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Abstract: Due to the need to predict traffic congestion during the morning or evening rush hours in
large cities, a model that is capable of predicting traffic flow in the short term is needed. This model
would enable transport authorities to better manage the situation during peak hours and would
allow users to choose the best routes for reaching their destinations. The aim of this study was to
perform a short-term prediction of traffic flow in Madrid, using different types of neural network
architectures with a focus on convolutional residual neural networks, and it compared them with
a classical time series analysis. The proposed convolutional residual neural network is superior in
all of the metrics studied, and the predictions are adapted to various situations, such as holidays or
possible sensor failures.

Keywords: convolutional neural network; residual neural network; ARIMA; spatio-temporal;
traffic flow

1. Introduction

Madrid is a smart city and is one of the five most populated cities in the European
Union, with 3.1 million inhabitants and approximately 1.7 million vehicles circulating
through its streets. A traffic forecasting system is essential for managing the growing
volume of vehicles in these cities. In this respect, traffic flow prediction has received
special attention in the last two decades [1]. Using spatio-temporal data [2] obtained
from a range of sensors, a variety of real-world problems can be solved, such as the
demand for taxis [3–5], urban traffic control and congestion avoidance [6,7], abnormal
event detection [8,9], and travel time estimation or route planning [10–12], amongst others.

1.1. Related Work

Traffic flow prediction can be considered as using past and current flow data to predict
traffic in the near future [13]. Many studies have proposed various traffic flow prediction
methodologies [14] for both short- (seconds to 1 h) and long-term (more than 1 h) estimation.
Short-term traffic flow prediction has recently received increasing scientific and research
interest, which is mainly due to several advances in the application of artificial intelligence
in this field [15]. In addition, the use of deep neural networks for regression is a current
research topic [16,17].

The classical methods of time-series analysis that have been applied to short-term
traffic flow forecasting include autoregressive integrated moving average (ARIMA) models
or hybrid models with ARIMAS [18–20]. Several types of neural networks for time
series have shown superior performance to that of these linear models. Examples of these
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include recurrent neural networks (RNNs), which integrate feedback loops that allow
information to persist for a few epochs through layer connections by embedding their
results in the input data [21,22]. The connections between nodes form a directed graph
along a time sequence. This creates an internal state that allows the memorization of
previous data. However, the training of RNNs is costly in terms of time and memory
use. When longer time sequences are analyzed, the vanishing gradient problem may
appear. Another class of networks that are capable of monitoring previous data is the
class of long short-term memory (LSTM) networks [23]. This type of network solves the
vanishing gradient problem. LSTM networks work with long delays and are superior
to other methods in many applications, such as language learning [24] and connected
handwriting recognition [25], amongst others.

The first examples of these advances can be found in deep stacked autoencoder
networks [26,27] and LSTM neural networks [28–30]. Other deep learning architectures
have been adopted in this research area and have produced many encouraging results.
Later, works using deep learning focused on traffic flow prediction using stacked autoen-
coders [21] and deep belief networks [31]. However, these models were too shallow to
adapt to nonlinear structures and to learn multimodal patterns in traffic data [2]. More
recent works have used residual convolutional neural network (ResNet)-type deep neural
networks [32] and LSTM networks for traffic flow prediction [1,33]. In previous stud-
ies [34,35], a ResNet was used for traffic flow prediction with multitask learning and
flow-map super-resolution, and it showed high efficiency and effectiveness in predic-
tion. There are even studies that combine RNNs and CNNs [2,5], although this is usually
performed by sliding windows over a map.

Several studies based on spatio-temporal data have recently been conducted with the
aim of predicting, for example, the next destination [36–38]. These studies mostly focused
on analyzing patterns of individuals rather than viewing the problem as a global whole.

