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Abstract: An optimal parameter estimation methodology of solid oxide fuel cell (SOFC) using modern
optimization is proposed in this paper. An equilibrium optimizer (EO) has been used to identify the
unidentified parameters of the SOFC equivalent circuit with the assistance of experimental results.
This is presented via formulating the modeling process as an optimization problem considering
the sum mean squared error (SMSE) between the observed and computed voltages as the target.
Two modes of the SOFC-based model are investigated under variable operating conditions, namely,
the steady-state and the dynamic-state based models. The proposed EO results are compared to
those obtained via the Archimedes optimization algorithm (AOA), Heap-based optimizer (HBO),
Seagull Optimization Algorithm (SOA), Student Psychology Based Optimization Algorithm (SPBO),
Marine predator algorithm (MPA), Manta ray foraging optimization (MRFO), and comprehensive
learning dynamic multi-swarm marine predators algorithm. The minimum fitness function at the
steady-state model is obtained via the proposed EO with value of 1.5527 × 10−6 at 1173 K. In the
dynamic based model, the minimum SMSE is 1.0406. The obtained results confirmed the reliability
and superiority of the proposed EO in constructing a reliable model of SOFC.

Keywords: solid oxide fuel cell; parameter identification; optimization

1. Introduction

There is a growing demand for energy to meet the requirements of continuous indus-
trial development and modern civilization. In parallel, there is a growing concern about
the depletion of traditional energy sources such as fossil fuel and drawbacks of continuous
consumption of fossil fuel such as climate change [1]. Indeed, a recent study expected that
future energy demands might exceed the limits of current energy systems [2]. Moreover,
the increasing global energy demands and consumption of fossil fuel will escalate the
emissions of greenhouse gases and other toxic air pollutants. Therefore, alternative sources
of energy such as renewable energy have earned significant attention in the recent decades.
In particular, fuel cell is among the power generation systems that can deliver environmen-
tally friendly quality energy with great energy conversion efficiency. Furthermore, fuel cell
has a great potential in power delivery for stationary and movable applications compared
to other storage technologies [3–7]. Other remarkable features of fuel cell over other energy
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alternatives include lower fuel oxidation temperature and reduced emissions [8]. Solid
oxide fuel cell (SOFC) and polymer composites-based electrolyte fuel cell represent the
most attractive types of fuel cell for a wide range of applications. A growing effort is made
to deliver a model that can predict the performance of fuel cell over steady state or dynam-
ics operating environmental conditions [9–12]. In fact, appropriate model identification
requires feeding accurate input parameters to the governing equations that encompass
physical and chemical properties of the cell, where the modelling methodologies can be
empirical, semi-empirical, or theoretical [13–16].

The parameter extraction of the fuel cell model plays an important role in the simu-
lation, evaluation, control, and optimization of a fuel cell system. The voltage drops in
SOFC are mainly reliant on the parameters associated with the chemical processes inside
SOFC [17,18]. Several methods were used to identify the accurate parameters of SOFC.
Among these methods, the metaheuristic optimization-based methodologies were superior
in resolving the SOFC parameter estimation problem due to their reliability, robustness,
and simplicity. Shi et al. [19] proposed a strategy, Converged Grass Fibrous Root, to deter-
mine the best parameters of the SOFC model. Both temperature and pressure variation
are considered. During the optimization process, seven parameters are assigned to be
decision variables: the standard potential, the current limitation density, the Tafel line slope,
a constant depends on the operating state of SOFC, the area-specific resistance, the anode
exchange current density, and the cathode exchange current density. El-Hay et al. [10]
suggested a methodology based on an interior search algorithm to estimate the steady
state and transient parameters of SOFC. A proportional-integral controller is integrated
with the dynamic model to enhance its performance throughout transient disturbances.
A similar study also carried by the same authors based on Satin Bowerbird Optimizer was
conducted [9]. During the optimization process, the decision variables are represented
by the unknown parameters of SOFC, whereas the cost function is represented by mean
squared deviations between experimental data and estimated SOFC voltages. In the same
direction, Yousri et al. [20] proposed a modified algorithm called comprehensive learning
dynamic multi-swarm marine predators to determine both static and dynamic parameters
of SOFC. During the optimization process, the mean squared error between the experimen-
tal data and estimated SOFC voltage is used as the objective function that is required to be
minimum. Nassef et al. [21] used the radial movement optimization algorithm (RMOA) to
determine the best parameters of the SOFC model. The model of SOFC was created using
a neural network. During the optimization process, four parameters, including electrolyte
thickness, cathode interlayer thickness, anode porosity, and anode support layer thickness,
are used as decision variables; in contrast, the objective function is represented by the
power density of SOFC. By using the RMOA, the power density was increased by 17.28%
compared with the genetic algorithm. In the same direction, Fathy et al. [22] suggested a
methodology based on the moth-flame optimization algorithm (MFOA). The power density
of SOFC using the MFOA was improved. It was increased by 18.92% and 5.56% compared
to the genetic algorithm and RMOA, respectively.

