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Abstract: In the past decade, panel data models using time-series observations of several geographical
units have become popular due to the availability of software able to implement them. The aim
of this study is an updated comparison of estimation techniques between the implementations of
spatiotemporal panel data models across MATLAB and R softwares in order to fit real mortality data.
The case study used concerns the male and female mortality of the aged population of European
countries. Mortality is quantified with the Comparative Mortality Figure, which is the most suitable
statistic for comparing mortality by sex over space when detailed specific mortality is available
for each studied population. The spatial dependence between the 26 European countries and their
neighbors during 1995–2012 was confirmed through the Global Moran Index and the spatiotemporal
panel data models. For this reason, it can be said that mortality in European population aging not
only depends on differences in the health systems, which are subject to national discretion but also on
supra-national developments. Finally, we conclude that although both programs seem similar, there
are some differences in the estimation of parameters and goodness of fit measures being more reliable
MATLAB. These differences have been justified by detailing the advantages and disadvantages of
using each of them.

Keywords: panel data; spatiotemporal models; European mortality

1. Introduction

At present, spatial econometric methods are evolving very rapidly at both a theoretical
and practical level. Spatial econometrics studies the spatial autocorrelation and spatial
structure in regression models for cross-sectional and panel data [1]. These models have
been applied in various fields such as sociology, epidemiology, geology, biology, economics,
and criminology [2] but less in the field of actuarial science. Nonetheless, its importance in
assessing the variation of risk in non-life insurance as a function of a geographical area has
been recognized [3]. Further extensions of the spatial modeling related to frequency and
severity of claims include models such as [4–6].

In the context of life insurance, the disaggregation of overall mortality at some levels,
for example, by spatial or socio-economic factors, of mortality measures should be con-
sidered in modeling and forecasting according to [7]. In this sense, joint mortality models
have been used, such as [8] and references therein.

Even though Debón et al. [9] used some spatial techniques on residuals to forecast
dynamic life tables, the importance of the spatial effect has not been well recognized in
modeling and forecasting dynamics of mortality. In recent years, there has been research
on multi-population mortality models, for example, using a group of countries with similar
social-economic status, or males and females in the same population [10]. However, these
models do not measure spatial dependence and temporal and spatial effects obtained
with data panel models. These methods consider panel regression models with spatially
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autocorrelated dependent variables and errors with fixed effects (FE) and random effects
(RE) specifications.

On the other hand, Debón et al. [11] concluded that there are notable differences
in mortality between the Eastern and Western of Europe, a significant disadvantage for
Eastern Europe, and especially for males in Baltic countries. Therefore, it is interesting to
see if we can explain these differences in mortality through a model including covariables.

For that task, there is extensive literature supporting software that estimates cross-
sectional spatial models in R and MATLAB; however, few methods estimate panel data
spatiotemporal models. Nevertheless, the increased availability of data, and in partic-
ular panel data, has stimulated tremendous methodological progress in studies on the
specification and estimation of spatiotemporal panel data models. This interest has gone
hand-in-hand with developing new packages to model spatial dependence over time in
panel data such as [12,13]. At present, the splm R-package [12] is available in R and the [14]
code in MATLAB. They both offer access to math functions, language, statistics, and a
community of users. Therefore, a quick look at MATLAB [15] and R [16] might suggest
that they are relatively similar. However, a closer look at each one’s technical capabili-
ties and assessing other vital factors, such as documentation and quality could lead to a
different conclusion.

For this reason, this study aims to provide an updated comparison of estimation
techniques between the implementations of spatiotemporal panel data models across
MATLAB and R software in order to fit real mortality data. The case study used concerns
the male and female mortality of the aged population of European countries. Mortality
is quantified with the Comparative Mortality Figure, which is the most suitable statistic
for comparing mortality by sex over space when detailed specific mortality is available
for each studied population [17]. In this context, the use of Generalized Linear Models
(GLM) can be traced back to the early 1980s thanks to the work of [18] being suitable for
the distribution of the number of deaths.

The article is structured as follows. In Section 2, we describe the data, Comparative
Mortality Figure, Global Moran’s Index, and panel data models. Next, in Section 3, we
present the main results, and models implemented in R and MATLAB. Section 4 provides a
discussion about the most important results. Finally, in Section 5 the main conclusions of
the study are drawn.

2. Materials and Methods

This section first describes the structure of the data used and how they were obtained.
Secondly, it reviews the methodology employed, mainly relying on data panel models.

2.1. Data

The database used comprises deaths and populations of 26 European countries from
the Human Mortality Database (HMD) [19] for the period 1995–2012, an age range of
65–110+ and male (m) and female (f) sexes. The available European countries are Aus-
tria (AT), Belgium (BE), Belarus (BY), The Czech Republic (CZ), Denmark(DK), Esto-
nia (EE), Finland (FI), France (FR), Germany (DE), Hungary (HU), Ireland (IE), Italy
(IT), Latvia (LV), Lithuania (LT), Luxembourg (LU), The Netherlands (NL), Norway
(NO), Poland (PL), Portugal (PT), Slovakia (SK), Slovenia (SI), Spain (ES), Sweden (SE),
Switzerland (CH), The United Kingdom (UK), and Ukraine (UA). In previous studies,
Carracedo et al. [20] quantified the dynamics of mortality in Europe and detected two
significant clusters for ages older than 64. In this paper, to explain the behavior of mortality
as a function of socioeconomic variables, information about four variables for these 26 coun-
tries and 18 years was obtained from The World Bank Database [21]. These variables are
the Gross Domestic Product (GDP), public health expenditure, CO2 emissions, and educa-
tion expenditure based on a literature review of this area [22–24] and data availability for
European countries from [21]. In addition, there are recent studies examining the impact of
CO2 emissions, health expenditure, and education on life expectancy [24]. Furthermore,
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it is essential to point out that the new impacts of environmental degradation on human
health affect today’s society both in terms of loss of quality of life and spending on health
care. The definitions of the variables can be found below:

• Gross Domestic Product per capita (current U.S. dollars) (GDP) is an economic variable
used as a measure of income. It is defined as the sum of gross value added by all
resident producers in the economy plus any product taxes and minus any subsidies
not included in the products’ value. GDP has traditionally been used to show the
economic and social development of countries [25]. In recent years, there has been
significant interest in the relationship between health, proxied by life expectancy, and
income, as explained by [26], preceded by [27]. It has generally been well accepted
that populations in countries with higher GDP levels have better health and longer
life expectancy, as higher living standards lead to enhanced prevention and treatment
of disease [27]. It should be noted that all variables are expressed in per capita values.

