
x F´1

´

pQpp0

¯

, (40)

where n, m P Z0 and

Φt :“ Dt `
1
2t
`

1
2t2 D2

x, Φx :“ ´i
ˆ

x`
1
t

Dx

˙

; (41)

pΦt :“ Dt ´
1
2

D2
x, pΦx :“ ipx` tDxq. (42)

Proof. The second equation of (41) will be proven. The rest can be proven analogously.

By (33), Dx
`

Qp0
˘

“

ˆ

´

Dx ´
x
t

¯

Q
˙

p0, thus

F
´

Dx
`

Qp0
˘

¯

“ F

¨

˝

˜

ˆ

Dx ´
x
t

˙

Q

¸

p0

˛

‚

“ F
`

pDxQqp0
˘

´F
ˆ

x
t
`

Qp0
˘

˙

.

(43)

Equation (43) together with (13) and (15) yields:

F
`

pDxQqp0
˘

“ ´i
ˆ

x`
1
t

Dx

˙

F
`

Qp0
˘

“ ΦxF
`

Qp0
˘

. (44)



Mathematics 2021, 9, 918 7 of 13

Equation (44) yields
F
´

`

Dm
x Q

˘

p0

¯

“ Φm
x F

`

Qp0
˘

. (45)

The relations between the generalized Gaussian function p, the carrier polynomial Q
and their respective images are illustrated in Figure 1.

p0(x, t)

Q(x, t)

p(x, t) = Q(x, t)p0(x, t)

p̂0(x, t)

p̂(x, t) = ̂Q(x, t)p̂0(x, t)

̂Q(x, t)

F F−1

Ft
̂
Ft

Figure 1. The relationship between the generalized Gaussian function p, the carrier polynomial Q
and their respective images.

4. Construction of Solutions to Homogenous Linear Partial Differential Equations
with Variable Coefficients
4.1. Mappings of Partial Differential Equations

Let us consider the following homogenous linear partial differential equation (PDE)
with non-constant coefficients:

B p
Bt
´

m
ÿ

j“0

¨

˝

nj
ÿ

r“0

ajrptqxr

˛

‚

B j p
Bxj “ 0, (46)

where ajrptq PMt; j, m, nj “ 0, 1, . . .. The set Mt is defined as:

Mt “

#

řm
k“0 αktk

řn
l“0 βltl

ˇ

ˇ

ˇ
m, n P Z0; αk, βl P C; t P R

+

. (47)

The PDE (46) reads:
Lp “ 0, (48)

where

L :“ Dt ´

m
ÿ

j“0

¨

˝

nj
ÿ

r“0

ajrptqxr

˛

‚Dj
x. (49)

4.1.1. Mapping between Lp and pLpp

The Fourier operator F can be applied to (48) to transform (46) into a PDE with respect
to pp “ F

`

p
˘

using the relations (13):

F
`

Lp
˘

“ F

¨

˚

˝

Dt ´

m
ÿ

j“0

¨

˝

nj
ÿ

r“0

ajrptqxr

˛

‚Dj
x

˛

‹

‚

“ Dtpp´
m
ÿ

j“0

¨

˚

˝

¨

˝

nj
ÿ

r“0

ajrptqp´iDxq
r

˛

‚p´ixqj

˛

‹

‚

pp.

(50)
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Applying the Weyl–Heisenberg identity Dxx “ 1` xDx [17] to (50) yields the partial
differential equation:

pLpp “ 0, (51)

where

pL “ Dt ´

pm
ÿ

j“0

¨

˚

˝

pnj
ÿ

r“0

pajrptqpxr

˛

‹

‚

Dj
x. (52)

The indices pm, pnj and coefficients pajr P Mt are computed by applying the Weyl–
Heisenberg identity and reordering the resulting expression.

4.1.2. Mapping between Lp and L0Q

Operators Rx, Rt (see Corollary 2) together with the expression p “ Qp0 can be used
on the PDE (46) to obtain an equation with respect to the carrier polynomial Q:

Lp “ DtQp0 ´

m
ÿ

j“0

¨

˝

nj
ÿ

r“0

ajrptqxr

˛

‚Dj
xQp0

“

¨

˚

˚

˝

¨

˝Dt `
1
2

˜

x2

t2 ´
1
s

¸

˛

‚Q´

¨

˚

˝

m
ÿ

j“0

¨

˝

nj
ÿ

r“0

ajrptqxr

˛

‚Rj
xQ

˛

‹

‚

˛

‹

‹

‚

p0

“

¨

˚

˚

˚

˝

¨

˚

˚

˝

Dt ´

m
ÿ

j“0

¨

˚

˝

nj
ÿ

r“0

bjrptqxr

˛

‹

‚

Dj
x

˛

‹

‹

‚

Q

˛

‹

‹

‹

‚

p0.