The contribution of the current research work can be summarized as follows:

• A novel approach based on Equilibrium Optimizer (EO) is suggested to determine the
optimal parameters of the SOFC-based model.

• The suggested methodology is validated through both steady-state and dynamic-state
models of SOFC with the changing of the operational conditions.

• A comprehensive comparison with previous works and other programs of the
Archimedes optimization algorithm (AOA), Heap-based optimizer (HBO), Seag-
ull Optimization Algorithm (SOA), Student Psychology Based Optimization Algo-
rithm (SPBO), Marine predator algorithm (MPA), and Manta ray foraging optimiza-
tion (MRFO).

• The superiority and reliability of the suggested EO-based strategy in solving the SOFC
parameter determination problem is verified.
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The rest of the paper is organized as follows: The mathematical model of SOFC is
illustrated in Section 2. Section 3 presents an overview about main aspects of the equilib-
rium optimizer. Then, the suggested optimization problem and solution methodology are
explained in Section 4. Section 5 presents a detailed discussion of the obtained results and
a comparative study with other methods. Finally, the main findings and the future work
are outlined in Section 6.

2. SOFC Mathematical Model

In this section, the authors illustrate the static- and dynamic-based models of SOFC.

2.1. Steady-State Model

The output voltage of SOFC can be estimated using the following relation considering
the activation loss, ohmic loss, and concentration loss [23]:

Vcell = En −Va −Vo −Vc (1)

where En denotes the reversible voltage of the cell, and Va, Vo, and Vc denote the activation,
ohm, and concentration voltage drops, respectively.

The activation loss, concentration loss and ohmic loss can be estimated using the
following relations:

Va = a · ln
(

J
2J0

)
(2)

Vo = ∑
k

i× Rk (3)

Vc = −b · ln
(

1− J
Jmax

)
(4)

where a and b are constants; J denotes the current density; J0 denotes the exchange current
density; Jmax is the maximum current density; Rk is the sum of ionic (electrolyte) and
electronic resistances; and i denotes the output SOFC current.

To increase the rating voltage of SOFC, the number of cells are connected in series.
Therefore, the total stack output voltage can be estimated using the following relation.

Vs = nc ×Vcell = nc × (En −Va −Vo −Vc) (5)

where vs. is the stack voltage and nc is the number of cells. The reversible voltage can be
written as follows [24]:

En = E0 +
RT
2F

ln

(
PH2

√
PO2

PH2O

)
(6)

where E0 denotes the reference voltage at unit activity and atmospheric pressure; T denotes
operating temperature (K); PH2 , PO2 , and PH2O denote the hydrogen, oxygen, and water
partial pressures, respectively; R is the universal gas constant with a value of 8.314 kJ
(kmol K)−1; and F is the Faraday constant.

2.2. SOFC Dynamic Model

The gas molar flow in SOFC is reliant on hydrogen and oxygen partial pressures as
follows [24]:

qH2

PH2

=
kan√
MH2

= KH2 (7)

qO2

PO2

=
kan√
MO2

= KO2 (8)
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where qH2 is the molar flow of hydrogen; qO2 is the molar flow of oxygen; KH2 is the
hydrogen molar constant; KO2 is the oxygen molar constant; kan is the anode valve constant;
MH2 is the molar masses of hydrogen; and MO2 is the molar masses of oxygen.

The partial pressure derivative can be estimated using the following relation:

dPH2

dt
=

RT
Van

(
qH2

in − qH2
out − qH2

r
)

(9)

where Van denotes the anode volume; qH2
in is the hydrogen input flow rate; qH2

out is the
hydrogen output flow rate; and qH2

r denotes the reacted hydrogen flow rate.
The reacted hydrogen flow rate can be estimated based on the following relation:

qH2
r =

nci
2F

= 2Kri (10)

where Kr is constant.
Considering the above equations and the Laplace transform, hydrogen and oxygen

partial pressures can be formulated as follows.