• Public health expenditure per capita (% of total health expenditure) (PHE) is a social
variable that consists of recurrent and capital spending from government (central and
local) budgets, external borrowings and grants (including donations from international
agencies and nongovernmental organizations), and social (or compulsory) health
insurance funds. In countries with high income per capita, the contributions to social
security are essential and sustain, to a great extent, the financing of the health system.
Consequently, the lower the mortality in a country, the healthier its population [28].
Several studies, such as [29,30], among others, have shown that health expenditure has
a significant negative impact on mortality rate and a positive impact on life expectancy.
It should be noted that the health expenditure variable is reported until 2012; for this
reason, the study is limited to that year.

• CO2 emissions per capita (metric tons) is an environmental variable that is used to
indicate the effect of air pollution on mortality. Carbon dioxide emissions are those
stemming from the burning of fossil fuels and the manufacture of cement. They
include carbon dioxide produced during the consumption of solid, liquid, and gas
fuels and gas flaring. Countries with higher carbon dioxide emissions levels are at
higher risk of their citizens having health problems [24,31].

• Education Expenditure per capita (% Gross National Income) (EE) refers to the current
operating expenditure on education, including wages and salaries and excluding capi-
tal investments on buildings and equipment. This variable is an essential factor that
determines health as a measure of educational level. People with higher educational
levels have better jobs, higher incomes, and lower-risk behavior [32].

Gavurova [33] is the closest study to our analysis, but we should highlight three dis-
tinctive features in our study. First, we use a suitable statistic to compare mortality for each
country by sex, the Comparative Mortality Figure. Second, our sample is contextualized in
older European people. Hence, the reliability of our results is enhanced for retired people
in Europe. In addition to studying the relationship between mortality and the covariates
GDP and health expenditure, we consider the impact of CO2 emissions and education
expenditure per capita over mortality. Third, we consider the neighborhood relationships
between countries over time. This point is vital since studies such as Carracedo et al. [20]
show that European mortality has a spatial dependence.

2.2. Comparative Mortality Figure

The Comparative Mortality Figure (CMF) was used in this study to compare the
mortality experience over time by sex and country. There are two principal standardization
methods—direct and indirect—which produce Comparative Mortality Figure (CMF) and
Standardized Mortality Ratio (SMR), respectively. To compare the mortality experience
over time by sex and country, the CMF was used in this study for two reasons. First, the
same denominator applies in the calculations for each country, which permits comparison
of the mortality experience by sex for different places, and second, the age-specific mortality
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rates are available for each country [17] required in the expression of CMF but not in the
expression of SMR.

The CMF allows for the direct standardization method of mortality rates across age
groups to permit comparison of the free effects of differences in the size of subgroups of
the populations [17]. In this study, we used males (m) in the set of European countries in
the year 2012 as the standard population. Therefore, the CMF is defined as follows,

CMFi,t,s =
Ei,t,s

O2012,m
i ∈ {1, . . . , 26}, t ∈ {1995, . . . , 2012}, s ∈ {m, f }, (1)

where Ei,t,s represents the expected deaths in country i, in year t, and sex s and O2012,m is
the number of observed deaths in the set of European countries in year 2012 for males. As
we have dx,i,2012,m the number of observed deaths for the age x,

O2012,m =
26

∑
i=1

110+

∑
x=65

dx,i,2012,m x ∈ {65, . . . , 110+}.

Then Ei,t,s are obtained by using the age-specific death rate of each country i for the
age x, year t, and sex s, mx,i,t,s,

Ei,t,s =
110+

∑
x=65

Px,2012,mmx,i,t,s, (2)

where Px,2012,m is the population in the set of European countries at age x in year 2012 for
male sex, which can be obtained by adding all px,i,t,s the population of each country i with
the following expression

Px,2012,m =
26

∑
i=1

px,i,2012,m.

The death rate of the study population (mx,i,t,s) are obtained as

mx,i,t,s =
dx,i,t,s

px,i,t,s
, (3)

where dx,i,t,s and px,i,t,s are the number of deaths and the study population, respectively. If
the CMF is greater than 1, there is a higher expected number of deaths than observed; in
this case, there are “excess deaths” in the studied countries. On the contrary, a CMF value
below 1 indicates a lower expected number of deaths than observed relative to the standard
population. According to [17,34], the numbers of observed deaths in the countries is a
random variable that follows a Poisson distribution; in the case of CMF that distribution
can be used for modelization.

2.3. Spatial Dependence of CMF

Global Moran’s Index (GM) is widely used to test for the presence of spatial depen-
dence between adjacent locations [35,36]. In this study, it is a summary measure that shows
the intensity of spatial dependence of all countries’ CMF considered.

GMt,s =
N

∑
i

∑
j

ωij

∑
i

∑
j

ωij(CMFi,t,s − CMFg,t,s)(CMFj,t,s − CMFt,s)

∑
i
(CMFi,t,s − CMFt,s)2

where CMFt,s is the mean of the CMF of all countries for each year t and sex s and WN is
the neighborhood or spatial weights matrix. The definition of proximity is given by WN ,
which is an N × N (26× 26) positive matrix that provides a weight ωi,j to each pair of
spatial units (i, j) [37]. In this study, the weights matrix is used in row standardized form.
In addition, two countries are considered neighbors when they have a common border
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(first order of neighborhood [38]), and therefore, if a country is not a neighbor of itself, it
takes the following values,

ωi,j = 0, if j /∈ V(i);

ωi,j =
1
ni

, if j ∈ V(i), with ni = #V(i);

ωi,i = 0, i = 1 . . . 26.

where ni is the number of neighbors of country i and V(i) the set of neighbors of the
country i. The interpretation for GMt,s is the following:

• GMt,s > 0—Positive spatial autocorrelation between countries. The CMF of countries
and their neighbors goes in the same direction.

• GMt,s > 0—Negative spatial autocorrelation between countries. The CMF of countries
and their neighbors varies in a different direction.

• GMt,s = 0—Absence of spatial autocorrelation between the 26 European countries,
meaning a random spatial pattern.

