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Abstract: In the work, a new oscillation condition was created for second-order damped delay
differential equations with a non-canonical operator. The new criterion is of an iterative nature which
helps to apply it even when the previous relevant results fail to apply. An example is presented in
order to illustrate the significance of the results.
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1. Introduction

In this study, we focus on studying the oscillatory properties of solutions to the delay
differential equation (DDE)(

a0 ·
(
ν′
)β
)′

+ a1 ·
(
ν′
)β

+ a2 ·
(

νβ ◦ g
)
= 0, (1)

where l ∈ I0 := [l0, ∞), and under the following hypotheses:

Hypothesis 1 (H1). β > 0 is a quotient of two odd integers.

Hypothesis 2 (H2). ai ∈ C(I0, [0, ∞)) for i = 0, 1, 2, a0(l) > 0, and a2 6= 0 on any half-line
[l∗, ∞), l∗ ∈ I0.

Hypothesis 3 (H3). g ∈ C(I0,R), g(l) ≤ l, g′(l) ≥ 0, and liml→∞ g(l) = ∞.

By a solution of (1), we go to a ν ∈ C1(I0) with a0 · (ν′)β ∈ C1(I0) and sup{|ν(l)| : l ≥
l∗} > 0, for l∗ ∈ I0,and ν satisfies (1) on I0. A solution ν of (1) is called non-oscillatory if it
is eventually positive or eventually negative; otherwise, it is called oscillatory.

DDEs, as a subclass of the functional differential equation (FDE), take into account
the system’s past, allowing for more accurate and efficient future prediction while also
describing certain qualitative phenomena such as periodicity, oscillation, and instability.
The concept of delay incorporation into systems is now proposed to play an important
role in modeling when representing the time it takes to complete certain secret processes,
see [1]. DDE theory has improved our understanding of the qualitative behavior of their
solutions and has a wide range of applications in mathematical biology and other fields.
DDE nonlinearity and sensitivity analysis has been extensively studied in recent years in a
variety of fields, see [2–6].
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The problem of determining oscillation criteria for specific FDEs has been a very active
research field in the recent decades, and many references and summaries of known results
can be found in the monographs by Agarwal et al. [7,8] and Gyori and Ladas [9].

The following is a review of the most important results that dealt with the oscillatory
behavior of solutions of DDEs with damping term.

By many authors, the oscillation of the ordinary differential equation with damp-
ing term (

r(l)ν′(l)
)′
+ q1(l)ν′(l) + q2(l) f (ν(l)) = 0, (2)

has been investigated. The existence of a damping term in differential equations necessarily
requires an improved approach at the study of oscillatory behavior. Among the works
that dealt with the oscillation of (2) are, for example, Grace [10,11], Grace and Lalli [12,13],
Grace et al. [14], Kirane and Rogovechenkov [15], Li and Agarwal [16], Li and Zhang [17],
Rogovechenkov [18], Wong [19], and Yan [20]. However, the common restriction f ′(ν) ≥
k > 0 is required in all previous works. Grace [21] studied the oscillation of DDE(

r(l)ν′(l)
)′
+ p(l)ν(σ(l)) + q(l) f (ν(g(l))) = 0, (3)

with the canonical case.

Theorem 1. [21] If σ(l) < l , σ′(l) > 0, and there is a function ρ ∈ C1([l0, ∞),R+) with
ρ′(l) > 0, (

ρ(l)p(l)
σ′(l)

)
≤ 0, (4)

∫ ∞

l0
ρ(w)q(w)dw = ∞, (5)

lim inf
l→∞

∫ l

σ(l)

p(w)

r(σ(w))
dw >

1
e

,

and ∫ ∞

l0

1
r(w)ρ(w)

(∫ w

l0
ρ(u)q(u)du

)
dw = ∞, (6)

then every solution of (3) is oscillatory or converges to zero.

In the following Theorem, Saker et al. [22], improved the result of [21].

Theorem 2. [22] Assume that g′(l) > 0, σ′(l) > 0, r(l) > 0, q(l) > 0 and f (u)
u ≥ k such

that (4), (5) and (6) hold. If

lim sup
l→∞

∫ l

l0

(
ρ(w)q(w)− (ρ′(w))2r(g(w))

4kρ(w)g′(w)

)
dw = ∞,

then every solution of (3) is oscillatory or converges to zero.