1.2. Overview

The spatial relationships between sensors could be important because the traffic flow in
one location can be affected by abnormal events in locations nearby, such as traffic accidents,
road closures, and certain types of events, such as demonstrations or sporting events, which
could have an important impact on the traffic situation [39]. Convolutional neural networks
(CNNs) can be a possible solution to this problem because they contemplate the spatio-
temporal structure of the set of sensors. As such, the aim of this study was to perform
a short-term prediction of traffic flow in Madrid using different types of neural network
architectures. Unlike most of the works presented in the recent literature, in this paper, we
would like to use an approach that is not based on sliding windows, but receives the full
map of the city to facilitate the consideration of long-distance relationships. In addition,
ResNet is a more powerful deep architecture that is based on CNN and takes advantage of
the similarity between the input and the output required in the network. For this reason,
we adopted a ResNet for this problem and compared it with methods based on a classic
time-series analysis.

2. Materials and Methods

In Section 2.1, we will explain our dataset and the division in it; one part is used to
create the model and the other is used to test it. In Section 2.2, we present the non-visual
models designed to solve the regression problem. These models are the ones that have
classically been used for this type of problem [40]. In this subsection, we introduce the
elements needed to address this problem using ARIMA models. Finally, in Section 2.3, we
present our proposed visual model.

2.1. Study Design and Data Source

For the different experiments performed in this work, we use a dataset obtained from
the open data page of the Madrid City Council (https://datos.madrid.es/portal/site/egob

https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9 ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default
https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9 ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default
https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9 ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default
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/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM10
00000b205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD&vg
nextfmt=default, accessed on 10 May 2021). This portal provides a detailed history of the
traffic flow data from all fifteen since 2013. The data were obtained from 4200 sensors
distributed along Madrid’s roads (Figure 1). All of the sensors were static in fixed points
on roads of the city. At the time of this study, the following information was available: date,
hour, sensor identifier, type of sensor (urban or bypass highway), traffic flow intensity of
the sensors in 15 min periods (vehicles/hour), occupancy of the road (measuring point’s
occupancy time in the 15 min periods; in percentage), load (vehicle loading in the 15 min
period (considering the intensity, occupancy, and capacity of the road, from 0 to 100)),
average speed of vehicles in a 15 min period (km/h; only for sensors located along bypass
highways), and indications of there being at least one incorrect or substituted sample in
the 15 min period.

Figure 1. Map of Madrid with 340 of the 3400 sensors used for traffic prediction.

Because the website did not have an application programming interface for down-
loading these data, the data were obtained by webscraping to collect all traffic information
from 1 January 2016 to 31 December 2019. These data were divided into two disjoint sets:
a training dataset and a testing dataset. The training dataset was composed of the traffic
information from 1 January 2016 to 31 December 2018. The testing dataset was composed
of the traffic information from 1 January 2019 to 31 December 2019. Note, the more recent
data were used for testing, in order to ensure the generalization capability of the models.
The traffic flow intensity data (number of vehicles/hour) comprised our target variable,
and the average of the data collected every fifteen minutes was considered a grouping, i.e.,
data at the hourly level were constructed. In addition, erroneous data (from the indicator
or when an observation was not provided) were considered as missing data.

https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9 ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default
https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9 ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default
https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9 ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default
https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9 ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default
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Only measurement points that provided data in the four years of study (2016–2019)
were considered, as some measurement points were temporary and were not collected in
all years. We used 2016–2018 for training and 2019 for testing.

To train the models, missing data from the training series were filled in by using
the closest previous data by day of the week and time from the rest of the series. For
all of the treatments, a total of 3400 series were considered. All of the information re-
garding the sensors and their spatial locations can be downloaded from the following
link (https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284
f1a5a0/?vgnextoid=ee941ce6ba6d3410VgnVCM1000000b205a0aRCRD&vgnextchannel=3
74512b9ace9f310VgnVCM100000171f5a0aRCRD, accessed on 10 May 2021).

2.2. ARIMA Models

ARIMA models, which are generalizations of the autoregressive moving average
(ARMA) model, are standard in the field of time-series forecasting. As Box and Jenkins
stated in their methodology [41], to fit models of this type, it is first necessary to guarantee
the stationarity—in a weak sense—of the time series to be modeled.

In our study, we considered two types of seasonalities: one depends on the time of day
(s = 24), and the other depends on the day of the week (s = 24 × 7 = 168). However, forecast
server only refers to one of the two, a limitation that we also found in the auto.arima
function. To overcome this problem, we decided to specify the value corresponding to the
strongest seasonality for s and to reflect the other periodicities by including regressors.