Moran’s test for spatial autocorrelation was calculated to test the significance of the
GM index. The null hypothesis establishes that the CMFi,t,s is randomly distributed among
the spatial units of the study area (H0 : GMt,s = 0) [39].

2.4. Spatiotemporal Panel Data Models

The analysis of data from the spatiotemporal panel is currently a field of econometrics
undergoing significant methodological advances [12]. Panel data consist of a cross-section
of observations (individuals, countries, regions) followed through time. Specifically, the
data from this study are panel data that combine a spatial dimension N (26 countries) and
temporal dimension T (18 years). In a spatiotemporal panel, there may be dependency or
correlation between the close observations (spatial units) over time (temporal units).

Econometrics panel data models offer advantages over cross-section regression or
time series as they control for unobserved heterogeneity produced by both spatial and
temporal units. As a result, these models reduce the issues related to multicollinearity
problems between the variables by building more efficient estimates in the parameters of
the panel data models [40]. Panel data usually contain more degrees of freedom and more
sample variability, combining both cross-sectional and time-series data, hence, improving
the efficiency of econometric estimates [41]. The spatiotemporal panel data models are
used as the regression models that employ the panel structure’s temporal and spatial
heterogeneity to estimate parameters of interest [42].

Due to the nature of our variables, we propose a log–log spatiotemporal panel data
model that assumes the log transformation of the CMF and the explanatory variables to
achieve approximate normality and symmetry about the distribution of CMF and provide
straightforward interpretability of the results [43]. In this model, the explanatory variables’
coefficients represent the elasticity of CMF for the explanatory variables [44].

The spatial lag term considers that the value of the CMF in a country depends on the
value of the CMF in its vicinity. This fact will be confirmed in Section 3.2. In addition, the
fixed effects model is generally more appropriate than the random effects model when
the sample used is fixed, i.e., the countries have not been drawn randomly from a very
large population [37]. In our case, we would like to model the space-time data of adjacent
spatial units (countries) or “located in an unbroken study area” [45]. For these reasons,
we fitted spatial lag models with fixed effects. This model fits the behavior of CMF by
country and time as a function of explanatory variables assuming that the differences
between spatial units, time units, or both are constant [46]. For this reason, spatial and
temporal dummy variables were created to account for the unobserved characteristics of
cross-sectional units (not changing with time but affecting the dependent variable) and the
unobserved characteristics of temporal units (not changing with countries but affecting the
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dependent variable). These models use the notation that has become usual in this context
and adapted to explain the log transformation of CMF, namely,

• Spatial Lag Model (SLM):

log(CMFit) = α + λ(IT ⊗WN)log(CMFit) + log(Xit)β + εit

• Spatial Lag Model with spatial fixed effects (SLMSFE);

log(CMFit) = α + λ(IT ⊗WN)log(CMFit) + log(Xit)β + µi + εit (4)

• Spatial Lag Model with time fixed effects (SLMTFE);

log(CMFit) = α + λ(IT ⊗WN)log(CMFit) + log(Xit)β + νt + εit

• Spatial Lag Model with spatial and time fixed effects (SLMSTFE);

log(CMFit) = α + λ(IT ⊗WN)log(CMFit) + log(Xit)β + µi + νt + εit

where log(CMFit) represents an ordered vector of dimension (26)(18)× 1 corresponding to
observations of the dependent variable for each country i and year t, α is the intercept, λ is
the spatial parameter associated with the dependent variable, log(Xit) represents a matrix
of dimension (26)(18)× 4, the log transformation of the explanatory variables ordered
by spatial units first and then by time period, which are related to the parameters β of
dimension 4× 1. The fixed effects considered in the model are as follows:

• µi is the spatial fixed effect (not spatially autocorrelated), which captures the unob-
servable characteristics that change across countries but remain constant over time.

• νt is the temporal fixed effect (not temporally autocorrelated), which captures the un-
observable characteristics that change over time but remain constant across countries.

λ denotes the spatial autoregressive parameter on the spatially lagged dependent
variable to follow the econometrics literature [47,48]. SLMSTFE has the conditions that
the sum of the spatial and temporal effects are zero [49]. These conditions are achieved
using 26 spatial dummies and 18 time dummies because 26 and 18 are the total number
of countries and years considered in this study. Thus, the spatial effect represents the
deviation of the spatial unit i from the mean α, and the time effect represents the deviation
of the time unit t from the mean α.

On the other hand, GLMs are an extension of linear models for response variables with
non-normal distributions and nonlinear transformations [18]. GLM provides a method
for estimating a function of the dependent variable’s mean, also called link function, as a
linear combination of a set of explanatory variables. Poisson regression is a GLM model
where the dependent variable is a count that follows a Poisson distribution. The canonical
link results in a log-linear relationship between mean and linear predictor. The Poisson
model variance is identical to the mean; thus, in the case the variance is larger than the
mean, the data are over-dispersed.

A way of modeling over-dispersed count data is to use the quasi-Poisson model,
which produces the same coefficient estimates as the standard Poisson model, but the
inference is adjusted over-dispersion. Consequently, the quasi-Poisson family does not
correspond to a model with fully specified likelihood, and therefore, statistical tests and
goodness-of-fit measures such as AIC, BIC, likelihood-ratio are unavailable in the output
of model [16]. In R, the quasi-Poisson model with estimated dispersion parameter can also
be fitted with the glm function and setting family = quasipoisson.

We suggest adapting log–log SLMSTFE to GLM, the model proposed for log(CMF) is,

log
(

Ei,t,s

O2012,m

)
= α + λ(IT ⊗WN)log(CMFit) + logXitβ + µi + νt + εit. (5)
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In the next section, these models are estimated by maximum likelihood with splm
and glm functions in R software and the sar_panel_FE function in MATLAB. In this way,
the glm function takes into account the value of the quasiPoisson-likelihood and not the
log-likelihood value.

3. Results
3.1. Exploratory Analysis of the CMF

A preliminary study of the temporal evolution of the CMF of European countries for
males and females is discussed in this section. Firstly, the CMF of men and women in
Europe from 1995 and 2012 was represented on the maps. These maps are all comparable
to each other as the color scale is the same for all these figures using the corresponding
common quartiles of all years and both sexes.

