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Abstract: We considered an hybridizable discontinuous Galerkin (HDG) method for discrete elliptic
PDEs with random coefficients. By an approach of projection, we obtained the error analysis under
the assumption that a(ω, x) is uniformly bounded. Together with the HDG method, we applied a
multilevel Monte Carlo (MLMC) method (MLMC-HDG method) to simulate the random elliptic
PDEs. We derived the overall convergence rate and total computation cost estimate. Finally, some
numerical experiments are presented to confirm the theoretical results.
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1. Introduction

In this paper, we focus on the elliptic partial differential equations (PDEs) with random
coefficients which arise in random vibrations, seismic activity and oil reservoir management
(see, e.g., [1–4]). For elliptic stochastic PDEs, there are many numerical methods, such as
intrusive and non-intrusive methods. The stochastic collocation method and stochastic
Galerkin method are important intrusive methods (see, e.g., [5–9]). The MC method is a
non-intrusive method. It is easy to implement, since the deterministic numerical method
programs can be used once the samples are given (see, e.g., [10]). However, the MC method
has a slow rate of convergence and its computational cost is also very expensive. To
improve the computational efficiency, many methods have been proposed. The MLMC
method is one of the most important methods. It has been widely used to simulate the
stochastic PDEs (see, e.g., [11–14]).

In [15], the HDG method was originally proposed by Cockburn, Gopalakrishnan and
Lazarov. It was then used to solve the second-order elliptic problems with remarkable
convergence properties in [16]. The error analysis of elliptic PDEs was given by introducing
a projection (see, e.g., [17] and references therein). To date, the HDG method has been
successfully applied to parabolic, convection diffusion problems, phase flows and optimal
control problem (see, e.g., [18–22]). However, we did not find theoretical or numerical
analysis works on the HDG method for PDEs with random coefficients.

In this work, we first considered the HDG method to investigate elliptic PDEs with
random coefficients under the assumption of a uniform bound. By a projection approach,
we derived the convergence analysis of the HDG method. Then, we achieved rigorous
bounds of the error and complexity for the MLMC method based on the HDG method.

The outline of the paper is as follows. In Section 2, the problem setting and HDG
method are given. In Section 3, we deduce the error analysis of the velocity and the
pressure. In Section 4, we use the error results in Section 3 to derive the complexity analysis
of the MLMC method for the elliptic PDEs with random coefficients. In Section 5, some
numerical experiments are presented to verify the effectiveness of the proposed method.
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2. Preliminaries
2.1. Problem Setting

We consider the following elliptic problem with random coefficients: find a random
function pair (q, u) : (Ω× D)2 → R satisfying almost surely (a.s.):

a(ω, x)q(ω, x) +∇u(ω, x) = 0, in Ω× D, (1)

∇ · q(ω, x) = f (ω, x), in Ω× D, (2)

u(ω, x) = g(x), on ∂D, (3)

where D ⊂ R2 is a Lipschitz polyhedral domain, (Ω,F , P) is the complete probability
space with the set of outcomes Ω, σ-algebra F and probability measure P. The a(ω, x) is
the random coefficient, f (ω, x) is the force term, and g(x) is the deterministic Dirichlet
boundary condition.

Let Y be a random variable in (Ω,F , P). Denote by E[Y] the expected value which
is defined by E[Y] =

∫
Ω Y(ω)dP(ω). We make the following assumptions to the random

coefficient a(ω, x), force term f (ω, x) and boundary condition g(x).
A1. There exist two constants 0 < σ− < σ+ < ∞ such that:

P
(
ω ∈ Ω : σ− ≤ essinfx∈Da(ω, x) ≤ ‖a(ω, x)‖L∞(D) ≤ σ+

)
= 1.

A2. Let g(x) ∈ H1/2(∂D). The source term f (ω, x) is square integrable with respect to
P, i.e.,

∫
D E[| f (ω, x)|2]dx < ∞.

2.2. HDG Method

Let Dh be a shape regular triangulation of the domain D (see, e.g., [23]). Denote by hK
the diameter of simplex K ∈ Dh and let h := maxk∈Dh

hK. Set ∂Dh := {∂K : K ∈ Dh} and
Eh := E i

h
⋃ E ∂

h , where E i
h is the set of the interior faces, E ∂

h is the set of the boundary faces.
For these stochastic Sobolev spaces L2(Ω, L2(K)), L2(Ω, Hm(K)), the corresponding norms
are defined by

||u||L2(Ω,L2(K)) =

(
E
[∫

K
u2dx

])1/2
, ||u||L2(Ω,Hm(K)) =

E

 ∑
|α|≤m

∫
K
|∂mu|2dx

1/2

.