To decide which of the two seasonalities is stronger, as ARIMA models are linear in
nature, the linear correlations between the data of the series in question and the same data
lagging by 24 and 168 time units were calculated for each series:

corridserie
24 = corr(idseriet−24)

and
corridserie

168 = corr(idseriet−168)

∀idserie ∈ (1, 2, . . . , 3400)

With the 3400 pairs of values
(

corr
idseriesid
24 , corridseries

168

)
, a nonparametric Kruskal–Wallis

test was performed to determine any significant differences between these correlations,
which showed that they were higher for corridseries

168 .
For this reason, models of the type SARIMA(p, d, q)x(P, D, Q)168 were fitted (Figure 2),

and the seasonality of order 24 was reflected through regressors. Two alternatives were
tested: to generate dummy variables associated with each of the 24 h of the day or to
consider a single regressor referring to the value of the series in question 24 time periods
ago—an effect that, in the end, reflected at least an AR(24) structure. The computational
cost involved in reflecting the high number of regressors of the former led us to opt for the
latter, after having verified that the results obtained for a sample of the series with respect
to the magnitude of the prediction errors with one another, were not significantly different
from a statistical point of view.

Regarding the value of the possible orders proposed for the model SARIMA(p, d, q)×
(P, D, Q)168, the value of 2 was specified for the orders p and q, as it was not realistic for
the traffic of one hour to be conditioned by the traffic of more than two hours before. A
similar reasoning led us to limit the value of the parameters P and Q to 1. The number of
differences was set to 1, as the maximum value for d and D (Figure 2), because it was not
realistic to consider higher orders. Thus, a value of d = 2 would be justified for a series
that shows quadratic trends, a behavior that was not observed in any of the modeled series.
Thus, the contrasted models responded in an extreme case to an expression of the type:

Xt = β0 +

(
1− θ1B− θ2B2)(1−Θ1B168)

(1− φ1B− φ2B2)(1−Φ1B168)(1− B)(1− B168)
εt + wXt−24 (1)

https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=ee941ce6ba6d3410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD
https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=ee941ce6ba6d3410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD
https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=ee941ce6ba6d3410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD
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where Xt can be each of the original series or their respective logarithm transformations.
Regressors associated with the traffic of neighboring zones in the hour immediately

prior to that for which the prediction is proposed were considered (Figure 2), so that the
final equation of the model for predicting the traffic flow associated with a zone j responds
to a structure of the type:

X j
t−1 =β0 +

(
1− θ1B− θ2B2)(1−Θ1B168)

(1− φ1B− φ2B2)(1−Φ1B168)(1− B)(1− B168)
εt+

+ wXt−24 + ∑
i∈B(j,m),i 6=j

νtXi
t−1

(2)

where B(j, m) is a ball that includes the m zones closest to j, where m = 4, 8, and 12. In
Equation (2), only input variables whose parameters are statistically significant (required =
maybe, Figure 2) are considered. Finally, ARIMA models are sensitive to the existence of
outliers. The Forecast Server tool has a procedure for automatically identifying outliers.
Based on these data, the tool generates intervention variables to take their effect into account
so that they do not affect the quality of the predictions that it generates. The process of
identifying outliers is computationally expensive; therefore, the maximum number of
variables of this type to be considered in each model was reduced to 2 (Figure 2).

Repeat for m in {0,4,8,12}

Repeat for each
sensor serie

Data preparation and 
model training stage

Test stage

Statistics

Trained 
model

SAS Forecast Server

Transformation = Log/None
Seasonality = 168
d=(0:1) ADF test
D=(0:1) ADF test
p=(0:2) q=(0:2) P=(0:1) Q=(0:1)
Required = Maybe
Outliers = 2 (max)

Traffic data
from 2016-2018

Test model
Traffic data
from 2019

Start and end of 
process flow

Function Data

Process flow Data flow

Select m
neighbours

Sensor serie with 
m neighbours

Select m
neighbours

Sensor serie with 
m neighbours

Figure 2. UML activity diagram of the process used to train and test the ARIMA models.