Figure 1 shows the CMF in Europe for the years 1995 and 2012 for males. It should be
noted that the CMF of men for the year 1995 in Europe has a value higher than 1.12, which
is exceptionally high for the eastern countries, followed by Ireland, Denmark and, finally,
the rest of the western ones. Its evolution for 2012 shows lower values than in 1995, with a
minimum of 0.462 reached in the western countries, followed by some eastern countries
and incredibly high for Belarus.

[0.462,0.79]
(0.79,1.12]
(1.12,1.45]
(1.45,1.78]
(1.78,2.1]

(a) 1995

[0.462,0.79]
(0.79,1.12]
(1.12,1.45]
(1.45,1.78]
(1.78,2.1]

(b) 2012

Figure 1. CMF in Europe for 1995 and 2012 for males.

The same analysis for females is shown in Figure 2. The value of CMF for 1995 in Eu-
rope ranges between 0.462 and 1.45, lower than in males. In 2012, the female CMF decreased
so that it reached at most 1.12 for the second quintile of the scale in eastern countries.
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[0.462,0.79]
(0.79,1.12]
(1.12,1.45]
(1.45,1.78]
(1.78,2.1]

(a) 1995

[0.462,0.79]
(0.79,1.12]
(1.12,1.45]
(1.45,1.78]
(1.78,2.1]

(b) 2012

Figure 2. CMF in Europe for 1995 and 2012 for females.

Secondly, CMF variability was explored for both sexes versus the countries and the
years. Figure 3 shows the comparison of the CMF range for males and females in all
countries. The countries were ordered alphabetically, and a higher average value and
variability were confirmed for men, especially in the eastern countries. Figure 4 shows the
comparison of the CMF range for males and females in all years. Again, higher variability
in men than in women was detected, while a decreasing trend was observed in both sexes.
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Figure 3. CMF variability in Europe for males and females.
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Figure 4. CMF’s variability in Europe for each country for males and females.

After the exploratory analysis of the CMF, the next step was to test the significance of
mortality dependence on space where the null hypothesis is no spatial correlation.

3.2. Spatial Dependence of CMF

The Moran tests for each year are shown in Table 1 for males and females. The p-values
obtained for all years are significant (p-values < 0.05), indicating a spatial dependence
between the mortality of the 26 countries in the period 1995–2012 in both sexes.

Table 1. Values of the Global Moran’s I and p-values by sex.

Year
GMt,s p-Value

Male Female Male Female

1995 0.7181 0.7114 2.7969 ×10−6 3.4530 ×10−6

1996 0.7237 0.7093 2.3057 ×10−6 3.4908 ×10−6

1997 0.7278 0.7131 1.9082 ×10−6 3.0991 ×10−6

1998 0.7215 0.7397 2.4848 ×10−6 1.5671 ×10−6

1999 0.7034 0.7050 3.6203 ×10−6 3.6449 ×10−6

2000 0.6961 0.6962 4.1529 ×10−6 4.2046 ×10−6

2001 0.7346 0.7007 1.3305 ×10−6 3.6365 ×10−6

2002 0.7266 0.6920 1.4161 ×10−6 4.1134 ×10−6

2003 0.7305 0.6816 1.4139 ×10−6 5.1248 ×10−6

2004 0.7556 0.7090 6.5537 ×10−7 2.6387 ×10−6

2005 0.7681 0.7134 4.4887 ×10−7 2.1915 ×10−6

2006 0.7747 0.7210 3.7009 ×10−7 1.6916 ×10−6

2007 0.7883 0.7186 2.6180 ×10−7 1.8677 ×10−6

2008 0.7856 0.7169 2.5542 ×10−7 1.6588 ×10−6

2009 0.7829 0.7150 2.7193 ×10−7 1.8195 ×10−6

2010 0.7617 0.7017 4.7935 ×10−7 2.4996 ×10−6

2011 0.7728 0.6951 3.3224 ×10−7 3.0838 ×10−6

2012 0.7764 0.6995 3.1847 ×10−7 2.7272 ×10−6

3.3. Spatiotemporal Panel Data Models

After testing the significance of mortality dependence, the next step was fitting spa-
tiotemporal panel data models.

3.3.1. Fitting Spatiotemporal Panel Data Models

Parameter estimation for the spatiotemporal panel data models described in
Section 2.4 were performed using the splm and glm functions of splm and stats R-
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packages, respectively. It is important to note that the version of the splm R-package used
was 1.5–2, which produces the same parameter estimates as version 1.3–7. At present,
versions other than the two mentioned are not correct because model fitting does not work
well. Regarding MATLAB software, the sar_panel_FE function of demopanelscompare file
was used.

It is essential to mention that the dataset’s structure for fitting the spatiotemporal
panel data models is different depending on the software used. In R, both the dependent
and the independent variables are ordered by spatial units first and then by time. On the
other hand, in MATLAB, all variables are ordered by time first, then by spatial units.

A summary of the results of the spatiotemporal panel data models together with the
corresponding goodness-of-fit measures by sex are shown in Table 2 for splm function in
R, Table 3 for sar_panel_FE function in MATLAB and Table 4 using the glm function in R.
Parameter estimations with p-values less than 5% were considered significant.

Table 2. Model fittings using the splm function in R by sex.

Sex Model α λ log(GDP) log(CO2) log(EE) log(PHE) logLik

Male

SLM
SLMSFE 1.436 * 0.814 * −0.038 * 0.054 * 0.050 * 0.034* 145.081
SLMTFE 1.677 * 0.420 * −0.136 * 0.086 * 0.017* 0.010* −213.404
SLMSTFE 0.361* 0.430 * 0.076 * −0.024* 0.038 * 0.031* 249.972

Female

SLM
SLMSFE 2.826 * 0.544 * −0.100 * 0.118 * 0.061 * 0.110 * −32.906
SLMTFE 1.486 * 0.374 * −0.148 * 0.100 * 0.011* 0.018* −343.423
SLMSTFE 1.135 * 0.063* 0.009* −0.001* 0.040 * 0.071 * 49.788

∗ p-values < 0.05; Items in bold are showing the differences in the sign of the parameter estimation respect to Table 4.

Table 3. Model fittings using the sar_panel_FE function in MATLAB by sex.