Define the following finite dimensional spaces V, W, M by

V : = {v ∈ L2(D) : v|K ∈ [Pk(K)]2, ∀K ∈ Dh},
W : = {w ∈ L2(D) : w|K ∈ Pk(K), ∀K ∈ Dh},
M : = {m ∈ L2(∂Dh) : m|∂K ∈ Pk(∂K), ∀∂K ∈ ∂Dh},

where Pk(K) is the set of polynomials of degree at most k on the element K. We write:

(w, v)Dh := ∑
K∈Dh

(w, v)K, 〈µ, ζ〉Dh := ∑
K∈Dh

〈µ, ζ〉∂K,

where (·, ·) is the L2 inner product on K, and 〈·, ·〉 is the L2 inner product on ∂K. Given
a sample ω ∈ Ω, the HDG numerical method of (1)–(3) is to find (qω,h, uω,h, ûω,h) ∈
V×W ×M such that:

(a(ω, x)qω,h, v)Dh − (uω,h,∇ · v)Dh + 〈ûω,h, v · n〉∂Dh
= 0, (4)

−(qω,h,∇w)Dh + 〈q̂ω,h · n, w〉∂Dh
= ( f , w)Dh , (5)

〈ûω,h, µ〉∂D = 〈g, µ〉∂D, (6)

〈q̂ω,h · n, µ〉∂Dh\∂D = 0, (7)
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for all (v, w, µ) ∈ V×W ×M. The numerical trace q̂ω,h is defined by

q̂ω,h := qω,h + τ(uω,h − ûω,h)n, on ∂Dh,

where τ > 0 is a constant on ∂Dh in this paper.

3. Error Analysis
3.1. HDG Projection

Denote by (ΠV q, ΠWu) the HDG projection function, where ΠV q and ΠWu are com-
ponents of V and W, respectively. On each simplex K ∈ Dh, the projection (ΠV q, ΠWu)
satisfy the following equations:

(ΠV q− q, v)K = 0, ∀v ∈ [Pk−1(K)]2, (8)

(ΠWu− u, w)K = 0, ∀w ∈ Pk−1(K), (9)

〈(ΠV q− q) · n + τ(ΠWu− u), µ〉∂K = 0, ∀µ ∈ Pk(∂K). (10)

Then, we give an important result for the projection (ΠV , ΠW) in the following lemma.
The proof is similar to Theorem 2.1 in [17] and hence is omitted.

Lemma 1. Give a sample ω ∈ Ω. Suppose the τ is a positive constant on ∂K. Then, the system
(8)–(10) is uniquely solvable. Moreover, we have the following estimate for `q, `u ∈ [0, k]

‖ΠV q− q‖L2(Ω;L2(K)) ≤ Ch`q+1
K ‖q‖L2(Ω;H`q+1(K)) + Ch`u+1

K ‖u‖L2(Ω;H`u+1(K)),

‖ΠWu− u‖L2(Ω;L2(K)) ≤ Ch`u+1
K ‖u‖L2(Ω;H`u+1(K)) + Ch`q+1

K ‖∇ · q‖L2(Ω;H`q (K)),

where C is a generic constant independent of hK.

Let ρ
q
ω,h = ΠVqω − qω,h, ρu

ω,h = ΠWuω − uω,h and ρû
ω,h = PMuω − ûω,h, where PM is

the L2-orthogonal projection onto M which satisfies:

〈τ(PMuω − uω), µ〉∂Dh
= 0, ∀µ ∈ M. (11)

Then, we have the following error equations.

Lemma 2. Give a sample ω ∈ Ω. Suppose (qω , uω), (qω,h, uω,h, ûω,h) are the solutions of (1)–(3)
and (4)-(7) respectively. We have:(

a(ω, x)ρq
ω,h, v

)
Dh
−
(

ρu
ω,h,∇ · v

)
Dh

+ 〈ρû
ω,h, v · n〉∂Dh

= (a(ω, x)(ΠVqω − qω), v)Dh
, (12)

−(ρq
ω,h,∇w)Dh + 〈(ρ̂ω,h · n, w〉∂Dh

= 0, (13)

〈ρû
ω,h, µ〉∂D = 0, (14)

〈ρ̂ω,h · n, µ〉∂Dh\∂D = 0, (15)

for all (v, w, µ) ∈ V×W ×M, where:

ρ̂ω,h · n := ρ
q
ω,h · n + τ(ρu

ω,h − ρû
ω,h), on ∂Dh \ ∂D. (16)

Proof. Given a sample ω ∈ Ω, the exact solution (qω, uω) satisfies:

(a(ω, x)qω, v)Dh − (uω,∇ · v)Dh + 〈uω, v · n〉∂Dh
= 0,

−(qω,∇w)Dh + 〈qω · n, w〉∂Dh
= ( f , w)Dh .

for all (v, w, µ) ∈ V ×W × M. Considering properties (8) and (9) of the projections
(ΠV , ΠW) and L2-projection PM of (11), we obtain:
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(a(ω, x)ΠV qω , v)Dh − (ΠW uω ,∇ · v)Dh + 〈PMuω , v · n〉∂Dh
= (a(ω, x)(ΠV qω − qω), v)Dh ,

−(ΠV qω ,∇w)Dh + 〈ΠV qω · n + τ(ΠW uω − uω), w〉∂Dh
= ( f , w)Dh .