PH2(s) =
1/KH2

1 + τH2

(
qH2

in − 2Kri
)

(11)

PH2O(s) =
1/KH2O

1 + τH2O
(2Kri) (12)

PO2(s) =
1/KO2

1 + τO2

(
qO2

in − Kri
)

(13)

where τH2 , τH2O, and τO2 denote the flow time constants of hydrogen, water, and oxygen,
respectively.

Ultimately, the dynamic model of SOFC voltage is given by the following relation.

Vs = nc

(
E0 +

RT
2F

(
ln

PH2

√
PO2

PH2

))
−
(

a · ln
(

J
2J0

)
+ r× i− b · ln

(
1− J

Jmax

))
(14)

3. Overview of Equilibrium Optimizer

Equilibrium optimizer (EO) is a recent algorithm that was proposed by Faramarzi
et al. in 2020 [25]. The core idea of the EO is extracted from the control volume mass
balance models. During the optimization process of the EO, the particles and positions are
assigned to the solutions and concentrations, respectively. The details explanations about
the inspiration, mathematical model, and algorithm of the EO can be found in [25]. The
mass balance formula is expressed as follows.

V
dC
dt

= QCeq −QC− G (15)

where C denotes the concentration of the control volume; V dC
dt denotes the changing rate

of the mass; Q denotes the flow rate; Ceq denotes the concentration at the balance state; and
G denotes the mass generation rate.

By integration over time and rearranged with the above formula, the following relation
can be used to express the concentration of the control volume.

C = Ceq + (C0 − Ceq)F +
G

λV
(1− f ) (16)

where λ denotes the turnover rate (λ = Q/V) and f = e−λ(t−t0), and t0 and C0 denote the
initial time and concentration, respectively.
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The time t is decreasing with increasing the number of iterations as follows:

t = (1− I/z)(a2
I
z ) (17)

→
t0 =

1
→
λ

ln(−a1sign(
→
r − 0.5)[1− e

→
λt]) + t (18)

→
F = a1sign(

→
r − 0.5)[1− e

→
λt] (19)

where I and z are the current iteration and maximum number of iterations, respectively. a1

and a2 are constants.
→
r is a random vector in range [0, 1].

Considering Equation (16), there are three sections describing the updating process
for particles. The first section represents the equilibrium concentration. It represents the
optimum solutions arbitrarily chosen from a pool. The second section is related to the
concentration variations between a particle and the equilibrium state. The last section
is related to the generation rate. It is mainly performing the role of an exploiter. The
equilibrium state is the final convergence state of the EO optimization process. The
equilibrium pool can be represented as follows.

→
Ceq.pool =

{→
Ceq(1),

→
Ceq(2),

→
Ceq(3),

→
Ceq(4),

→
Ceq(ave)

}
(20)

During the first iteration, the particle modifies the concentration using
→
Ceq(1) whereas

it is uses
→
Ceq(ave) with other iterations. The generation rate is defined as follows.

→
G =

→
G0e−

→
k (t−t0) (21)

where G0 is the initial value, and k denotes a decay constant (k = λ).

→
G =

→
G0e−

→
λ (t−t0) =

→
G0
→
F (22)

→
G0 =

→
GCP

→
(Ceq −

→
λ
→
C) (23)

→
GCP =

{
0.5r1 r2 ≥ GP
0 r2 < GP

(24)

where r1 and r2 are random variables in range [0, 1], and GCP is a parameter that controls
the generation rate.

The addition of memory saving helps each particle to save its coordinates in the search
space. Moreover, it informs its fitness function value. The fitness function related to a
particular particle in the ongoing iteration is compared with the previous one; then, the
updating process is placed if it reaches better fit. This action enhances the exploitation
phase. The optimization process of EO is illustrated in Figure 1.
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Figure 1. Optimization process of EO.

4. The Proposed Methodology

In this section, the proposed methodology is explained via formulating the problem
of SOFC parameter estimation as an optimization problem, and an objective function
and corresponding constraints are also introduced. Moreover, the proposed solution
methodology is also presented.
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4.1. The Proposed Objective Function

In this section, the formulation of the identification process of SOFC circuit’s pa-
rameters as an optimization problem is explained via specifying the fitness function, the
corresponding constraints, and the proposed methodology of the solution incorporated by
the EO. The main target of the work is to construct a reliable equivalent circuit of SOFC
by identifying six parameters, E0, a, Jo , r, b, and Jmax; this is achieved with the aid of
experimental data of the current and voltage of FC. The fitness function represented in
this work is the sum mean squared error between the measured and calculated terminal
voltages of SOFC, and this can be described as follows:

Minimize SMSE =
N

∑
k=1

1
N
(Vmeas,k −Vcal,k)

2 (25)

where Vmeas,k and Vcal,k are the kth observed and computed voltages, respectively, and N is
the number of measured datasets. The constraints related to the variables to be designed
can be described as follows:

E0
min ≤ E0 ≤ E0

max

amin ≤ a ≤ amax

Jo
min ≤ Jo ≤ Jo

max

rmin ≤ r ≤ rmax

bmin ≤ b ≤ bmax

Jmax
min ≤ x6 ≤ Jmax

max

(26)

where min denotes the minimum limit and max denotes the maximum limit. In this work
the authors only considered the disturbance on the SOFC output voltage. However, in
future work, they will consider the disturbance not only on the SOFC output but also on
the SOFC input such as those given in [26–29].

4.2. The Proposed EO Based Methodology

The equilibrium optimizer is selected due to many advantages: It is simple in imple-
mentation; it achieves balance between the exploration and exploitation phases; and there
is diversity between the population individuals. These features enable the algorithm to be
applicable for many optimization problems. Six parameters are required to be identified
such that the SMSE is minimized. The proposed methodology incorporating the EO begins
by defining the specifications of SOFC and the recorded measured data of the terminal
voltage. Then, an initial population with a dimension of npop × dim, npop is the population
size, and dim is the problem dimension, which is constructed with the aid of the minimum
and maximum limits defined by the user. The initial corresponding fitness function (SMSE)
is calculated, and the iterative process is implemented by calculating the fitness function
of each particle. The obtained fitness function is checked with those of the equilibrium
pool to decide the updating action of each particle. After that, the condition of the last
particle is investigated, and the average of the equilibrium pool is calculated, which helps
in estimating the generation rate. The process is continued until the constraint of maximum
iteration is achieved. At this moment, the optimal results are obtained and can be printed.
The proposed methodology incorporating EO is shown in Figure 2.



Mathematics 2021, 9, 1066 8 of 19

Figure 2. The proposed steps incorporating EO.

5. Numerical Analysis

The analysis is performed on two modes of the SOFC operation which are steady-state
and dynamic-state. Both of them are investigated under variable-operating conditions. The
commercial SOFC, which is manufactured by Siemens [30], is employed in steady-state
analysis. In such a case, four measured datasets are recorded at temperatures of 1073, 1173,
1213, and 1273 K, where the proposed EO size of population is assigned as 50, and the
number of iterations is selected as 100. The population-based approach presented in this
work has some difficulty, such as getting premature and local optima, and the authors
take into consideration this problem by performing the approach with 50 independent
runs, and the best one is selected as global optima. This action minimizes the problem of
falling in local optima. Other metaheuristic approaches are implemented and compared
to the proposed EO; these algorithms are the Archimedes optimization algorithm (AOA),
Heap-based optimizer (HBO), Seagull Optimization Algorithm (SOA), Student Psychology
Based Optimization Algorithm (SPBO), Marine predator algorithm (MPA), Manta ray
foraging optimization (MRFO), and comprehensive learning dynamic multi-swarm marine
predators algorithm CLDMMPA [20]. Table 1 shows the obtained optimal parameters of
SOFC operated at 1073 K via the proposed EO and the others. The proposed approach
succeeded in achieving a fitness function of 2.6906 × 10−6 which is the same obtained
via CLDMMPA. However, the CLDMMPA is complex in construction; moreover, the
proposed EO consumes only 272.198102 s, which is the best compared to the others. The
measured and calculated polarization curves obtained via the proposed EO are shown
in Figure 3. Both curves are closely converged. Moreover, Figure 4 shows the estimated
polarization curves obtained via the other approaches and the measured ones. Furthermore,
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the performance of each optimizer during the iterative process is shown in Figure 5. It is
clear that the EO performance is the best compared to the others.

Table 1. The optimal parameters of SOFC steady-state based model operated at 1073 K.