(53)

Canceling p0 in (53) yields the following PDE with respect to Q:

L0Q “ 0, (54)

where

L0 “ Dt ´

m
ÿ

j“0

¨

˚

˝

nj
ÿ

r“0

bjrptqxr

˛

‹

‚

Dj
x, bjr PMt. (55)

4.1.3. Mapping between L0Q and pLpp; pLpp and pL0 pQ

Applying operators Φx, Φt (see Corollary 3) to (54) yields PDE (51):

FpL0Qqp0 “ FpDtQqp0 ´

m
ÿ

j“0

¨

˚

˝

nj
ÿ

r“0

bjrptqp´iDxq
j

˛

‹

‚

F
´

Dj
xQ

¯

p0

“ Dtpp`
1
2

ˆ

1
t
`

1
2

D2
x

˙

pp´
m
ÿ

j“0

¨

˚

˝

nj
ÿ

r“0

bjrptqp´iDxq
j

˛

‹

‚

Φj
xpp

“

¨

˚

˚

˝

Dt ´

pm
ÿ

j“0

¨

˚

˝

pnj
ÿ

r“0

pajrptqxr

˛

‹

‚

Dj
x

˛

‹

‹

‚

pp “ pLpp.

(56)

Using analogous derivations with operators pRx, pRt, it can be shown that the Equation (51)
yields a PDE with respect to pQ:

pL0 pQ “ 0, (57)
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where

pL0 “ Dt ´

rm
ÿ

j“0

¨

˚

˝

rnj
ÿ

r“0

pbjrptqxr

˛

‹

‚

Dj
x, pbjr PMt. (58)

Other possible mappings are L0Q to pLpp and pL0 pQ to Lp.
A diagram of the mappings between the discussed PDEs is given in Figure 2. Note that

the mappings displayed in Figure 2 are sufficient to map any of the PDEs Lp, pLpp, L0Q, pL0 pQ
to all of the remaining PDEs.

L0Q = 0 ̂L0
̂Q = 0

Lp = 0 ̂Lp̂ = 0

Figure 2. Mappings between PDEs with respect to the generalized Gaussian function p, their carrier
polynomials Q and their respective images.

4.2. Formulation of Cauchy Initial Conditions

Cauchy problems on PDEs (48), (51), (54) and (57) can be formulated. Respective
initial conditions read:

ppx, t0q “ p1pxq; (59)
pppx, t0q “ pp1pxq; (60)

Qpx, t0q “ q1pxq; (61)
pQpx, t0q “ pq1pxq. (62)

Note that initial conditions are consistent (in the sense that solutions which satisfy
them do exist) only if t0 ą 0. However, a simple time-variable substitution t “ t ´ t0,
t0 P R allows to consider a wider range of initial conditions with respect to t.

As shown in the previous subsection, the four PDEs Lp, pLpp, L0Q, pL0 pQ can be related
using the scheme displayed in Figure 2. Similarly, Cauchy initial conditions (59)–(62) satisfy
the following relations:

p1pxq “ q1pxqp0px, t0q, pp1pxq “ pq1pxqpppx, t0q; (63)

F p1pxq “ pp1pxq, F´1
pp1pxq “ p1pxq; (64)

q1pxq “ pq
´

pFt0

¯

1, pq1pxq “ q
`

Ft0

˘

1. (65)

Above equalities can also be used together with the mappings outlined in Section 4.1
to produce the mappings of Cauchy problems. Note that (63)–(65) are also consistency
conditions that can be used to verify if given initial functions satisfy the same class of PDEs
that can be mapped to each other (Equations (48), (51), (54) and (57)).

For the following computations it will assumed (without loss of generality) that t0 “ 1.
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5. Several Examples
5.1. Solving Cauchy Problem Given the PDE

The mapping scheme constructed in this paper can be applied to obtain the solution of
some PDEs by mapping them to PDEs which require polynomial solutions. Let us consider
the following Cauchy problem with respect to ppx, tq:

Dt p “
t3

2
D4

x p` t2xD3
x `

˜

1
2
` 3t2 `

tx2

2

¸

D2
x p`

5tx
2

Dx p`
ˆ

3t
2
´

1
a´ t

˙

p; t ‰ a; (66)

ppx, 1q “ p1pxq “
´

a0 ` a1x` a2x2
¯ 1
?

2π
exp

˜

´
x2

2

¸

, a0, a1, a2 P R. (67)

Thus,

L :“ Dt ´
t3

2
D4

x ´ t2xD3
x ´

˜

1
2
` 3t2 `

tx2

2

¸

D2
x ´

5tx
2

Dx ´
3t
2
`

1
a´ t

. (68)

Using the Fourier transform operator F , the equation Lp is transformed to pLpp:

pL “ Dt ´
tx2

2
D2

x `

ˆ

tx
2
´ t2x3

˙

Dx `
1

a´ t
`

x2

2
´

t3x4

2
. (69)

Equation (69) results in the following Cauchy problem:

Dtpp “
tx2

2
D2

xpp`
ˆ

t2x3 ´
tx
2

˙

Dxpp´

˜

1
a´ t

`
x2

2
´

t3x4

2

¸

pp; (70)

pppx, 1q “ pp1pxq “
`

pa0 ` pa1x` pa2x
˘

exp

˜

´
x2

2

¸

, pa0,pa1,pa2 P C. (71)

Using operators pRx, pRt, the Cauchy problem (70), Equation (71) is mapped to the
following problem with respect to pQ:

Dt pQ “
tx2

2
D2

x
pQ´

tx
2

Dx pQ´
1

a´ t
pQ; (72)

pQpx, 1q “ pq1pxq “ pa0 ` pa1x` pa2x, pa0,pa1,pa2 P C. (73)

Equation (72) can be solved for the solution that is polynomial in x and which satisfies
the condition (73), yielding:

pQpx, tq “
x2

2
pa´ tq, a P R. (74)

The solution to (66) and (67) is constructed using the relations (25) and (26):

ppx, tq “
pa´ tq

´

t´ x2
¯

2t2
?