Subtracting (4) and (5) from the former equations, we obtain the expected Equa-
tions (12) and (13). By the boundary condition (6), we directly have Equation (14). Using
the properties of (ΠV , ΠW) and PM, we have:

〈ρ̂ω,h · n, µ〉∂Dh\∂D = 〈(ΠV qω − qω,h) · n + τ(ΠWuω − uω,h − PMuω + ûω,h), µ〉∂Dh\∂D

= 〈(qω − qω,h) · n + τ(uω − uω,h − uω + ûω,h), µ〉∂Dh\∂D

= 〈qω · n, µ〉∂Dh\∂D + 〈q̂ω,h · n, µ〉∂Dh\∂D

= 0,

where last identity is due to the fact that qω is single valued on Eh and q̂ω,h satisfies (7).
We complete the proof.

3.2. Flux Estimate

Theorem 1. Suppose the exact solution (q, u) belongs to L2(Ω; Hk+1(Dh))× L2(Ω; Hk+1(Dh))
(k > 0) and the assumption A1 holds. We have:

‖q− qh‖L2(Ω;L2(Dh))
≤ C

(
1 +

σ+
σ−

)
hk+1

(
‖q‖L2(Ω;Hk+1(Dh))

+ ‖u‖L2(Ω;Hk+1(Dh))

)
,

where the constant C is independent of h.

Proof. Give a sample ω ∈ Ω. Taking v = ρ
q
ω,h in (12), w = ρu

ω,h in (13), µ = −ρ̂ω,h · n in
(14) and µ = −ρû

ω,h in (15) and adding these equations together, we obtain:(
a(ω, x)ρq

ω,h, ρ
q
ω,h

)
Dh
−
(

ρu
ω,h,∇ · ρq

ω,h

)
Dh

+ 〈ρû
ω,h, ρ

q
ω,h · n〉∂Dh

− (ρ
q
ω,h,∇ρu

ω,h)Dh

+〈ρ̂ω,h · n, ρu
ω,h〉∂Dh

− 〈ρ̂ω,h · n, ρû
ω,h〉∂Dh

=
(

a(ω, x)(ΠVqω − qω), ρ
q
ω,h

)
Dh

.

Applying the integration by parts to the left-hand-side (LHS) terms of the above
equation, we have

LHS =
(

a(ω, x)ρq
ω,h, ρ

q
ω,h

)
Dh

+
(
∇ρu

ω,h, ρ
q
ω,h

)
Dh
− 〈ρu

ω,h, ρ
q
ω,h · n〉∂Dh

+ 〈ρû
ω,h, ρ

q
ω,h · n〉∂Dh

− (ρ
q
ω,h,∇ρu

ω,h)Dh + 〈ρ̂ω,h · n, ρu
ω,h〉∂Dh

− 〈ρ̂ω,h · n, ρû
ω,h〉∂Dh

=
(

a(ω, x)ρq
ω,h, ρ

q
ω,h

)
Dh
− 〈ρu

ω,h − ρû
ω,h, ρ

q
ω,h · n〉∂Dh

+ 〈ρ̂ω,h · n, ρu
ω,h − ρû

ω,h〉∂Dh

=
(

a(ω, x)ρq
ω,h, ρ

q
ω,h

)
Dh

+ 〈τ(ρu
ω,h − ρû

ω,h), ρu
ω,h − ρû

ω,h〉∂Dh
,

where the last identity follows from (16). Hence:(
a(ω, x)ρq

ω,h, ρ
q
ω,h

)
Dh

+ 〈τ(ρu
ω,h − ρû

ω,h), ρu
ω,h − ρû

ω,h〉∂Dh
=
(

a(ω, x)(ΠVqω − qω), ρ
q
ω,h

)
Dh

.

Considering the assumption A1 and integrating in the probability space, we obtain:

σ−E
[(

ρ
q
h , ρ

q
h
)

Dh

]
+E

[
〈τ(ρu

h − ρû
h), ρu

h − ρû
h〉∂Dh

]
≤ σ+E

[(
ΠVq− q, ρ

q
h
)

Dh

]
.