Sex Model α λ log(GDP) log(CO2) log(EE) log(PHE) R2 log-Likelihood σ2

Male

SLM 1.592 * 0.460 * −0.131 * 0.089 * 0.014* 0.012* 0.906 550.241 0.0051
SLMSFE 1.479 * 0.806 * −0.040 * 0.057 * 0.051 * 0.036* 0.986 904.110 0.0008
SLMTFE 1.680 * 0.419 * −0.136 * 0.086 * 0.017* 0.010* 0.909 561.217 0.0051
SLMSTFE 0.370* 0.468 * 0.072 * −0.023* 0.038 * 0.030* 0.988 1024.73 0.0007

Female

SLM 1.433 * 0.406 * −0.144 * 0.102 * 0.008* 0.020* 0.851 424.616 0.0089
SLMSFE 2.901 * 0.524 * −0.103 * 0.123 * 0.062 * 0.114 * 0.964 735.632 0.0023
SLMTFE 1.478 * 0.379 * −0.147 * 0.100 * 0.011* 0.018* 0.855 431.176 0.0091
SLMSTFE 1.148 * 0.108 * 0.007* −0.001* 0.040 * 0.008 * 0.971 824.475 0.0019
∗ p-values < 0.05; Items in bold are showing the differences in the sign of the parameter estimation respect to Table 4.

Table 4. Model fittings using the glm function in R by sex.

Sex Model α λ log(GDP) log(CO2) log(EE) log(PHE) Residual Deviance

Male

SLM 1.346 * 0.540 * −0.112* 0.070* 0.004* 0.017* 3.371
SLMSFE 0.490 * 0.982 * −0.004* −7.081×10−5 0.042 * −7.453×10−5 0.453
SLMTFE 1.422 * 0.517 * −0.117 * 0.070 * −0.002* 0.020* 3.258
SLMSTFE 0.356* 0.760 * 0.037 * −0.020* 0.041 * 0.013* 0.430

Female

SLM 1.157 * 0.505 * −0.122 * 0.084 * −0.008* 0.029* 3.494
SLMSFE 1.932 * 0.760 * −0.052 * 0.054 * 0.053 * 0.078 * 0.814
SLMTFE 1.227 * 0.480 * −0.128 * 0.083 * −0.009* 0.031 * 3.419
SLMSTFE 1.161 * 0.122* 0.012* −0.010* 0.042 * 0.070 * 0.692

∗ p-values < 0.05; Items in bold are showing the differences in the sign of the parameter estimation respect to Tables 2 and 3.

The SLMSTFE is the one with the highest R2 and likelihood values and lowest value
of σ2 in R and MATLAB. However, the spatial effect in the model has more weight than the
temporal, and the inclusion of the time effect increases both goodness-of-fit measures, but
not significantly. For this reason, and following the principle of parsimony, SLMSFE is the
best model for both sexes.
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The SLMSTFE has the lowest residual deviance value, but, as before, the SLMSFE
is the best model for both sexes. In this case, only the education expenditure variable is
significant for SLMSFE in males with the glm function, which simplifies the model.

Next, the results of the estimation of the spatial fixed effects of SLMSFE with MATLAB
are shown in Table 5. This summary includes the model’s fixed spatial parameters, µi,
the t-value of these parameters, and the corresponding p-values. All spatial effects µi are
not significant, but the global spatial effect is significant according with Table 3 where the
inclusion of µi in SLM model increases the explanatory power of the model.

Table 5. Estimation of spatial effects of SLMSFE model with MATLAB.

Country
Estimate µi t-Value p-Value

Male Female Male Female Male Female

Austria −0.151 −0.081 −0.541 −0.176 0.588 0.861
Belgium 0.013 −0.014 0.045 −0.030 0.964 0.976
Belarus 0.134 0.078 0.476 0.166 0.634 0.868
Switzerland −0.093 −0.052 −0.332 −0.112 0.740 0.911
Czech Republic 0.082 0.126 0.289 0.267 0.772 0.789
Germany 0.164 0.352 0.495 0.639 0.621 0.523
Denmark −0.042 −0.019 −0.156 −0.042 0.876 0.966
Estonia −0.254 −0.488 −1.056 −1.226 0.291 0.220
Spain 0.056 0.134 0.177 0.256 0.860 0.798
Finland −0.005 −0.146 −0.017 −0.325 0.987 0.745
France 0.065 0.132 0.200 0.246 0.841 0.806
Hungary 0.113 0.131 0.400 0.279 0.689 0.780
Ireland 0.004 −0.083 0.016 −0.190 0.987 0.850
Italy 0.088 0.213 0.272 0.396 0.786 0.692
Lithuania −0.192 −0.250 −0.752 −0.591 0.452 0.554
Luxembourg −0.232 −0.518 −1.061 −1.427 0.289 0.154
Latvia −0.038 −0.094 −0.150 −0.226 0.881 0.821
Netherland 0.042 0.077 0.143 0.157 0.887 0.875
Norway −0.090 −0.147 −0.341 −0.335 0.733 0.738
Poland 0.039 0.144 0.124 0.276 0.901 0.783
Portugal 0.118 0.124 0.414 0.262 0.679 0.794
Sweden −0.102 −0.042 −0.368 −0.090 0.713 0.928
Slovenia −0.079 −0.279 −0.320 −0.679 0.749 0.497
Slovakia 0.039 0.018 0.144 0.040 0.886 0.968
Ukraine 0.259 0.389 0.799 0.726 0.424 0.468
Uk 0.061 0.297 0.189 0.553 0.850 0.580

3.3.2. Validation Spatial Lag Model with Spatial Fixed Effects

The SLMSFE model was assessed using the R2, the value of the log-likelihood, and σ2

in MATLAB. The R2 for males and females are 98.60% and 96.40%, respectively. The values
of the likelihood for males and females are 904.11 and 735.63, respectively. Considering
σ2, its value for males is 0.0008 and females 0.0023. Since most of the variability in these
models is explained, we conclude that these two models fit well. It is important to note
that the corresponding R2 for the ordinary least squares models by sex is 84.02% for males
and 79.46% for females. These results indicate the importance of modeling the spatial
correlation since the inclusion of the model’s spatial effect improves its fit by approximately
15% and 17% in males and females.

Next, residuals were analyzed to check if the SLMSFE model explains the whole
spatial dependence of the 26 European countries detected by the Global Moran Index (see
Section 2.3). Table 6 shows the result of applying the Global Moran test to the SLMSFE
model residuals in 1995–2012 by sex. The p-values obtained for all years and both sexes
are not significant (p-values > 0.05), indicating that non-spatial dependence remains in
the residuals.