2.3. Visual Model

In this subsection, we present some necessary data preparations for the visual models.
Later, we present a very basic visual model based on a CNN. Finally, we present the main
contributions of this work: a modification of a ResNet for solving the regression problem
applied to traffic flow prediction.

2.3.1. Data Preparation

The input for the visual model was a sequence of maps related to the traffic flow
values recorded by the sensors at different time instants. The instants chosen were the same
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as those in the ARIMA model. So, to predict the map corresponding to the instant t, maps
for capturing the trend of the previous hour (mt−1, mt−2), of the same hour on the previous
day (mt−24, mt−25), and of the same hour in the previous week (mt−24·7, mt−24·7−1), were
used as input. As output, this visual model provided a map corresponding to the traffic
flow prediction for a later time mt.

Each map m is presented as an N × N matrix of real numbers. Each point p(i, j) of
this matrix contains the traffic flow value at latitude i and longitude j of the map. A square
matrix was chosen because the map of Madrid is approximately square (Figure 1). The
points on the map that correspond to the geolocation of a sensor take the value of the
sensor at that instant. The points of the matrix that do not correspond to positions with
sensors are kept at zero.

The matrix dimensions must be chosen by considering two aspects. First, if N is small,
the computation time and memory usage of the networks will be lower, but there may be
overlap between the positions of sensors that are close to each other. This is due to sensors
in the center of the city being very close, but there are sensors in the outskirts of the city
that are far away from each other. If N is large, the overlap is reduced, but it penalizes the
training process in several ways: First, the amount of memory needed to load the matrix is
very high. Second, the neural network has many weights to store and adjust. Third, this
large matrix is very sparse because the number of sensors is fixed to 3400 and the matrix
grows quadratically.

With 3400 sensors, the minimum value of N is approximately 60. However, if we fix
N = 60, many sensors overlap (see the first and second rows of Figure 3a). We also tried
configurations of N = 120, but, again, several sensors overlapped (see the first and second
rows of Figure 3b).

To solve this issue, we built an algorithm that assigns each sensor to the corresponding
position in an N × N matrix in the case of an overlapping search for the nearest empty
position (Algorithm 1).

Using the assignment algorithm, we could situate the 3400 sensors in a minimal matrix
with N = 60, but sometimes, the position of a sensor was assigned to a cell that is far from
its original position (see the third and fourth rows of Figure 3a). This penalizes the local
behavior being searched for with any visual approach. However, when N = 120, these
distances are greatly reduced (see the third and fourth rows of Figure 3b).

Algorithm 1: Algorithm that searches for an empty cell near a given position.
Input: latitude:int, longitude:int, map:matrix
Output: An empty position
Function searchEmpty(latitude,Longitude,map):

for side in range(0,gridSize) do
for i in range(max(0,x-side),min(x+side,gridSize-1)) do

for j in range(max(0,y-side),min(y+side,gridSize-1)) do
if output[j,i] == 0 then

return (j,i)
end

end
end

end
End Function
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(a) (b)
Figure 3. Number of collisions for different matrix sizes and distances from the original position
when the station was repositioned. (a) Sensors in a 60× 60 matrix. (b) Sensors in a 120× 120 matrix.

Figure 4 describes the activities involved in the training and testing stages of the visual
model. The data preparation stage is executed only at the beginning of the process, and it
consists of two activities: the execution of the explained algorithm to distribute the sensors
in the matrix and a normalization of the data to be in the [0, 1] range, which is performed
by dividing the data by the maximum. This normalization is common in network training
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because the highest resolution is around zero in floating-point systems. Then, all of
the maps are created before the training stage. Thus, maps of 24 h × 365 days × 3 years
are loaded into the memory. An example of the input pattern and expected pattern
generated by our model is shown in Figure 5; these patterns show a strong spatio-temporal
relationship between the input and the output.

Test stage

Train stage

Hourly maps 
of 2019

Statistics

Trained model

Hourly maps from
 2016 to 2018

Distribute 
sensors on map

Traffic data
from 2016-2019

Normalice data 
and create maps

Train model

Test model

Data preparation
Function Data

Process flow Data flow

Start and end of 
process flow

Start of concurrency

Figure 4. UML activity diagram of the process used to train and test the network models.