By Cauchy–Schwarz inequality and the fact τ > 0, we have:∥∥ρ
q
h

∥∥
L2(Ω;L2(Dh))

≤ σ+
σ−
‖ΠVq− q‖L2(Ω;L2(Dh))

.
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The triangle inequality implies:

‖q− qh‖L2(Ω;L2(Dh))
≤ ‖q−ΠVq‖L2(Ω;L2(Dh))

+ ‖ΠVqω − qh‖L2(Ω;L2(Dh))

≤
(

1 +
σ+
σ−

)
‖ΠVq− q‖L2(Ω;L2(Dh))

.

By Lemma 1, we complete the proof.

3.3. Pressure Estimate

In this subsection, we use the Aubin–Nitsche duality argument to give the error
estimate of ‖u− uh‖L2(Ω;Dh)

. We introduce a dual problem for any given Θ ∈ L2(Ω; L2(D))

by finding Φ(ω, x) such that:

a(ω, x)Φ(ω, x) +∇ϕ(ω, x) = 0, in Ω× D, (17)

∇ ·Φ(ω, x) = Θ(ω, x), in Ω× D, (18)

ϕ(ω, x) = 0, on ∂D. (19)

We assume that the boundary value problem admits the regularity estimate:

‖Φ(ω, x)‖L2(Ω;H1(D)) + ‖ϕ(ω, x)‖L2(Ω;H2(D)) ≤ Creg‖Θ(ω, x)‖L2(Ω;L2(D)), (20)

where Creg depends on σ− and σ+. Then, we have the following theorem.

Theorem 2. Suppose the exact solution (q, u) belongs to L2(Ω; Hk+1(Dh))× L2(Ω; Hk+1(Dh))
(k > 0) and the assumption A1 holds. We have:

‖u− uh‖L2(Ω;L2(Dh))
≤ C

(
1 +

σ+
σ−

)
hk+1

(
|q|L2(Ω;Hk+1(Dh))

+ |u|L2(Ω;Hk+1(Dh))

)
,

where the constant C is independent of h.

Proof. Give a sample ω ∈ Ω. Considering the properties of (8) and (10), we have:(
ρu

ω,h,∇ ·Φ(ω, x)
)

Dh

= −
(
∇ρu

ω,h, Φ(ω, x)
)

Dh
+
〈

ρu
ω,h, Φ(ω, x) · n

〉
∂Dh

= −
(
∇ρu

ω,h, ΠVΦ(ω, x)
)

Dh
+
〈

ρu
ω,h, Φ(ω, x) · n

〉
∂Dh

= −
(
∇ρu

ω,h, ΠVΦ(ω, x)
)

Dh
+
〈

ρu
ω,h, ΠVΦ(ω, x) · n + τ(ΠW ϕ(ω, x)− ϕ(ω, x))

〉
∂Dh

=
(

ρu
ω,h,∇ ·ΠVΦ(ω, x)

)
Dh

+
〈

ρu
ω,h, τ(ΠW ϕ(ω, x)− ϕ(ω, x))

〉
∂Dh

.

Taking v = ΠVΦ(ω, x) in (12), we obtain:(
ρu

ω,h, Θ(ω, x)
)

Dh
=
(

ρu
ω,h,∇ ·Φ(ω, x)

)
Dh

=
(

ρu
ω,h,∇ ·ΠVΦ(ω, x)

)
Dh

+
〈

ρu
ω,h, τ(ΠW ϕ(ω, x)− ϕ(ω, x))

〉
∂Dh

=
(

a(ω, x)ρq
ω,h, ΠVΦ(ω, x)

)
Dh

+ 〈ρû
ω,h, ΠVΦ(ω, x) · n〉∂Dh

− (a(ω, x)(ΠVqω − qω), ΠVΦ(ω, x))Dh
+
〈

ρu
ω,h, τ(ΠW ϕ(ω, x)− ϕ(ω, x))

〉
∂Dh

=
(

a(ω, x)(qω − qω,h), ΠVΦ(ω, x)
)

Dh
+
〈

ρû
ω,h, (ΠVΦ(ω, x)−Φ(ω, x)) · n

〉
∂Dh

+
〈

ρu
ω,h, τ(ΠW ϕ(ω, x)− ϕ(ω, x))

〉
∂Dh

,
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where the last equation is due to the fact that Φ(ω, x) · n is continuity and ρû
ω,h = 0 on ∂D.

