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Abstract: The Covid-19 pandemic has generated major changes in society, most of them having a
negative impact on the quality of life and income obtained by the population and businesses. The
negative consequences have been highlighted in the decrease of the GPD level for regions, countries
and even continents. Returning to pre-pandemic levels is a considerable effort for both economic and
political decision-makers. This article deals with the construction of a mathematical model for eco-
nomic aspects in the context of variable productivity in time. Through this mathematical model, we
propose to maximize revenues in pandemic conditions, in order to limit the economic consequences
of the lockdown. One advantage of the proposed model consists in the fact that it is based on units
that can be regions, economic branches, economic units or fields of investment. Another strength
of the model is determined by the fact that it offers the possibility to choose between two different
investment strategies, based on the specific options of the decision makers: the consistent increase of
the state revenues or the amelioration of the disparity phenomenon. Furthermore, our model extends
previous approaches from the literature by adding some generalization options and the proposed
model can be applied in lockdown cases and seasonal situations.

Keywords: optimal control; income maximization; optimal investment strategy; disparity amelioration

1. Introduction

In the current context in which we are facing a pandemic and given the temporary
quarantine measures in certain areas, the world economy is experiencing obvious prob-
lems. The COVID-19 pandemic has a serious socio-economic impact at the global scale
highlighted in higher unemployment and poverty rates, lower oil prices, altered education
sectors, changes in the nature of work, lower GDPs and heightened risks to healthcare
workers [1] (p. 357). The pandemic has affected to various degrees the industry sectors
and most common problems were a decrease in the short-term revenue and an inabil-
ity to resume work and production due to restrictive measures and decrease of market
demand [2] (p. 8). The economy was seriously affected by the COVID-19 outbreak, people
have lost their jobs, not succeeding to gain a minimum income level [3] (p. 2). People in
low-paid, self-employed or insecure occupations are the most affected, because in their
case, there is a loss of work or a temporary closure of their business [4] (p. 147). Studies like
the one developed by Truong and Asare [5] can prove useful in helping decision making
by policymakers, governments and healthcare experts to have more information about
vulnerable communities that are affected by the virus [5] (p. 13).

The economy as a whole is suffering, and some economic sectors are significantly
affected. The economic landscape will experience major changes in the present pandemic
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situation and some industries will take advantages, while others will be affected [6] (p. 5).
The unpleasant experience of the coronavirus should be a lesson in the field of health and a
stimulus to modify the existing economic and social system, otherwise, new health and
social dangers might take place [7] (p. 1054). In the context of globalization, the economic
interdependences among countries became stronger, so an impact on a national economy
is felt on the world economy [8] (p. 1–2) . The GDPs nations have been influenced by the
lockdown; the GDPs of a few Asian, European and South-American nations have decreased
significantly opening the way to negative consequences [9] (p. 5). Coccia’s study [10] (p. 8)
reveals that a longer general lockdown generates uncertain effects on the reduction of
COVID-19 infected people and deaths, but also negative effects on economic systems. As
there is no previous experience, it could be considered a flexible lockdown based on an
approach of trial and error, where the intensity of lockdown measures should depend on
the control over the transmission and the demand for economic reactivation [11] (p. 3).
More strict confinement measures were implemented in those EU Member States where
healthcare systems were less resilient to a pandemic, but in the same time the stricter are
these measures, the more substantial are impacts on the society and economy are in these
countries [12]. Therefore, overall economic results have declined, and it takes time to reach
pre-crisis levels. The question is “how fast and under what conditions”? There is obviously
a need for government measures and policies to manage this situation and minimize the
negative effects.

As there are intense labour market concerns after the COVID-19 pandemic, the eco-
nomic recovery needs to be supported by a targeted policy that would limit the risks of
unemployment hysteresis [13] (p. 16). Although governments aimed at improving supply
chain performance, they did not seem to fully manage in focusing their limited resources
to ensure enough supplies of essentials and lowering the negative impacts on economic
growth [14] (p. 17). From the unemployment point of view, the pandemic effects across
countries are very heterogeneous: high in the USA and Spain, while in other countries were
quite low, as through public programs subsidies were provided to employers and employ-
ees to protect existing jobs [15] (p. 249). In the short term, the European Union experienced
a pandemic-generated symmetrical economic shock, but there can occur asymmetrical
economic consequences and the risk of creating a further economic gap between North
and South, favorized by the ability of some countries to respond to minimize the negative
effects more quickly due to the greater resources at their disposal [16] (pp. 312–313). The
support needs to cover the industrial production SMEs in order to prevent employee
layouts and closures, the interventions must be adjusted according to the labour market
estimates [17] (p. 821).