CLDMMPA
[20] MPA HBO SOA MRFO The Proposed

EO

E0 (V) 0.90754 0.9127 0.91214 0.91101 0.91827 0.91056
a (V) 0.010741 0.011058 0.010929 0.020502 0.0116 0.010724

Jo (A/cm2) 0.098627 0.059994 0.063321 0.048127 0.035918 0.074522
r (kΩ·cm2) 1.0 1.0 1.0 1.0 0.99919 1.0

b (V) 0.044104 0.042784 0.043502 0.0 0.036886 0.044165
Jmax (A/cm2) 1.0 1.0 1.0 0.64297 0.9183 1.0

Elapsed time (sec.) NA 468.526 403.607 278.254 560.753 272.198102
SMSE 2.6906 × 10−6 2.692 × 10−6 2.7003 × 10−6 4.123 × 10−6 2.7213 × 10−6 2.6906 × 10−6

Figure 3. The measured and calculated polarization curves of SOFC operated at 1073 K obtained via
EO at (a) current density-voltage, (b) current density-power.
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Figure 4. (a) Current-voltage curve, (b) Current-power curve of SOFC operated at 1073 K obtained via other approaches.
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Figure 5. The variation of fitness function during iterative process for all employed optimizers applied for steady-state
SOFC model.

The optimal parameters of the SOFC steady-state based model at 1173, 1213, and
1273 K obtained via the proposed EO and the others are tabulated in Tables 2–4. Regarding
the obtained results at 1173 K, the best fitness function is 1.5527 × 10−6 obtained via the
proposed EO while CLDMMPA comes in the second rank with a SMSE of 1.5529 × 10−6.
On the other hand, the worst approach is SOA with a fitness function of 3.1657 × 10−6.
Moreover, during the operation at 1213 K, the EO outperformed the others in terms of
elapsed time and fitness function. The reader can see that during operation at 1273 K, the
proposed EO achieved a SMSE of 2.2995 × 10−6, which is the best compared to the others.

Table 2. The optimal parameters of SOFC steady-state based model operated at 1173 K.

CLDMMPA
[20] MPA HBO SOA MRFO The Proposed

EO

E0 (V) 0.89103 0.89129 0.89083 0.87956 0.89087 0.89108
a (V) 3.671 × 10−13 6.1748 × 10−13 3.23334 × 10−13 0.0077567 9.8137 × 10−6 3.14568 × 10−8

Jo (A/cm2) 0.095127 0.018358 0.041194 0.087363 0.068684 0.09998
r (kΩ·cm2) 0.40473 0.41593 0.39952 0.21139 0.4027 0.40610

b (V) 0.18841 0.17741 0.19212 0.28497 0.18885 0.18741
Jmax (A/cm2) 1.0 0.98862 1.0 0.9465 0.9968 0.99999
Elapsed time

(sec.) NA 495.653992 396.181972 303.170716 612.841366 303.185040

SMSE 1.5529 × 10−6 1.5594 × 10−6 1.5557 × 10−6 3.1657 × 10−6 1.5563 × 10−6 1.5527 × 10−6

Table 3. The optimal parameters of SOFC steady-state based model operated at 1213 K.

CLDMMPA
[20] MPA HBO SOA MRFO The Proposed

EO

E0 (V) 0.86169 0.86189 0.86134 0.85622 0.86176 0.86164
a (V) 5.0588 × 10−13 4.2805 × 10−28 3.4456 × 10−30 3.1223 × 10−29 3.3451 × 10−5 7.12575 × 10−8

Jo (A/cm2) 0.08871 0.054568 0.011975 0.047885 0.063468 0.07768
r (kΩ·cm2) 0.15982 0.16633 0.14858 0.000124 0.16629 0.15873

b (V) 0.28529 0.28032 0.29351 0.4012 0.27918 0.28603
Jmax (A/cm2) 1.0 0.99946 1.0 1.0 0.99732 0.99999
Elapsed time

(sec.) NA 464.968854 367.890819 236.154633 571.548052 273.530

SMSE 2.6811 × 10−6 2.6846 × 10−6 2.6887 × 10−6 4.3804 × 10−6 2.6896 × 10−6 2.6809 × 10−6
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Table 4. The optimal parameters of SOFC steady-state based model operated at 1273 K.