By (10) and (11), we have:(
ρu

ω,h, Θ(ω, x)
)

Dh

=
(

a(ω, x)(qω − qω,h), ΠVΦ(ω, x)
)

Dh
+
〈

ρu
ω,h − ρû

ω,h, τ(ΠW ϕ(ω, x)− ϕ(ω, x))
〉

∂Dh

=
(

a(ω, x)(qω − qω,h), ΠVΦ(ω, x)
)

Dh
+
〈

τ(ρu
ω,h − ρû

ω,h), ΠW ϕ(ω, x)
〉

∂Dh

−
〈

τ(ρu
ω,h − ρû

ω,h), PM ϕ(ω, x)
〉

∂Dh
.

Error Equations (13) and (16) yield:(
ρu

ω,h, Θ(ω, x)
)

Dh

=
(

a(ω, x)(qω − qω,h), ΠVΦ(ω, x)
)

Dh
−
(
∇ · ρq

ω,h, ΠW ϕ(ω, x)
)

Dh

+
〈

ρ
q
ω,h · n, PM ϕ(ω, x)

〉
∂Dh

=
(

a(ω, x)(qω − qω,h), ΠVΦ(ω, x)
)

Dh
−
(
∇ · ρq

ω,h, ϕ(ω, x)
)

Dh
+
〈

ρ
q
ω,h · n, ϕ(ω, x)

〉
∂Dh

=
(

a(ω, x)(qω − qω,h), ΠVΦ(ω, x)
)

Dh
+
(

ρ
q
ω,h,∇ϕ(ω, x)

)
Dh

.

Using Equation (17), we derive:(
ρu

ω,h, Θ(ω, x)
)

Dh

=
(

a(ω, x)(qω − qω,h), ΠVΦ(ω, x)−Φ(ω, x)
)

Dh

+
(

a(ω, x)(qω − qω,h), Φ(ω, x)
)

Dh
+
(

ρ
q
ω,h,∇ϕ(ω, x)

)
Dh

=
(

a(ω, x)(qω − qω,h), ΠVΦ(ω, x)−Φ(ω, x)
)

Dh

+
(

ΠVqω − qω,∇ϕ(ω, x)−Πk−1∇ϕ(ω, x)
)

Dh
,

where Πk−1 is the L2-projection on [Pk−1(K)]2. Considering the assumption A1 and inte-
grating in the probability space, we have:

E
[
(ρu

h , Θ)Dh

]
≤σ+E

[
(q− qh, ΠVΦ(x)−Φ(x))Dh

]
+E

[(
ΠVq− q,∇ϕ−Πk−1∇ϕ(ω, x)

)
Dh

]
.

By the Cauchy–Schwarz inequality, we deduce:

E
[
(ρu

h , Θ)Dh

]
≤ σ+‖q− qh‖L2(Ω;L2(Dh))

‖ΠVΦ−Φ‖L2(Ω;L2(Dh))

+ ‖ΠVq− q‖L2(Ω;L2(Dh))

∥∥∥∇ϕ−Πk−1∇ϕ
∥∥∥

L2(Ω;L2(Dh))
.

Applying Lemma 1 and Theorem 1, we have:

E
[
(ρu

h , Θ)Dh

]
≤ C

(
1 +

σ+
σ−

)
hk+1

(
|q|L2(Ω;Hk+1(Dh))

+ |u|L2(Ω;Hk+1(Dh))

)
·(

hσ+‖Φ‖L2(Ω;H1(Dh))
+ h2σ+‖ϕ‖L2(Ω;H2(Dh)) + hmin{k,1}σ+‖ϕ‖L2(Ω;H2(Dh))

)
.
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The regularity assumption (20) implies:

E
[
(ρu

h , Θ)Dh

]
≤ C

(
1 +

σ+
σ−

)
hk+1

(
|q|L2(Ω;Hk+1(Dh))

+ |u|L2(Ω;Hk+1(Dh))

)
×
(

hσ+‖Θ‖L2(Ω;L2(Dh)) + h2σ+‖Θ‖L2(Ω;L2(Dh)) + hmin{k,1}σ+‖Θ‖L2(Ω;L2(Dh))

)
.

Hence:

‖ρu
h‖L2(Ω;L2(Dh))

≤ C
(

1 +
σ+
σ−

)
hk+1

(
hσ+ + h2σ+ + hmin{k,1}

)
×
(
|q|L2(Ω;Hk+1(Dh))

+ |u|L2(Ω;Hk+1(Dh))

)
.

Together with the Lemma 1, we obtain:

‖u− uh‖L2(Ω;L2(Dh))
≤ C

(
1 +

σ+
σ−

)
hk+1

(
|q|L2(Ω;Hk+1(Dh))

+ |u|L2(Ω;Hk+1(Dh))

)
.

We complete the proof.