Figure 5. One possible input and expected output for the network.

Note that our visual approximation only needs to train one model for all of the sensors,
in contrast to ARIMA’s training process, in which it is necessary to train a model for each
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sensor. In addition, note that all of the sensors are processed in parallel by using matrices,
without the need for loops.

2.3.2. Preliminary Visual Model: Regression CNN

To take advantage of the spatial information related to the positions of the measure-
ment stations, first, we propose the use of a deep model based on CNNs. This is perhaps
the simplest model based on deep learning, and it was inspired by the work of LeCun et al.
in 1998 [42].

This resulted in the following equation, which was implemented in the network
shown in Figure 6.

mt ≈ CNN(mt−1, mt−2, mt−24, mt−25, mt−24×7, mt−24×7−1) (3)

ReLU

ReLU

ReLU

Input 120x120,6

Output 120x120,1

Conv 5x5,6

Conv 5x5,32

Conv 5x5,32

Conv 7x7,1

ReLU

Figure 6. Tested CNN architecture.

If the network has three layers of a CNN with a 5× 5 kernel size, each sensor of the
matrix could affect sensors that are in a 13× 13 neighborhood (Figure 7). When N = 60,
there are very geographically near sensors that are positioned outside of this 13 × 13
neighborhood (see the fourth row of Figure 3a). However, when N = 120, as can be seen
in the fourth row in Figure 3b, all sensors are in a neighborhood of 10× 10 with respect
to their original positions. Thus, we chose N = 120 for the input and output layers of the
models, as well as at least three levels of convolutional layers.

1st convolution                      2nd convolution                  3th convolution

Input Output

Figure 7. With three layers of 5× 5 convolutions, the predicted value for a sensor (blue) could be
affected by input sensors that are in a 13× 13 neighborhood.

The training stage uses a mean square error loss function with the Adam algorithm
to fit the weights of the neural network. The training data were divided into training
(from 2106 and 2017) and validation (from 2018) subsets. The network was trained until no
improvement was detected in the validation data in the last 100 epochs. In each epoch, all
of the samples were presented to the network in batches of 32 samples.

Unlike the LeCun model, as the output had the same size as the input, a maxpooling
layer was not needed. In addition, the final dense layer was substituted by a 7× 7 convo-
lutional ReLu layer. Finally, we found that only dropout regularization layers could be
used, due to the effects of normalization introduced by the Euclidean distance (L2 norm)
or batch-normalization regularization on the linear output.
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2.3.3. Regression ResNet Model

As the prediction for the instant t can be seen as the map corresponding to t− 1 plus
a residual, we thought that the use of residual networks could improve the CNN results.
Formally, this can be expressed as:

mt ≈ mt−1 + r (4)

Note that Equation (4) is in line with Equation (5) from He et al. [32] for residual
networks.

y = F(x, {Wi}) + x (5)

where x is mt−1, F is the function corresponding to the neural network, Wi are the weights
of this net, and y is the desired prediction mt.

Just as CNNs are based on the concatenation of convolutional layers, ResNet networks
are based on the concatenation of linear blocks. As linear blocks, we used the deeper
bottleneck architecture proposed by [32] (see Figure 8a). In their proposal, each linear block
contained three convolutional layers with a ReLU activation function.

ReLU

Output 120x120,1

Conv 1x1,128

Conv 7x7,1

+

M

ReLU

ReLU

ReLU

Conv 1x1,N

Conv 5x5,N

Conv 1x1,M

(a) (b)

Input 120x120,6

Identity block
M=32

...

Identity block
M=32

Identity block
M=128

ReLU

Identity 
block

Figure 8. ResNet architecture: (a) linear block (ResNet) and (b) regression ResNet.

The 1 × 1 layers reduce and increase the previous dimensions, while the 5 × 5 layer
creates a bottleneck with smaller input/output dimensions. Finally, there is a shortcut
that adds the input directly to the output of the linear block. Using this idea and adding
the maps corresponding to previous time instants of Equation (3) to the input, we obtain
Equation (6), which is implemented in the architecture in Figure 8b.

mt ≈ ResNet(mt−1, mt−2, mt−24, mt−25, mt−24×7, mt−24×7−1) (6)

After some experiments, we set the hyperparameters in a slightly different way
compared to the proposal in [32]. In particular, we always set N to 32 and M to 128.
However, the more important change was the substitution of the first 7× 7 convolutional
layer of the original ResNet for a 1 × 1 convolutional layer. This is because we needed the
maps of previous hours to be unmodified in each layer.