CLDMMPA
[20] MPA HBO SOA MRFO The Proposed

EO

E0 (V) 0.8478 0.84782 0.84802 0.84014 0.84802 0.8478
a (V) 2.887 × 10−14 3.128 × 10−21 5.1251 × 10−6 2.238 × 10−20 3.2243 × 10−5 6.7797 × 10−12

Jo (A/cm2) 0.061816 0.014523 0.086283 0.017285 0.024437 0.0160
r (kΩ·cm2) 0.21564 0.21634 0.22323 0.1563 0.22021 0.2169

b (V) 0.20575 0.20524 0.20009 0.36046 0.20226 0.2047
Jmax (A/cm2) 1.0 1.0 0.99984 1.00 0.99888 1.0
Elapsed time

(sec.) NA 465.757529 352.634515 199.242260 555.636660 317.980527

SMSE 2.2997 × 10−6 2.2996 × 10−6 2.3031 × 10−6 5.4888 × 10−6 2.3058 × 10−6 2.2995 × 10−6

The polarization curves of the measured data and calculated data obtained via the
proposed EO for the steady-state SOFC based model at 1173, 1213, and 1273 K are shown in
Figure 6. The curves confirm the matching between the experimental and calculated data.

Figure 6. The measured and calculated (a) current density-voltage, (b) current density-power of SOFC operated at 1173 K,
1213 K, and 1273 K obtained via the proposed EO.
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It is important to investigate the performance of each optimizer via calculating the
statistical parameters, which include the best, worst, mean, median, variance, and standard
deviation after 50 independent runs. These data are calculated and tabulated in Table 5.
The proposed EO gives acceptable statistical parameters compared to the others.

Table 5. Statistical parameters (best, worst, mean, median, variance, and standard deviation) of all optimizers used for
steady-state SOFC model.

At T = 1073 K

Cldmmpa [20] MPA HBO SOA MRFO The Proposed
EO

Best 2.6906 × 10−6 2.69203 × 10−6 2.70035 × 10−6 4.12297 × 10−6 2.7213 × 10−6 2.6906 × 10−6

Worst 2.696 × 10−6 1.23064 × 10−5 4.49932 × 10−6 0.00034 4.8504 × 10−6 6.8151 × 10−6

Mean 2.6926 × 10−6 4.75170 × 10−6 3.11043 × 10−6 9.38355 × 10−5 3.1121 × 10−6 3.3645 × 10−6

Median 2.6917 × 10−6 3.61749 × 10−6 2.96160 × 10−6 9.33996 × 10−5 2.9395 × 10−6 2.6906 × 10−6

Variance 4.1347 × 10−18 6.38059 × 10−12 1.75759 × 10−13 9.20085 × 10−9 2.2231 × 10−13 8.38802 × 10−13

Std. deviation 2.0334 × 10−9 2.52598 × 10−6 4.19236 × 10−7 9.59210 × 10−5 4.7150 × 10−7 9.15673 × 10−7

At T = 1173 K

CLDMMPA [20] MPA HBO SOA MRFO The proposed EO

Best 1.5529 × 10−6 1.5594 × 10−6 1.5556 × 10−6 3.1656 × 10−6 1.5563 × 10−6 1.55279 × 10−6

Worst 1.5752 × 10−6 5.9028 × 10−6 2.1420 × 10−6 0.01102 2.6603 × 10−6 6.00407 × 10−6

Mean 1.5593 × 10−6 3.0125 × 10−6 1.6979 × 10−6 0.00026 1.7105 × 10−6 2.31364 × 10−6

Median 1.5572 × 10−6 2.4861 × 10−6 1.6532 × 10−6 1.26093 × 10−5 1.6493 × 10−6 1.58630 × 10−6

Variance 3.8987 × 10−17 1.9116 × 10−12 1.8382 × 10−14 2.42265 × 10−6 3.7587 × 10−14 2.66121 × 10−12

Std. deviation 6.244× 10−9 1.3826 × 10−6 1.3558 × 10−7 0.00155 1.9387 × 10−7 1.63132 × 10−6

At T = 1213 K

CLDMMPA [20] MPA HBO SOA MRFO The proposed EO

Best 2.6811 × 10−6 2.6846 × 10−6 2.6887 × 10−6 4.3804 × 10−6 2.68961 × 10−6 2.68099 × 10−6

Worst 2.7269 × 10−6 1.2325 × 10−5 3.4295 × 10−6 0.00032 3.22001 × 10−6 1.30287 × 10−5

Mean 2.6921 × 10−6 4.6204 × 10−6 2.8357 × 10−6 2.37574 × 10−5 2.85206 × 10−6 4.02438 × 10−6

Median 2.6867 × 10−6 3.3119 × 10−6 2.7703 × 10−6 1.31251 × 10−5 2.81486 × 10−6 2.78147 × 10−6

Variance 1.9891 × 10−16 9.4614 × 10−12 2.7256 × 10−14 3.77968 × 10−9 1.72574 × 10−14 1.12951 × 10−11