Mathematics 2021, 9, 1061 12 of 18

Table 6. Values of the Global Moran’s I and p-values by sex.

Year
GMt,s p-Value

Male Female Male Female

1995 0.031 0.082 0.334 0.232
1996 0.120 −0.069 0.166 0.568
1997 0.173 −0.033 0.797 0.473
1998 0.018 −0.114 0.448 0.730
1999 0.117 −0.037 0.680 0.493
2000 0.001 −0.001 0.403 0.407
2001 0.151 0.096 0.750 0.193
2002 0.415 0.064 0.991 0.264
2003 0.201 0.243 0.064 0.042
2004 0.363 −0.228 0.977 0.876
2005 0.167 −0.042 0.090 0.505
2006 0.201 0.014 0.071 0.371
2007 0.072 −0.185 0.577 0.813
2008 0.056 0.086 0.282 0.223
2009 0.439 −0.174 0.993 0.795
2010 0.005 −0.213 0.391 0.853
2011 0.143 −0.008 0.735 0.423
2012 0.030 −0.015 0.476 0.439

Then, in order to check that the residuals were homoscedastic in the SLMSFE model,
the Breush Pagan test [50] was applied using the function bptest of lmtest package [51].
Table 7 shows the output of Breusch-Pagan statistics and the corresponding p-values by
sex. It can be observed that the p-values in the residuals of the SLMSFE model are greater
than the 5% significance level for both sexes. Therefore, there was no evidence to conclude
that the SLMSFE model residuals are not homoscedastic.

Table 7. Values of the Breusch-Pagan statistic and p-values by sex.

Model
Breusch-Pagan Test p-Value

Male Female Male Female

SLMSFE 42.407 34.300 0.103 0.358

On the other hand, the SLMSFE model residuals have an average around zero; specifi-
cally, for males and females they are 1.232× 10−17 and −4.285× 10−17, respectively.

Next, the normality of the SLMSFE model residuals by sex was analyzed with the
function qqPlot of car R-package. Figure 5 represents the quantile–quantile (Q–Q) plot of
the SLMSFE model residuals, which suggests that the error terms are normally distributed
for both sexes. It should be noted that, for females, two high leverage observations were
detected: observation 417, which corresponds to Slovakia in the year 1997, and observation
454, which corresponds to the UK in the year 1998.
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Figure 5. Normality of the SLMSFE model residuals for males and females.

4. Discussion
4.1. Spatiotemporal Panel Data Models
4.1.1. Comparison of Spatiotemporal Panel Data Models

Tables 2 and 3 show very similar parameter estimations: only the second or third
decimal is different between coefficients. Nevertheless, different goodness-of-fit measures
were obtained in the output of the models. While the splm function comprises only the
value of log-likelihood (logLik) setting quiet = FALSE, the sar_panel_FE function contains
three measures by default: the value of the coefficient of determination (R2), the value
of the log-likelihood (log-likelihood) and the residual variance (σ2). The log-likelihood
obtained within MATLAB versus R is more reliable as some values are negative for the
latter one. It is noteworthy that the SLM model is not obtained in Table 2 because the
non-fixed effect option is not possible in the argument effect of the splm function.

Table 4 shows that the values of the parameter estimation are different from those
in Tables 2 and 3. The differences in sign are marked in bold, which correspond to the
variables log(CO2), log(EE), and log(PHE), which are almost always not significant. The
signs of the spatial parameter and log(GDP) variable remain constant using the three
functions. This is due to the fact that glm assumes Poisson distribution, while the splm
and sar_panel_FE assumes Normal distribution in the maximum likelihood estimation. It
should be noted that there is only one measure of goodness-of-fit in the output glm, which
is the residual deviation.

To incorporate the fixed effects in the function glm a reference level is set; by default,
it is the first value in alphabetical order. Therefore, α represents the fixed effect of that
country for the first year. Moreover, this reference can be changed thanks to the function
contr.treatment. On the contrary, the functions splm and sar_panel_FE consider α as the
mean because they have the conditions that the sum of the spatial and the sum of the
temporal effects are zero [49]. Thus, the spatial effect represents the deviation of the spatial
unit i from the mean α, and the temporal effect represents the deviation of the temporal
unit t from the mean α.

Despite there being differences in parameter estimation and goodness-of-fit measure-
ments using functions splm, sar_panel_FE, and glm, SLMSFE is the best for all of them.
The results suggest that with sufficient social and economic variables for each country
and considering the neighborhood structure, we can adequately explain any geographical
structures in European mortality of old age.

4.1.2. Interpretation Spatial Lag Model with Spatial Fixed Effects

In this subsection, the SLMSFE is interpreted as being the best model using both
pieces of software and the three functions. The Elhorst program code [14] in MATLAB was
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selected as it is considered a pioneer in including spatial dependence in panel data, and
millions of engineers and scientists have tested its algorithms [52].

In the SLMSFE, all the independent variables are significant for females, with p-values
less than 0.05 indicating that they all contribute significant information in explaining
log(CMF); in the case of males, log(PHE) is not significant. Moreover, coefficients repre-
sent the percentage change in Y when the percent change in X is 1% as Equation (4) is a
log–log model.

The estimate for α represents the average value of log(CMF) when the fixed effects
and explanatory variables take values equal to 0. This value is positive for males (1.479)
and females (2.901). The spatial lag estimations (λ) are highly significant in both models,
supporting the conjecture that the value of log(CMF) in one country is influenced by the
values of the log(CMF) in the neighboring countries. For males, the positive values of λ
indicate that the CMF in one country would be 0.806% higher if its neighbors had a CMF
average increase of 1%. In females, the λ positive value is lower than in males; the CMF in
one country would be increased by 0.524% if its neighbors had a CMF average increase of
1%. These results indicate a greater spatial dependence on male than female mortality for
the aging population. Therefore, mortality in European population aging depends not only
on differences on the health systems but also on supra-national developments [20].

The log(GDP) coefficient indicates that with a 1% increase in GDP, the elasticity of
CMF is −0.040% for males and −0.103% for females, on average. This relationship is
confirmed in several studies such as the recent study by Gavurova et al. [33], among others.
These authors studied the influence of socioeconomic determinants on mortality by sex
in the European Union (EU) using panel data models. They confirm that GDP per capita,
representing countries’ economic growth, decreases mortality in EU countries for both
sexes.