As in the CNN case, maxpooling layers were not needed, and batch normalization pro-
duced worse results. Finally, the last dense layer was substituted by a 7× 7 convolutional
layer with ReLu activation.
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2.4. Performance Indexes

To evaluate the effectiveness of the proposed model, we used three performance
indexes: mean absolute error (MAE), mean absolute percentage error (MAPE), and sym-
metrical mean absolute percentage error (SMAPE). They are defined as:

MAE =
1
n

n

∑
t=1
|yt − ŷt|

MAPE =
100%

n

n

∑
t=1

|yt − ŷt|
yt

SMAPE =
100%

n

n

∑
t=1

|yt − ŷt|
|yt + ŷt|

3. Results

In this section, we provide the results obtained with all of the proposed models
(regression CNN, regression ResNet, and ARIMA models) on the test dataset described in
Section 2.1.

Table 1 presents the performance indexes of the models proposed in Section 2 on
the testing dataset corresponding to 2019, with all of the models trained with data from
2016 to 2018. The ARIMA model corresponding to Equation (1) (which only considers
the historic traffic flow of the involved sensor) obtained an MAE of 40.85. The ARIMA
model according to Equation (2) (which considers regressors associated with the traffic
flow measured in the m-closest positions) obtained slightly better results. For m = 4, 8, and
12, the model obtained an MAE of 40.45, 40.22, and 40.11, respectively. A similar pattern
was observed for MAPE and SMAPE, except when m = 12, for which MAPE and SMAPE
did not improve.

The CNN and ResNet models were trained over 500 epochs. In each epoch, all of the
training patterns (hourly from 2016 to 2018) were presented to the network. The model
that obtained the best validation result was selected for testing. The validation set was
composed of non-overlapping 20% portions of the training set.

Table 1 shows that the CNN models obtained competitive results. The CNN with three
convolutional layers (c = 3) obtained an MAE of 51.65. CNNs with more convolutional
layers obtained similar results. Note that the CNNs’ results were no better than those
obtained by the ARIMA models.

Finally, the ResNet models obtained better results compared with all of the previous
approaches. Thus, the ResNet with two identity blocks (i = 2) obtained an MAE of 38.93,
and the ResNet with three identity blocks (i = 3) obtained the best results with an MAE of
37.92. Again, a similar pattern was observed for MAPE and SMAPE. This configuration
improved the results of the best ARIMA model in all of the measures: 37.92 vs. 40.11 for
MAE, 18.22% vs. 19.75% for MAPE, and 8.29% vs. 9.33% for SMAPE.

The inclusion of four identity blocks in the ResNet model (i = 4) did not improve the
results obtained when i = 3 (Table 1) due to the training being stopped after 500 epochs. In
our experiments, we trained this configuration with more epochs, and then we achieved
the results for i = 3. However, the results were not significantly better; we believe that
more complex networks (with i > 3) would not improve the results obtained with the
i = 3 configuration.

In the analysis of the results, the inclusion of explanatory variables in the ARIMA
models did not significantly improve the quality of the predictions. Similarly, even the best
ARIMA prediction was far from having the predictive ability obtained with the ResNet in
the considered measures.
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Table 1. Results obtained on the 2019 testing dataset with all of the proposed models. MAE,
mean absolute error; MAPE, mean absolute percentage error; SMAPE, symmetrical mean absolute
percentage error.