2πt
exp

˜

´
x2

2t

¸

. (75)

5.2. Mappings between PDEs

In this example, the mapping scheme described in Section 4.1 and pictured in Figure 2
is illustrated. Consider the following PDE with respect to pQ:

pL0 pQ “ Dt pQ´
k
l

x
t

Dx pQ “ 0. (76)
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With the following Cauchy initial condition:

pQpx, 1q “ pq1pxq “
m
ÿ

j“0

pajxl j. (77)

The derivations discussed in Section 4.1 can be used to obtain PDEs (48), (51) and (54).
For example:

F´1
ˆ

´

pL0 pQ
¯

pp0

˙

“ F´1
ˆ

´

Dt pQ
¯

pp0

˙

´
k
lt
F´1

ˆ

´

xDx pQ
¯

pp0

˙

“ pΦtF´1
´

pQpp0

¯

´
ik
ls

Dx pΦxF´1
´

pQpp0

¯

“ Dt p`
2k´ l

2l
D2

x p`
k
l

x
t

Dx p`
k
lt

p,

(78)

thus,
pL0 “ Dt ´

k
l

x
t

Dx Ñ L “ Dt `
2k´ l

2l
D2

x `
k
l

x
t

Dx `
k
lt

, (79)

and the following Cauchy problem is equivalent to (76) and (77):

Dt p “
l ´ 2k

2l
D2

x p´
k
l

x
t

Dx p´
k
lt

p;

p1pxq “
1

?
2π

¨

˝

m
ÿ

j“0

paj

ˆ

pF
l j
1 1

˙

˛

‚exp

˜

´
x2

2

¸

.
(80)

In the same manner, it is possible to obtain Cauchy problems on pp and Q:

Dtpp “
k
l

x
t

Dxpp`
2k´ l

2l
x2
pp;

pp1pxq “

¨

˝

m
ÿ

j“0

pajxl j

˛

‚exp

˜

´
x2

2

¸

,
(81)

and

DtQ “
l ´ 2k

2l
D2

xQ`
k´ l

l
x
t

DxQ;

q1pxq “
m
ÿ

j“0

paj

ˆ

pF
l j
1 1

˙

.
(82)

Note that constructing a solution to any of the four presented PDEs yields solutions to
the remaining three via transformations provided in Section 4.1. It can be verified that the
solutions to (76) have the following form [18]:

pQpx, tq “
m
ÿ

j“0

paj

´

skxl
¯j

, paj P C. (83)
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Which yields that the solutions to (80)–(82) read:

ppx, tq “
1

?
2πt

¨

˝

m
ÿ

j“0

paj

ˆ

pF
l j
t 1
˙

˛

‚exp

˜

´
x2

2t

¸

; (84)

pppx, tq “
m
ÿ

j“0

paj

´

skxl
¯j

exp

˜

´
tx2

2

¸

; (85)

Qpx, tq “
m
ÿ

j“0

paj

ˆ

pF
l j
t 1
˙

. (86)

These computations demonstrate the power of the method described in this paper.
Equations such as (67) can be mapped to equations such as (72) that only require the
determination of solutions that are polynomial in x to yield solutions to (67).

6. Concluding Remarks

A computational framework for the construction of analytic solutions to linear ho-
mogenous PDEs with variable coefficients is developed in this paper. A common approach
for the construction of solutions to such PDEs consists of applying the wave variable
transformation ξ “ t` αx; α P R to transform the PDE into an ODE. A closed-form solution
to the ODE can be obtained via the generalized differential operator method [19]. It must
be observed that the generalized differential operator method yields a closed-form solution
only if the obtained ODE satisfies a set of special conditions [19].

The novelty of the proposed method is based on the introduction of F-operators.
The strength of this method is based on the fact that the developed set of F-operators
allows to transform the original PDE into a form for which direct integration of PDE
becomes unnecessary.

The structure of the original PDE allows to split the solution into rational and ex-
ponential factors. Symbolic manipulation with the developed set of F-operators offers a
convenient approach for the construction of the solution to the Cauchy problem. Several
computational examples are used to demonstrate the efficacy of the proposed scheme.

However, it is clear that the proposed scheme is limited to a rather narrow class of dif-
fusion type PDEs. The presented F-operator scheme can also be extended to accommodate
a wider class of PDEs by modifying the F-operators to act on non-symmetrical generalized
Gaussian solutions. This and other extensions of the F-operator calculus for a wider class
of PDEs is a natural topic of future research.
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