With respect to log(CO2) emissions, the coefficient indicates that, with a 1% increase in
CO2, the elasticity of CMF is 0.057% for males and 0.123% females, on average. This result is
consistent with Balan [24] among others, who studies whether there is a causal relationship
between environment and health, measured by life expectancy, for EU countries. The
author considers CO2 emissions as the logical consequence of polluting industrial activities,
which implies strong economic growth. The authors of [24] confirms that CO2 emissions
decrease life expectancy, thereby increasing mortality.

Finally, concerning the coefficients of two social variables log(EE) and log(PHE)
following the literature such as [24,33], a negative relationship would be expected between
overall mortality and both variables. In our study, these coefficients are positive, and in the
case of log(PHE) for males are not significant. There is controversy about the positive sign
of both variables, which would require further investigation. However, we think that this
occurs as we are studying old-age mortality.

With respect to spatial fixed effects in Table 5, it is worth mentioning that although the
countries do not differ from the average α at least, the extremes differ between them. For
both sexes, estimates with a negative sign indicate countries with lower log(CMF) than
the mean α; on the contrary, the estimations of spatial effects with a positive sign belong
to countries with higher log(CMF). This sign means that these countries’ unobserved
characteristics decrease or increase mortality compared to the all countries’ average.

4.2. Limitations

In this subsection, it is worth mentioning two critical limitations of this study. The first
is the database used, which could be expanded with other socio-economics, demographic,
environmental, and health variables from The World Bank Database [21]. These variables
should be related to mortality and are perfectly justified with previous studies. This
justification is fundamental to avoid irrelevant variables and simplify interpretability in
the independent variables. On the other hand, the choice of the World Bank Database is
crucial in this spatial study because it allows us to have more information on neighboring
spatial units for a longer time horizon than other databases such as Eurostat.
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The second limitation is that our objective is specific to mortality data. We fit spa-
tiotemporal panel data models to real mortality data. It is not general, fitting to any data.
Studying mortality has always been of interest in the actuarial and epidemiological context.
However, the coronavirus disease 2019 (COVID-19) has produced unknown effects on the
overall population mortality [53]. Therefore, now more than ever, mortality is attracting
considerable research attention, even more so in advanced ages.

5. Conclusions

This study reproduces the sar_panel_FE function written by Elhorst [14] in MATLAB
and in free software R using the splm and glm functions. R software is free and accessible to
everyone, while MATLAB is commercial software with a very high price. Nevertheless,
millions of engineers and scientists have tested the spatial-temporal algorithms of MATLAB;
on the contrary, some functions such as splm in the splm R-package are more recent.

Therefore, this study compares MATLAB and R implementations of spatiotemporal
econometrics panel data models:

1. The main difference lies in the second or third decimal of estimated parameters.
2. Signs and values estimated parameters differ when using the glm function in R.

This is because the glm function assumes Poisson distribution, while the splm and
sar_panel_FE take on Normal distribution in the maximum likelihood estimation.

3. Concerning the splm function, at the present time, we have found that versions other
than 1.3-7 and 1.5-2 do not correctly estimate the model parameters.

4. The goodness-of-fit measures in the output are different depending on the function
used. The splm function only gives the value of the log-likelihood, the sar_panel_FE
function offers the values of coefficient of determination, log-likelihood, and residual
variance, and the glm function the value of residual deviance.

5. The log-likelihood values obtained in MATLAB are more reliable than in R because
negative values appear in the latter. The tree function showed that the SLMSFE is the
model that best fits the European old-age mortality data where the spatial effect is
essential and the temporal one does not appear.

6. An important advantage of the glm function compared to the rest is that the reference
level for fixed effects can be changed. On the contrary, the splm and sar_panel_FE
functions consider the reference level for fixed effects as the mean of fixed effects.

Considering other authors’ works, we should highlight the methodology’s distinctive
features presented here. As far as we know, the spatiotemporal panel data models imple-
mented by the splm R-package [12] and MATLAB [14] have not been used to study the
CMF of European countries. The spatiotemporal panel data models used by [54] model
mortality quantified by the Standardized Mortality Ratio (SMR) in the United States. We
must point out that the CMF reflects better than the SMR the changing situation of mor-
tality in the countries as its expression requires the age-specific mortality rates for each
country. Our work could be complementary to [55], since we show the advantages and
disadvantages of each function used in R and MATLAB software. Bivand and Piras [55]
constitutes an exciting comparison of a generalized method of moments and maximum
likelihood implementations for spatial econometrics models using MATLAB, Stata, Python,
and R.

This article shows that mortality modeling should take into account both the socioeco-
nomic characteristics underlying the modeling process and the neighborhood relationships
of geographic locations. Therefore, having good, quality, socioeconomic data and correctly
setting the neighborhood criterion data panel models can quantify the vast majority of
the variation in European old-age mortality by country. In the changing environment
in which we live, it is necessary for the authorities responsible for population planning
to quantify those changes that transcend the borders of any one spatial unit. Therefore,
it is of vital importance to study the mortality in Europe, especially in advanced ages.
Such understanding aims to ensure the correct formulation and implementation of policies
for sustainable development in Europe. In this sense, we would like to point out that
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although this study only applies to mortality for European countries, this methodology can
be extended to the comparison of mortality of subpopulations in any geographic area when
age-specific mortality rates are available for each spatial unit and a panel of covariates with
the same spatial and temporal dimension as mortality.
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32. Mărginean, I. Public expenditure with education and healthcare in EU countries. Procedia Econ. Financ. 2014, 8, 429–435.