Tunc and Kaymaz [23] established the oscillatory properties of DDE

z′′(l) + h(l)z′(l) + q(l)ν(g(l)) = 0, (7)

where z(l) = ν(l) + p(l)ν(τ(l)), under the condition

∫ ∞

l0
exp

(
−
∫ l

l0
h(w)dw

)
dl = ∞. (8)
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Theorem 3. [23] Assume that σ(l) ≤ τ(l) and (8) hold. If there exists a positive function
ρ ∈ C1([l0, ∞),R+) such that

lim sup
l→∞

∫ l

l0

[
ρ(w)q(w)ψ(σ(w))

τ−1(σ(w))

w
− ρ(w)ζ2(w)

4

]
dw = ∞,

where

ζ(l) =
ρ′(l)
ρ(l)

− h(l),

and

ψ(l) :=
1

p(τ−1(l))

(
1− 1

p(τ−1(τ−1(l)))
τ−1(τ−1(l)

)
τ−1(l)

)
,

then every solution of (7) is oscillatory

In an attempt to reduce the number of possible possibilities for the sign of derivatives
of positive solutions, researchers study the DDEs in the canonical case, which often excludes
the existence of positive decreasing solutions. On the other hand, in the noncanonical
case, one of these possibilities is that the positive solutions are decreasing. The main
reason for the difficulty of studying positive decreasing solutions is the probability of their
convergence to zero, and this probability prevents the use of one of the most important
relationships between derivatives that allows to reduce the order of the equation. It has
also been noted that the conditions resulting from the exclusion of positive decreasing
solutions have the largest effect on the oscillation criteria. Therefore, the main objective of
this work is to study the oscillatory behavior of DDE (1) in the noncanonical case

∫ ∞

l0

1

a1/β
0 (h)

exp
(
−1
β

∫ h

l0

a1(w)

a0(w)
dw
)

dh < ∞. (9)

The technique used is based on obtaining criteria of an iterative nature through establishing
more sharp estimates for the a2(l)a1/β

0 (l)η1+1/β(l)η̃β+1(l). The iterative nature of the
criteria allows us to apply them more than once, even when the other criteria fail.

2. Main Results

For ease of presentation of results, we present the next notations:

V+ := {x(t) : x(t) > 0 is a solutions of (1)},

η(l) := exp
(∫ l

l0
a1(w)a−1

0 (w)dw
)

and η̃(l) :=
∫ ∞

l
(a0(w)η(w))−1/βdw.

Lemma 1. Assume that ν ∈ V+ and∫ ∞

l1

(
1

a0(z)η(z)

∫ z

l1
a2(w)η(w)dw

)1/β

dz = ∞. (10)

Then

(B1) ν is decreasing and converges to zero;

(B2)
ν

η̃
is increasing.
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Proof. Assume that ν ∈ V+. Then, we have that ν(l) and ν(g(l)) are positive for all l ≥ l1,
for some l1 ≥ l0. Therefore, it follows from (1) that

0 ≥ −a2(l)η(l)
(

νβ(g(l))
)

= η(l)
(

a0(l)
(
ν′(l)

)β
)′

+ a1(l)η(l)
(
ν′(l)

)β

=
(

a0(l)η(l)
(
ν′(l)

)β
)′

. (11)

Hence, a0(l)η(l)(ν′(l))
β is of one sign. Suppose the contrary that ν′(l) > 0 for l ≥ l2 ≥ l1,

for some l2. Thus, there is a c > 0 such eventually that ν(l) > c. Integrating (11) from l2 to
∞, we obtain

a0(l2)η(l2)
(
ν′(l2)

)β ≥
∫ ∞

l2
a2(w)η(w)

(
νβ(g(w))

)
dw

≥ cβ
∫ ∞

l2
a2(w)η(w)dw. (12)

From (10) and the fact that η̃′(l) < 0, we have that∫ ∞

l2
a2(w)η(w)dw = ∞,

which with (12) gives a contradiction, and so ν′(l) < 0, eventually.
Now, we have that ν is positive decreasing, and then liml→∞ ν(l) = k ≥ 0. Suppose that
k > 0. Then, ν(l) ≥ k > 0, eventually. Hence, integrating (11) from l1 to l, we obtain