Model Details Results
Model Parameters MAE MAPE SMAPE

ARIMA 27,200 40.85 20.00% 9.50%
ARIMA

(m = 4R) 40,800 40.45 19.81% 9.35%

ARIMA
(m = 8R) 54,400 40.22 19.75% 9.33%

ARIMA
(m = 12R) 69,000 40.11 19.78% 9.35%

CNN (c = 3) 7169 51.65 22.79% 11.82%
CNN (c = 4) 154,753 51.52 22.62% 11.56%
CNN (c = 5) 302,337 50.98 22.45% 11.21%

ResNet (i = 2) 109,601 38.93 18.75% 9.35%
ResNet (i = 3) 262,049 37.92 18.22% 8.29%
ResNet (i = 4) 482,465 39.65 19.08% 9.16%

Figure 9a shows the predictions vs. the real data in a succession of 15 common days.
ResNet adjusted to the real data in a reliable manner and was capable of capturing the
different peaks of traffic flow in a common day, such as the early hours of the morning
and the afternoon, which correspond to work commuting times. Notably, ResNet could
adapt its predictions to rare events. Figure 9b shows the predictions for a public holiday in
Madrid (December 6). On this day, the flow traffic was significantly lower than on the same
day of the previous week. This showed the adaptability of ResNet to prediction in short
time periods. Our ResNet was able to adapt its predictions to unexpected events, as shown
in Figure 9c, which depicts the predictions for what appears to be a possible sensor failure.
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Figure 9. Cont.
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Figure 9. Examples of predicted vs. expected results in several situations: (a) random common days, (b) public holidays,
and (c) unexpected events.

4. Discussion

One of the limitations of ARIMA-based time-series models is that they do not consider
the spatial structure of the set of sensors, which can only be achieved by adding explanatory
variables to each fitted model. Fit-vector ARMA models can be used, but the computational
cost is very high. In relation to the latter, our model proposes a modification that is easy
to implement based on ResNet-type networks. We considered traffic flow as having an
important spatial component, because what happens in one area at a given time can
influence what happens in another part of the city in the following hour. This component
allowed us to present the measurements of a specific instant to create an image of a map
of the city at a moment in time. The possibility of training on a city as a whole allows the
model to learn specific behaviors relative to one city, which cannot be captured by more
local models.

Perhaps, it would be interesting to maintain the dense layer that is usually posi-
tioned in the last layers of several deep architectures. However, due to the absence of
maxpooling layers, this dense layer would add several millions of parameters to our model
(120× 120× 120× 120), and our model would not be trainable in a reasonable amount
of time. The use of convolutional layers in the linear block is also an advantage over the
proposal of [16], who used dense layers, and this increases the number of parameters again.
It can be noted that our changes to the original ResNet proposal are in concordance with
the results of S. Lathuiliere [17], except that we obtained better results when the input was
similar to the original map (N = 120).

We constructed a model that is able to accurately predict the traffic flow and to adapt to
unforeseen patterns such as certain sporting events or the stopping of measurement at the
sensor; it can be extrapolated to other real-life examples that take space–time measurements
as input data, such as weather forecasting or environmental conditions. We only compared
our model against a single model based on time series, but we did not compare it with
LSTM or hybrid networks. In the future, our model can be compared using stochastic
partial differential equations (SPDEs) [43], as the placed sensors can be considered as a
Gaussian field that is affected by a measurement error and state process and is spatially
correlated. This can be achieved by using the integrated nested Laplace approximation [44].

From our point of view, our model provides two contributions to spatio-temporal
problems: We showed that deep learning provides an important improvement over linear
models, such as ARIMA or SARIMA, and neural networks were shown to be a very
dynamic research area where there is still much room for improvement compared with the
more classical methods.

We think that other recent architectures, such as “inception” or “you only look once”
(YOLO), are very powerful for problems in which there are changes in resolution between
the input patterns. However, this is not the case in this problem. Thus, we think that these
approaches will not improve our results. However, the use of encoder–decoders or the use
of attention mechanisms could improve our results.
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5. Conclusions

This paper presented an adaptation of a ResNet for the spatio-temporal estimation of
short-term traffic flow in a large city: Madrid, Spain. The proposed network proved to be
superior to SARIMA models in terms of prediction accuracy. The proposed model is easily
applicable to traffic flow prediction and is extensible to other real-life situations involving
spatio-temporal structures, such as pollution or temperature prediction.

In future work, we will study the possibility of adding an encoder–decoder stage to our
ResNet model in order to consider data from very distant sensors. Another future objective
is to test our model in other cities and in other situations that involve spatio-temporal
structures.
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