Std. deviation 1.4103 × 10−8 3.0759 × 10−6 1.6509 × 10−7 6.14791 × 10−5 1.3136 × 10−7 3.36081 × 10−6

At T = 1273 K

CLDMMPA [20] MPA HBO SOA MRFO The proposed EO

Best 2.2997 × 10−6 2.2995 × 10−6 2.30310 × 10−6 5.4888 × 10−6 2.30579 × 10−6 2.2995 × 10−6

Worst 2.3392 × 10−6 7.4728 × 10−6 3.0608 × 10−6 0.000247 2.84248 × 10−6 7.6115 × 10−6

Mean 2.3156 × 10−6 3.6859 × 10−6 2.4184 × 10−6 1.758508 × 10−5 2.40213 × 10−6 3.4890 × 10−6

Median 2.3141 × 10−6 3.1707 × 10−6 2.3647 × 10−6 7.71186 × 10−6 2.37664 × 10−6 2.3085 × 10−6

Variance 1.3448 × 10−16 2.1494 × 10−12 1.9816 × 10−14 2.25858 × 10−9 8.64055 × 10−15 4.8928 × 10−12

Std. deviation 1.1597 × 10−8 1.466 × 10−6 1.4077 × 10−7 4.7524 × 10−5 9.29545 × 10−8 2.2119 × 10−6

The obtained results confirmed the superiority and reliability of the proposed method-
ology incorporating EO in identifying the optimal parameters of the SOFC steady-state
based model.

It is important to confirm the availability of the presented approach in a dynamic/
transient-based model of SOFC. Therefore, a 100 kW stack with specifications given in
Table 6 is modeled in a dynamic-state model subjected to variable load disturbances.
At the beginning, the proposed EO is applied to identify the optimal parameters of
a 100 kW SOFC stack operated at 1273 K; the obtained parameters are tabulated in
Table 7 in comparison to those obtained by the others. Regarding the obtained results,
the proposed EO outperformed the others, achieving the minimum SMSE with a value
of 1.0406. MRFO comes in the second rank with a fitness function of 1.0775, and then
CLDMMPA achieves an SMSE of 1.3204 and comes in the third rank. Figure 7 shows
the measured and calculated polarization curves obtained via the EO, and both curves
are closely converged. However, Figure 8 shows the polarization curves obtained via
MPA, HBO, SOA, and MRFO. The statistical parameters of all optimizers in such cases
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are calculated and tabulated in Table 8, where the best parameters are obtained by the
proposed EO. Figure 9 shows the performance of each optimizer during implementing
the iterative process. The performance of the proposed EO is confirmed to be better than
the others.

Table 6. SOFC stack specifications [30,31].

Parameter Value

Prated (W) 100 kW
nc 384

E0 (V) 1.18
T (K) 1273

KH2 (kmol/s/atm) 8.43 × 10−4

KO2 (kmol/s/atm) 2.52 × 10−3

KH2O (kmol/s/atm) 2.81 × 10−4

rH-O 1.145
τH2 (s) 26.1
τO2 (s) 2.91

τH2O (s) 78.3
Te (s) 0.8

Table 7. The optimal parameters of SOFC dynamic-state based model operated at 1273 K.

CLDMMPA
[20] MPA HBO SOA MRFO The Proposed

EO

E0 (V) 1.1405 1.199847 1.194939 0.89461271 1.113337 1.144398
a (V) 0.037449 0.04882335 0.04756176 0.000 0.02729001 0.02982692

Jo (A/cm2) 0.095442 0.09987029 0.0939504 0.090655585 0.03143729 0.0202932
r (kΩ·cm2) 0.0001829 4.3684 × 10−5 4.873756 × 10−5 0.000 0.0002672047 0.0002547476

b (V) 0.10386 0.1551425 0.1515045 0.32672895 0.08200661 0.08350225
Jmax (A/cm2) 0.8367 865.6602 859.6317 1000 825.4696 825.7578
Elapsed time

(sec.) NA 433.946266 331.304354 222.830499 593.725886 327.35802

SMSE 1.3204 3.0887 3.3486 34.1692 1.0775 1.0406

Table 8. Statistical parameters (best, worst, mean, median, variance, and standard deviation) of all optimizers used for
dynamic-state SOFC model.