−a0(l)η(l)
(
ν′(l)

)β ≥
∫ l

l1
a2(w)η(w)

(
νβ(g(w))

)
dw

or

− ν′(l) ≥ k
(

1
a0(l)η(l)

∫ l

l1
a2(w)η(w)dw

)1/β

. (13)

Integrating (13) from l1 to ∞, we arrive at

ν(l1)− k ≥ k
∫ ∞

l1

(
1

a0(z)η(z)

∫ z

l1
a2(w)η(w)dw

)1/β

dz, (14)

which contradicts (10). Then, ν converges to zero.
Finally, we have

−(a0(s)η(s))
−1/βν(s) = (a0(s)η(s))

−1/β
∫ ∞

s

(a0(w)η(w))1/βν′(w)

(a0(w)η(w))1/β
dw

≤ ν′(s)η̃(s). (15)

Therefore, (
ν

η̃

)′
=

1
η̃2

(
ν′η̃ + (a0η)−1/βν

)
≥ 0.

The proof is complete.

Lemma 2. Assume that ν ∈ V+, (10) holds, and

κ := lim inf
l→∞

η̃(g(l))
η̃(l)

< ∞. (16)
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If there is a positive constant δ0 ∈ (0, 1) such that

a2(l)a1/β
0 (l)η1+1/β(l)η̃β+1(l) ≥ βδ0. (17)

Then,

(B1,m)
ν

η̃δm
is decreasing and converges to zero;

(B2,m)
ν

η̃1−δm
is increasing,

for m = 0, 1, ..., where

δm+1 := δ0
κδm

1− δm
. (18)

Proof. Assume that ν ∈ V+. Then, we have that ν(l) and ν(g(l)) are positive for all l ≥ l1,
for some l1 ≥ l0. From Lemma 1, we have that (B1), (B2), (11) and (15) hold. Using (15)
and the fact that ν′(l) < 0, we get that

− ν(g(l))
η̃(l)

≤ − ν(l)
η̃(l)

≤ (a0(l)η(l))
1/βν′(l). (19)

From (11), (17) and (19), we have(
a1/β

0 (l)η1/β(l)ν′(l)
)′

= − 1
β

a2(l)η(l)
(

a1/β
0 (l)η1/β(l)ν′(l)

)1−β
νβ(g(l))

≤ − 1
β

a2(l)η(l)
(

ν(g(l))
η̃(l)

)1−β

νβ(g(l))

= − 1
β

a2(l)η(l)η̃β−1(l)ν(g(l)) (20)

≤ − δ0

a1/β
0 (l)η1/β(l)η̃2(l)

ν(l). (21)

Firstly, at m = 0, integrating (21) from l1 to l, we obtain

a1/β
0 (l)η1/β(l)ν′(l) ≤ a1/β

0 (l1)η1/β(l1)ν′(l1)

−
∫ l

l1

δ0

a1/β
0 (w)η1/β(w)η̃2(w)

ν(w)dw

≤ a1/β
0 (l1)η1/β(l1)ν′(l1) + δ0

ν(l)
η̃(l1)

− δ0
ν(l)
η̃(l)

(22)

From (B1), we have that ν converges to zero, and then

a1/β
0 (l1)η1/β(l1)ν′(l1) + δ0

ν(l)
η̃(l1)

≤ 0,

eventually. Thus, from (22), we obtain

a1/β
0 (l)η1/β(l)ν′(l) ≤ −δ0

ν(l)
η̃(l)

. (23)

This implies (
ν

η̃δ0

)′
=

1
η̃δ0+1

(
ν′η̃ + δ0(a0η)−1/βν

)
≤ 0.
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Now, ν/η̃δ0 is positive decreasing, and then liml→∞
(
ν(l)/η̃δ0(l)

)
= k0 ≥ 0. Suppose that

k0 > 0. Then, ν(l)/η̃δ0(l) ≥ k0 > 0, eventually. If we define the function

H :=
1

η̃δ0

(
ν + η̃(a0η)1/βν′

)
,

then it follows from (B1) that H(l) > 0, and

H′(l) =
1

η̃δ0+1(l)

[
η̃2(l)

(
(a0(l)η(l))

1/βν′(l)
)′

+δ0(a0(l)η(l))
−1/β

(
ν(l) + η̃(l)(a0(l)η(l))

1/βν′(l)
)]

,

which, with (21) and (23) and the fact that ν(l)/η̃δ0(l) ≥ k0, gives

H′(l) ≤ δ0

η̃δ0(l)
ν′(l) ≤ −

δ2
0

a1/β
0 (l)η1/β(l)η̃δ0+1(l)

ν(l) ≤ −
k0δ2

0

a1/β
0 (l)η1/β(l)η̃(l)

≤ 0.