[CrossRef]
33. Gavurova, B.; Khouri, S.; Kovac, V.; Ferkova, M. Exploration of influence of socioeconomic determinants on mortality in the

European Union. Int. J. Environ. Res. Public Health 2020, 17, 4699. [CrossRef] [PubMed]
34. Inskip, H. Standardization methods. Encycl. Biostat. 1998, 4237–4250. [CrossRef]

http://doi.org/10.2143/AST.24.1.2005085
http://dx.doi.org/10.1080/034612302320179854
http://dx.doi.org/10.1016/j.insmatheco.2004.08.001
http://dx.doi.org/10.1080/03461230701414764
http://dx.doi.org/10.1017/S1748499500000440
http://dx.doi.org/10.1007/s13385-011-0043-z
http://dx.doi.org/10.1016/j.insmatheco.2010.07.007
http://dx.doi.org/10.1080/03461238.2020.1740314
http://dx.doi.org/10.1016/j.insmatheco.2017.05.005
http://www.jstatsoft.org/v47/i01/
http://dx.doi.org/10.18637/jss.v047.i01
https://spatial-panels.com/software/
https://spatial-panels.com/software/
http://www.mathworks.com/products/ matlab/
http://dx.doi.org/10.1093/pubmed/23.1.40
www.mortality.org
www.humanmortality.de
http://dx.doi.org/10.1186/s12939-018-0750-z
http://www.ncbi.nlm.nih.gov/pubmed/29587774
https://data.worldbank.org/indicator
http://dx.doi.org/10.1257/jep.20.3.97
http://dx.doi.org/10.1016/j.econmod.2014.06.009
http://ec.europa.eu/eurostat/statistics-explained/index.php/Quality_of_life_indicators_-_health
http://ec.europa.eu/eurostat/statistics-explained/index.php/Quality_of_life_indicators_-_health
http://dx.doi.org/10.1016/j.jeca.2019.e00139
http://dx.doi.org/10.1002/hec.1590
http://dx.doi.org/10.1016/S2212-5671(14)00454-7
http://dx.doi.org/10.1016/0167-6296(92)90033-W
http://dx.doi.org/10.2307/20062079
http://dx.doi.org/10.1016/S2212-5671(14)00110-5
http://dx.doi.org/10.3390/ijerph17134699
http://www.ncbi.nlm.nih.gov/pubmed/32629913
http://dx.doi.org/10.1002/9781118445112.stat06116


Mathematics 2021, 9, 1061 18 of 18

35. Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [CrossRef]
36. Moran, P.A.P. A Test for the serial independence of residuals. Biometrika 1950, 37, 178–181. [CrossRef]
37. Croissant, Y.; Millo, G. Panel Data Econometrics with R; Wiley: Hoboken, NJ, USA, 2019.
38. Anselin, L. Local Indicators of Spatial Association–LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
39. Cliff, A.; Ord, J. Spatial Autocorrelation; Pion: London, UK, 1973.
40. Kennedy, P. A Guide to Econometrics; MIT Press: Cambridge, MA, USA, 2003.
41. Hsiao, C.; Pesaran, M.H.; Tahmiscioglu, A.K. Maximum likelihood estimation of fixed effects dynamic panel data models

covering short time periods. J. Econom. 2002, 109, 107–150. [CrossRef]
42. Elhorst, J.P. Spatial panel models. In Handbook of Regional Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1637–1652.
43. Mendenhall, W.; Sincich, T.; Boudreau, N.S. A Second Course in Statistics: Regression Analysis; Prentice Hall: Upper Saddle River,

NJ, USA, 1996; Volume 5.
44. Pindyck, R.; Rubinfeld, D. Econometric Models. Economic Forecasts., 4th ed.; McGraw-Hill: New York, NY, USA, 1991.
45. Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: Berlin/Heidelberg, Germany, 2014.
46. Asteriou, D.; Hall, S. Applied Econometrics, 3rd ed.; Palgrave Macmillan: New York, NY, USA, 2015.
47. Kelejian, H.H.; Prucha, I.R. A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model

with autoregressive disturbances. J. Real Estate Financ. Econ. 1998, 17, 99–121. [CrossRef]
48. Kelejian, H.H.; Prucha, I.R. A generalized moments estimator for the autoregressive parameter in a spatial model. Int. Econ. Rev.

1999, 40, 509–533. [CrossRef]
49. Hsiao, C. Analysis of Panel Data, 3rd ed.; Cambridge University Press: Cambridge, UK, 2014; p. 38.
50. Breusch, T.S.; Pagan, A.R. A simple test for heteroscedasticity and random coefficient variation. Econometrica 1979, 47, 1287–1294.

[CrossRef]
51. Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2002, 2, 7–10.
52. Elhorst, J.P. Specification and estimation of spatial panel data models. Int. Reg. Sci. Rev. 2003, 26, 244–268. [CrossRef]
53. Banerjee, A.; Pasea, L.; Harris, S.; Gonzalez-Izquierdo, A.; Torralbo, A.; Shallcross, L.; Noursadeghi, M.; Pillay, D.; Sebire, N.;

Holmes, C.; et al. Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions
and age: A population-based cohort study. Lancet 2020, 395, 1715–1725. [CrossRef]

54. Yang, T.C.; Matthews, S.A.; Park, K. Looking through a different lens: examining the inequality-mortality association in US
counties using spatial panel models. Appl. Geogr. 2017, 86, 139–151. [CrossRef] [PubMed]

55. Bivand, R.; Piras, G. Comparing Implementations of Estimation Methods for Spatial Econometrics; American Statistical Association:
Boston, MA, USA, 2015.

http://dx.doi.org/10.1093/biomet/37.1-2.17
http://dx.doi.org/10.1093/biomet/37.1-2.178
http://dx.doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://dx.doi.org/10.1016/S0304-4076(01)00143-9
http://dx.doi.org/10.1023/A:1007707430416
http://dx.doi.org/10.1111/1468-2354.00027
http://dx.doi.org/10.2307/1911963
http://dx.doi.org/10.1177/0160017603253791
http://dx.doi.org/10.1016/S0140-6736(20)30854-0
http://dx.doi.org/10.1016/j.apgeog.2017.07.006
http://www.ncbi.nlm.nih.gov/pubmed/28936015

	Introduction
	Materials and Methods
	Data
	Comparative Mortality Figure
	Spatial Dependence of CMF
	Spatiotemporal Panel Data Models

	Results
	Exploratory Analysis of the CMF
	Spatial Dependence of CMF
	Spatiotemporal Panel Data Models
	Fitting Spatiotemporal Panel Data Models
	Validation Spatial Lag Model with Spatial Fixed Effects


	Discussion
	Spatiotemporal Panel Data Models
	Comparison of Spatiotemporal Panel Data Models
	Interpretation Spatial Lag Model with Spatial Fixed Effects

	Limitations

	Conclusions
	References