4. Multilevel Monte Carlo HDG Method
4.1. The MC Method

Let u ∈ L2(Ω; L2(Dh)) be a random field. The expectation E[u] is approximated by
the sample average EM[u], which is defined by

EM[u] :=
1
M

M

∑
i=1

uωi ,

where uωi := u(ωi, ·), i = 1, . . . , M are independent identically distributed (i.i.d.) realiza-
tions of the random field u. We give statistical error of the EM[u] in the following lemma.

Lemma 3. Let u ∈ L2(Ω; L2(Dh)). Then, we have for any M ∈ N:

‖E[u]− EM[u]‖L2(Ω;L2(Dh))
≤ M−1/2‖u‖L2(Ω;L2(Dh))

.

Proof. Considering that uωi := u(ωi, ·), i = 1, . . . , M are i.i.d. samples of the random field
u, we have:

E
[
‖E[u]− EM[u]‖2

L2(Dh)

]
= E

∥∥∥∥∥E[u]− 1
M

M

∑
i=1

uωi

∥∥∥∥∥
2

L2(Dh)

 =
1

M2E

∥∥∥∥∥ M

∑
i=1

(E[u]− uωi )

∥∥∥∥∥
2

L2(Dh)


=

1
M2

M

∑
i=1

E
[
‖E[u]− uωi‖

2
L2(Dh)

]
=

1
M

E
[
‖E[u]− u‖2

L2(Dh)

]
=

1
M

(
E
[
‖u‖2

L2(Dh)

]
− ‖E[u]‖2

L2(Dh)

)
≤ 1

M
E
[
‖u‖2

L2(Dh)

]
.

Taking the square root of both sides of the inequality, we complete the proof.

In practice, it is difficult to take samples from the random field u, since we do not
know it most of time. To overcome this difficulty, we choose samples from the HDG ap-
proximation uhL with hL = 1/(22L), where L ∈ N. We define the the classical MC estimator:

EM[uhL ] :=
1
M

M

∑
i=1

uωi ,hL , (21)
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where uωi ,hL := uhL(ωi, ·), i = 1, . . . , M are i.i.d. realizations of the random field uhL .

Theorem 3. Suppose assumptions A1-A2 hold, then:∥∥E[u]− EM[uhL ]
∥∥

L2(Ω;L2(Dh))
≤ C

(
hk+1

L + M−1/2
)

,∥∥∥E[q]− EM[qhL
]
∥∥∥

L2(Ω;L2(Dh))
≤ C

(
hk+1

L + M−1/2
)

,

where the constant C is independent of hL and M.

Proof. By the triangle inequality, we have:∥∥E[u]− EM[uhL ]
∥∥

L2(Ω;L2(Dh))

≤
∥∥E[u]−E[uhL ]

∥∥
L2(Ω;L2(Dh))

+
∥∥E[uhL ]− EM[uhL ]

∥∥
L2(Ω;L2(Dh))

.

Using the Cauchy–Schwarz inequality, we have:∥∥E[u]−E[uhL ]
∥∥

L2(Ω;L2(Dh))
=
∥∥E[u− uhL ]

∥∥
L2(Ω;L2(Dh))

≤ E
[∥∥u− uhL

∥∥
L2(Dh)

]
≤
∥∥u− uhL

∥∥
L2(Ω;L2(Dh))

≤ Chk+1
L ,

where the third inequality follows from Theorem 2. For term
∥∥E[uhL ]− EM[uhL ]

∥∥
L2(Ω;L2(Dh))

,
applying Lemma 3, we obtain:∥∥E[uhL ]− EM[uhL ]

∥∥
L2(Ω;L2(Dh))

≤ M−1/2∥∥uhL

∥∥
L2(Ω;L2(Dh))

.

Hence: ∥∥E[u]− EM[uhL ]
∥∥

L2(Ω;L2(Dh))
≤ C

(
hk+1

L + M−1/2
)

.

Similarly, we can obtain:∥∥∥E[q]− EM[qhL
]
∥∥∥

L2(Ω;L2(Dh))
≤ C

(
hk+1

L + M−1/2
)

.

The proof is complete.

Theorem 3 implies that the total error result can be decomposed into two parts:
statistical error with order M−1/2 and discretization error with order hk+1

L . For a fixed
error, the optimal number of samples M should be equilibrated with the mesh size hL,
meaning that:

M−1/2 = O(hk+1
L ) = O(N−(k+1)/2

L ),

where NL = 22L is the degrees of freedom of the HDG method. Hence, the total computa-
tional cost is:

O(M · NL) = O(22(k+2)L).

4.2. The MLMC Method

For the MLMC method, the random field uhL can be written as

uhL =
L

∑
l=1

(uhl
− uhl−1

),

where uh0 = 0, l = 0, . . . , L. The linearity of the expectation operator yields:

E[uhL ] =
L

∑
l=1

E[uhl
− uhl−1

].
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We approximate E[uhl
− uhl−1

] by the MC estimator with Ml i.i.d. samples on sub-level
l. Hence, we estimate E[u] by

EL[uhL ] =
L

∑
l=1

EMl [uhl
− uhl−1

],

where the samples over all levels are independent of each other.