Integrating this inequality from l1 to ∞, we obtain

H(l1) ≥ k0δ2
0 ln

η̃(l1)
η̃(l)

.

Letting l → ∞, we arrive at a contradiction, and then ν/η̃δ0 converges to zero.
Next, from (21), we have

1
η̃(l)

(
a1/β

0 (l)η1/β(l)η̃(l)ν′(l) + ν(l)
)′
≤ − δ0

a1/β
0 (l)η1/β(l)η̃2(l)

ν(l).

Integrating this inequality from l to ∞ and using (B2), we obtain

a1/β
0 (l)η1/β(l)η̃(l)ν′(l) + ν(l) ≥

∫ ∞

l

δ0

a1/β
0 (w)η1/β(w)

ν(w)

η̃(w)
dw

≥ δ0ν(l).

Therefore,(
ν(l)

η̃1−δ0(l)

)′
=

1
η̃2−δ0(l)

(
η̃(l)ν′(l) + (1− δ0)a−1/β

0 (l)η−1/β(l)ν(l)
)
≥ 0.

That is, (B1,m) and (B2,m) are satisfied for m = 0.
Secondly, proceeding to the next induction step, we suppose that (B1,m) and (B2,m)

hold for some m > 0. Using (B1,m), (20) becomes(
a1/β

0 (l)η1/β(l)ν′(l)
)′
≤ − 1

β
a2(l)η(l)η̃β−1(l)η̃δm(g(l))

ν(l)
η̃δm(l)

.

Integrating this inequality from l1 to l and using (B1,m), we find

a1/β
0 (l)η1/β(l)ν′(l) ≤ a1/β

0 (l1)η1/β(l1)ν′(l1)

− 1
β

∫ l

l1
a2(w)η(w)η̃β−1(w)η̃δm(g(w))

ν(w)

η̃δm(w)
dw

≤ a1/β
0 (l1)η1/β(l1)ν′(l1)

− 1
β

ν(l)
η̃δm(l)

∫ l

l1
a2(w)η(w)η̃β−1(w)η̃δm(g(w))dw. (24)



Mathematics 2021, 9, 1060 7 of 10

From (16), η̃(g(l)) ≥ κη̃(l), eventually. Thus, (24) turn into

a1/β
0 (l)η1/β(l)ν′(l) ≤ a1/β

0 (l1)η1/β(l1)ν′(l1)−
κδm

β

ν(l)
η̃δm(l)

∫ l

l1
a2(w)η(w)η̃δm+β−1(w)dw

≤ a1/β
0 (l1)η1/β(l1)ν′(l1)− κδm δ0

ν(l)
η̃δm(l)

∫ l

l1

η̃δm−2(w)

a1/β
0 (w)η1/β(w)

dw

≤ a1/β
0 (l1)η1/β(l1)ν′(l1) + δm+1

ν(l)
η̃δm(l)

η̃δm−1(l1)− δm+1
ν(l)
η̃(l)

.

Since ν
η̃δm converges to zero, we have that

a1/β
0 (l1)η1/β(l1)ν′(l1) + δm+1

ν(l)
η̃δm(l)

η̃δm−1(l1) ≤ 0,

eventually. Thus,

a1/β
0 (l)η1/β(l)ν′(l) ≤ −δm+1

ν(l)
η̃(l)

,

and hence(
ν(l)

η̃δm+1(l)

)′
=

1
η̃δm+1+1(l)

(
η̃(l)ν′(l) + δm+1a−1/β

0 (l)η−1/β(l)ν(l)
)
≤ 0.

Proceeding exactly as in the previous step (at m = 0), we can verify (B1,m+1) and (B2,m+1).
The proof is complete.