CLDMMPA [20] MPA HBO SOA MRFO The Proposed EO

Best 1.3204 3.08867 3.3486 34.1692 1.0775 1.04061
Worst 3.9835 25.1135 10.473 5401.8725 3.4164 2.00140
Mean 3.2462 8.54964 5.6209 1025.8099 1.7115 1.1352

Median 3.5241 6.07593 4.8835 34.3473 4.5141 1.0816
Variance 0.51027 36.3547 2.7528 3,915,661.957 0.23360 0.02264

Std. deviation 0.71434 6.02948 1.6592 1978.803 0.15284 0.15048

After identifying the parameters of the transient-state based model of SOFC, the model
of fuel cell is implemented in Simulink/Matlab, and two load disturbances are applied to
the model. The first disturbance is shown in Figure 10 (1st graph), the power is changed
from 30 kW to 60 kW at a time of 300 sec., and given the identified parameters via the
proposed EO and the stack output power plotted with the load disturbance, it is clear
that they are closely matched, this means that the EO succeeded in extracting the correct
parameters of the SOFC dynamic model. Moreover, the load current of the constructed
model is closely converged to the disturbance current (3rd graph, Figure 10). Moreover,
the terminal voltage (2nd graph) and the voltage drops occur inside the stack (4th graph),
and they are shown in Figure 10. The constructed model via the proposed EO succeeded
in tracking the changes in the load power. Moreover, a second disturbance is applied on
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the dynamic model in which the load power has two variations; as shown in Figure 11
(1st graph), the load power changes from 20 kW to 40 kW at 200 s and then changes again
to 60 kW at 400 s on the same graph. The output power from the constructed model with
identified parameters via the proposed EO is given, and both curves are converged. The
terminal voltage, the corresponding current, and the voltage drops are shown in Figure 11
(2nd graph, 3rd graph, and 4th graph, respectively).

Figure 7. The measured and calculated polarization curves of SOFC dynamic-state model operated at 1273 K obtained via
EO (a) current-voltage, (b) current-power.

Finally, it can be concluded that the proposed methodology incorporating the EO
is reliable, superior, and efficient over other employed approaches in constructing a re-
liable model of the SOFC-based model operated under either steady-state or dynamic-
state modes.
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Figure 8. The measured and calculated polarization curves of SOFC dynamic-state model operated at 1273 K obtained via
MPA, HBO, SOA, and MRFO.

Figure 9. The variation of fitness function during iterative process for all employed optimizers applied for dynamic-state
SOFC model.
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Figure 10. First load disturbance applied on SOFC stack dynamic model.

Figure 11. Second load disturbance applied on SOFC stack dynamic model.

6. Conclusions

This work introduces a new methodology based on a new metaheuristic approach
named equilibrium optimizer (EO) to estimate the optimal parameters of a solid oxide
fuel cell (SOFC) model. This is achieved with the aid of experimental datasets of the
fuel cell polarization curves. The sum squared error difference between the cell experi-
mental and computed voltages is selected as the fitness function to be minimized. The
work investigates two operating modes of FC, which are steady- and dynamic-states
models under altering operating conditions. In the first model, the parameters are esti-
mated at four temperatures via the recorded measured polarization curves at them. In
the dynamic model, two load power disturbances are investigated after identifying the
parameters via the proposed EO. The obtained results via the proposed EO are compared
to those obtained by the Archimedes optimization algorithm (AOA), Heap-based optimizer
(HBO), Seagull Optimization Algorithm (SOA), Student Psychology Based Optimization
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Algorithm (SPBO), Marine predator algorithm (MPA), Manta ray foraging optimization
(MRFO), and comprehensive learning dynamic multi-swarm marine predators algorithm.
In the case of the SOFC steady-state model, the proposed EO succeeded in achieving
the best (minimum) fitness function of 2.6906 × 10−6, 1.5527 × 10−6, 2.6809 × 10−6, and
2.2995 × 10−6 at operating temperature of 1073 K, 1173 K, 1213 K, and 1273 K, respectively.
The corresponding standard deviations in the four studied cases obtained via the proposed
EO are 9.15673 × 10−7, 1.63132 × 10−6, 3.36081 × 10−6, and 2.2119 × 10−6. Regarding
the obtained results of the SOFC dynamic-state model, the proposed EO outperformed
the others, achieving the minimum SMSE with a value of 1.0406; the MRFO comes in the
second rank with a fitness function of 1.0775, and then the CLDMMPA achieves a SMSE of
1.3204 and comes in the third rank. The proposed EO succeeded in achieving a variance
of 0.02264 and a standard deviation of 0.15048 in this studied case. The findings of this
study demonstrate the superiority and reliability of the proposed approach in constructing
a good-performance model that converges to the real one.
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