Theorem 4. Let assumptions A1-A2 hold, then:

∥∥∥E[u]− EL[uhL ]
∥∥∥

L2(Ω;L2(Dh))
≤ Chk+1

L + C
L

∑
l=1

M−1/2
l hk+1

l ,

∥∥∥E[q]− EL[qhL
]
∥∥∥

L2(Ω;L2(Dh))
≤ Chk+1

L + C
L

∑
l=1

M−1/2
l hk+1

l ,

where the constant C is independent of hl and M, l = 1, . . . , L.

Proof. By the triangle inequality, we obtain:∥∥∥E[u]− EL[uhL ]
∥∥∥

L2(Ω;L2(Dh))

=
∥∥∥E[u]−E[uL] +E[uL]− EL[uhL ]

∥∥∥
L2(Ω;L2(Dh))

≤ ‖E[u]−E[uL]‖L2(Ω;L2(Dh))
+
∥∥∥E[uL]− EL[uhL ]

∥∥∥
L2(Ω;L2(Dh))

≤ ‖E[u]−E[uL]‖L2(Ω;L2(Dh))
+

∥∥∥∥∥ L

∑
l=1

(
E[uhl

− uhl−1
]− EMl [uhl

− uhl−1
]
)∥∥∥∥∥

L2(Ω;L2(Dh))

:= I + I I.

For estimating I, similarly to the proof of Theorem 2, we have:

‖E[u]−E[uL]‖L2(Ω;L2(Dh))
≤ Chk+1

L .

For I I, using the triangle inequality, we obtain:∥∥∥∥∥ L

∑
l=1

(
E[uhl

− uhl−1
]− EMl [uhl

− uhl−1
]
)∥∥∥∥∥

L2(Ω;L2(Dh))

≤
L

∑
l=1

∥∥∥E[uhl
− uhl−1

]− EMl [uhl
− uhl−1

]
∥∥∥

L2(Ω;L2(Dh))

=
L

∑
l=1

∥∥∥(E− EMl )[uhl
− uhl−1

]
∥∥∥

L2(Ω;L2(Dh))

≤
L

∑
l=1

M−1/2
l

∥∥∥uhl
− uhl−1

∥∥∥
L2(Ω;L2(Dh))

≤
L

∑
l=1

M−1/2
l

(∥∥u− uhl

∥∥
L2(Ω;L2(Dh))

+
∥∥∥u− uhl−1

∥∥∥
L2(Ω;L2(Dh))

)

≤
L

∑
l=1

M−1/2
l (hk+1

l + hk+1
l−1 )‖u‖L2(Ω;L2(Dh))

≤ C
L

∑
l=1

M−1/2
l hk+1

l ‖u‖L2(Ω;L2(Dh))
.
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Combing the estimates of I and I I, we obtain the desired result:

∥∥∥E[u]− EL[uhL ]
∥∥∥

L2(Ω;L2(Dh))
≤ Chk+1

L + C
L

∑
l=1

M−1/2
l hk+1

l .

Analogously, we have:

∥∥∥E[q]− EL[qhL
]
∥∥∥

L2(Ω;L2(Dh))
≤ Chk+1

L + C
L

∑
l=1

M−1/2
l hk+1

l .

The proof is complete.

Then, we give the error bounds of MLMC-HDG approximation for any distribution
{Ml}L

l=1 over the mesh levels. Just like the single level MC-HDG approximation, we are
interested in the optimal ratio of sample size versus grid size in every level. To achieve
the overall convergence rate, how to select the sampling number Ml is given in the follow-
ing theorem.

Theorem 5. Suppose assumptions A1-A2 hold. If the sampling number:

Ml = O(l(2+2ε)22(k+1)(L−l)h0) (22)

on sub-level l, l = 1, 2, . . . , L, then we have the error bounds:∥∥∥E[u]− EL[uhL ]
∥∥∥

L2(Ω;L2(Dh))
≤ Chk+1

L ,∥∥∥E[q]− EL[qhL
]
∥∥∥

L2(Ω;L2(Dh))
≤ Chk+1

L ,

where the constant C is independent of hl and M, ε > 0 is arbitrarily small. If each sample ui
l

(qi
l) in the estimator EMl [ul ] (EMl [ql ]) is approximated with accuracy O(hk+1

l ) at each sub-level l,
the total cost for computing EL[u] (EL[q]) is:

Cost(L) ≤ CεNk+1
L ,

where the constant Cε depends on ε but is independent of level L.