Theorem 4. Assume that (10) and (16) hold, and that there is a positive constant δ0 ∈ (0, 1) such
that (17) holds. If δm > 1/2 for some m ∈ N, where δm defined as in (18), then all solutions of (1)
are oscillatory.

Proof. If we suppose that (1) has a solution ν ∈ V+, then, from Lemma 2, we have ν
η̃δm

is decreasing and ν
η̃1−δm is increasing. Therefore, δm ≤ 1/2 for all m = 0, 1, ..., this is a

contradiction. The proof is complete.

Theorem 5. Assume that (10) and (16) hold, and that there is a positive constant δ0 ∈ (0, 1) such
that (17) holds. If, for some m ∈ N,

ψ′(l) +
1

β(1− δm)
a2(l)η(l)η̃β(l)ψ(g(l)) = 0 (25)

is oscillatory, where δm defined as in (18), then all solutions of (1) are oscillatory.

Proof. If we suppose that (1) has a solution ν ∈ V+, then, from Lemma 2, we have that
(B1,m), (B2,m) and (20) hold, for all m = 0, 1, ... . Now, we define the function

ψ := ν + η̃(a0η)1/βν′.

As in the proof of Lemma 1, we have that (15) holds, and so ψ(l) > 0, eventually. Thus,

ψ′ = η̃
(
(a0η)1/βν′

)′
.

Hence, from (20), we obtain

ψ′ ≤ − 1
β

a2ηη̃β(ν ◦ g). (26)
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Taking the fact that
(
ν/η̃δm

)′
< 0 into account, we obtain

ψ(l)− ν(l) = η̃(l)(a0(l)η(l))
1/βν′(l) < −δmν(l)

and then
ψ(l) < (1− δm)ν(l).

Thus, from (26), ψ(l) is a positive solution of the delay differential inequality

ψ′(l) +
1

β(1− δm)
a2(l)η(l)η̃β(l)ψ(g(l)) ≤ 0.

Using Theorem 1 in [24], the associated delay differential (25) has also a positive solution,
which contradicts to the assumptions of the theorem. The proof is complete.

Corollary 1. Assume that (10) and (16) hold, and that there is a positive constant δ0 ∈ (0, 1) such
that (17) holds. If, for some m ∈ N,

lim inf
l→∞

∫ l

g(l)
a2(w)η(w)η̃β(w)dw > β

1− δm

e
, (27)

where δm defined as in (18), then every solution of (1) is oscillatory.

Proof. It follows from Theorem 2 in [25] that condition (27) implies oscillation of (25).

Example 1. Consider the differential equation(
l2 · ν′

)′
+ lν′ + a∗2ν(λl) = 0, (28)

where l ≥ 1, a∗2 > 0 and λ ∈ (0, 1). Note that η(l) = l, η̃(l) := 1/
(
2l2), and that (9) and (10)

hold. Using Theorem 4, (28) is oscillatory if

δm+1 =
a∗2

4λ2δm

1
1− δm

>
1
2

, (29)

for some m ∈ N. On the other hand, by Corollary 1, we have that (28) is oscillatory if

a∗2
2

ln
1
λ
>

1− δm

e
, (30)

for some m ∈ N.

Remark 1. Table 1 shows the first value of δm which satisfies Condition (29) for different special
cases of (28). Note also that, in all cases in Table 1, δ0 < 1/2, which does not fulfill (29).

Table 1. The first value of δm which satisfies Condition (29).

a∗
2 λ δ0 m δm

(1) 1.00 0.20 0.2500 1 δ1 = 0.745356

(2) 1.00 0.50 0.2500 2 δ2 = 0.909139

(3) 0.50 0.20 0.1250 3 δ3 = 0.505743

(4) 0.15 0.01 0.0375 18 δ18 = 0.735724

(5) 0.80 0.50 0.2000 52 δ52 = 0.728266
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3. Conclusions

We have greatly less results for DDEs with noncanonical operator than for the DDEs
with canonical operator. So, in this work, new sufficient conditions for the oscillation of
second-order damped DDE with noncanonical operator (1) are established. By inferring
and improving some properties of positive solutions, we establish oscillation criteria of an
iterative nature. For an overview of the main results, see Figure 1. It would be interesting
to extend our results to neutral DDEs.

Figure 1. Schematic diagram for main results
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