Proof. We only give the detailed proof of:
∥∥E[u]− EL[uhL ]

∥∥
L2(Ω;L2(Dh))

, since the proof of∥∥∥E[q]− EL[qhL
]
∥∥∥

L2(Ω;L2(Dh))
is similar.

To obtain the overall convergence rate O(hk+1
L ), we choose:

Ml = O(l(2+2ε)(hl/hL)
2(k+1)) = O(l(2+2ε)22(k+1)(L−l)), l = 1, 2, . . . , L,

for some ε > 0. Using Theorem 4, we obtain:

L

∑
l=1

M−1/2
l hk+1

l ≤
L

∑
l=1

l−(1+ε)2(k+1)(l−L)(2−lh0)
k+1

≤ 2−(k+1)Lhk+1
0

L

∑
l=1

l−(1+ε)

≤ hk+1
L .
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Similar to the standard finite element, the computational cost of the HDG method is
of linear complexity in the number Nl on every sub-level l (see, e.g., [24]). For Ml samples,
the cost is O(Ml · Nl). Hence, we have the following bound of overall cost at level L:

Cost(L) ≤
L

∑
l=1

Ml · Nl ≤
L

∑
l=1

l(2+2ε)22(k+1)(L−l)22l

= 22L
L

∑
l=1

l(2+2ε)22(k+1)(L−l)22(l−L) = 22L
L

∑
l=1

l(2+2ε)22k(L−l)

≤ NL

L−1

∑
l′=0

(L− l′)(2+2ε)22kl′

≤ CεNk+1
L .

We complete the proof.

5. Numerical Experiments

To conform the results of the approximation error and computational cost given in
Theorem 5, we present a numerical example. The diffusion coefficient and exact solution
are selected as follows:

a(ω, x) = (8 + ω) sin(x1x2)

u(ω, x) = (8 + ω) sin(2πx1) sin(2πx2)

where ω obeys a uniform distribution on [0, 1] and x = (x1, x2) ∈ [0, 1]2. The homogeneous
Dirichlet boundary condition and source term are chosen to match the exact solution.
The expectation of the solution is E[u] = 17

2 sin(2πx1) sin(2πx2). We take k = 1 and apply
the MLMC-HDG method to simulate the example. All numerical experiments are carried
out by using MATLAB R2018b software on an Intel Core i5 machine with 8 GB of memory.

We choose the number of samples with Ml = O(l(2+2ε)24(L−l)) on every sub-level
l. The convergence rate of the MLMC-HDG approximation depends on the sub-level l,
which is displayed in Figure 1. Figure 2 shows the total CPU-time of EL(u) and EL(q) for
different levels L. The CPU-time of sub-level l is plotted in Figure 3, l = 1, . . . , L.

We can see in Figure 1 that E
[
‖u− uh‖L2(Dh)

]
and E

[
‖q− qh‖L2(Dh)

]
converge with

h2. We can observe that the computational cost is Cost(L) ≤ N2
L in Figure 2. It shows that

the CPU-time is O(l22−4l) on each level l from Figure 3.
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Figure 1. (Left): Plot of E[‖u− uh‖L2(Dh)
] versus 1/h. The slope of the line is −2. (Right): Plot of

E[‖q− qh‖L2(Dh)
]. The slope of the line is −2.
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Figure 2. Total CPU time for the MLMC-HDG approximation of EL(u) and EL(q).
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Figure 3. CPU time for different levels for the MLMC-HDG approximation of EL(u) and EL(q).

6. Discussion

We first consider numerical solutions of stochastic PDEs based on the MLMC-HDG
method. Under assumptions A1-A2, we obtain some error and complexity results on the
numerical approximation. If assumption A1 is changed to P

(
ω ∈ Ω : 0 < essinfx∈Da(ω, x) ≤

‖a(ω, x)‖L∞(D) < ∞
)
= 1, the regularity of u will only be L2(Ω, H1+s(D)), where 0 <

s < 1. Consequently, the space discrete error ||u(ω, ·)− uh(ω, ·)||L2(D) will be no better
than Ch1+s.

The study of HDG methods is active, since it can capture the discontinuity property
well and keep the conservation property. The MLMC method is a good variance reduction
technique. The combination of HDG and MLMC methods is a good choice for numerical
approximation on PDEs with random coefficients. The MLMC-HDG method can be used
in the numerical simulation of evolution equation with random diffusion coefficients.
Furthermore, the combination of HDG and multilevel quasi-Monte Carlo methods is also a
good topic for stochastic PDEs.
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5. Babuška, I.; Nobile, F.; Tempone, R. A stochastic collocation method for elliptic partial differential equations with random input

data. SIAM Rev. 2010, 52, 317–335.
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