Previous studies [18] have attempted to bring together issues related to value portfolios
with results about specific optimizations and constraints. Optimality restrictions in some
cases lead to portfolio segregation. In the same vein, recent studies by [19] have shown
that the turbulence produced by Covid-19 has generated significant volatility in terms
of investments and risky assets. The research also discusses the issue of sustainability in
the context of limited resources and their diverse allocation needs. The issue of limited
resource allocation was also analyzed by [20] based on risk–return models that take into
account the practical limitations on available resources.

The efficiency of resource allocation was investigated by [21] and in terms of monetary
income in pandemic situations of Covid-19. Thus, it was concluded that historical yields
are not always confirmed in the event of a crisis situation, such as a global pandemic.

Through a mathematical model, we propose to maximize revenues in pandemic
conditions, in order to limit the economic consequences of the lockdown. In conditions of
slowdown or closure (partial or total) of the activity in some sectors, less income will be
generated. The model offers the possibility to choose between two investment strategies.
One possibility is to invest the money obtained where it can produce more results, so the
state budget also having more resources from which some can then be directed to support
underdeveloped regions or more severely affected economic branches. Another possibility
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is to invest a minimum amount of money in each region in order to “preserve” the economy.
Thus, no disparities will increase, no branches or economic units will disappear from those
temporarily affected, we will not have an “economic desert”. The units in the model can be
regions, economic branches, economic units or fields of investment.

The organisation of the paper is the following: after an introduction presenting the
context and the purpose of this work, we introduce the mathematical model in the second
section and we give the analysis to obtain the optimal investment strategy; the third section
is concerned with the numerical illustration of this strategy in several cases.

2. Description of the Model and Analysis

This model is a generalization of the work of Pražák (see [22]) which treats the case of
two regions and finds some explicit necessary optimality conditions. In the present work,
we did several extensions to the initial model. The first one is a generalization to N regions
and the introduction of a time depending function which can account for a lockdown or
seasonal effect on the productivity. Another contribution is the choice of a particular form
of the control which allows the implementation of different investment strategies. The
main purpose is to offer the possibility to choose, if necessary, a strategy which reduces the
increase of inequalities among regions. Finally, we introduced a term which ensures that
a percent of the income from each region is automatically reinvested in the same region.
The approach is original and completely different from the one presented in [23]. In our
situation, it is not easy to find the optimal strategy by direct calculus and, therefore, we
used a numerical approach.

2.1. Description of the Model

We shall consider the following optimization problem: Given a final time T > 0, find
(ui(t))i=1,··· ,N that maximize:

y(T) =
N

∑
i=1

biki(T)ci(T) (1)

under the following constraints:

k̇i(t) =
( α

N
+ ui(t)

)
︸ ︷︷ ︸

:=vi(t)

∑N
j=1 sjbjk j(t)cj(t) + s̃ibiki(t)ci(t) ∀t ∈ [0, T]

∑N
i=1 vi(t) = 1 ∀t ∈ [0, T]

ui(t) ∈ [0, 1− α] ∀t ∈ [0, T]

(2)

This is an optimal control problem which aims at maximising the total income Y(T)
by choosing the optimal investment strategy. The function ki(t) is the capital stock of the
region i at time t. Its evolution in time is driven by the differential equation given as the
first constraint of (2). It describes the regional accumulation of capital with the regional
output–capital ratio bi, and the regional saving ratio si which are assumed to be positive.
Furthermore, a part s̃i > 0 of the output–capital ratio of region i is directly re-injected in
the same region i, whereas the other part si can be reallocated in any region.

The control variables ui(t) should be understood as a proportion of the total invest-
ment that is allocate to a region i, which explains the second constraint in (2). The parameter
α corresponds to the minimal part of the total investment injected in each region. In other
words, it depends on the global policy we wish to adopt. In particular, taking α = 1 would
correspond to equally distribute the profit between regions, and therefore would contribute
to the reduction of disparities. On the other hand, if we choose α = 0 we have the situation
where nothing is did in order to ensure a minimal investment in each region and therefore
to avoid the increase of inequalities between regions.
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Finally, the function ci(t) is assumed to be piecewise continuous and describes in each
region i the impact of, for instance, a lockdown which alters the productivity.

2.2. The Necessary Conditions for Optimal Solution

We shall use the Pontryagin maximum principle to determine the optimal allocation
of investments. For more details see [24]. To this purpose, we shall first consider the
Hamiltonian associated to the problem (P).

If we denote the vectors K = (k1, k2, . . . , kN), U = (u1, u2, . . . , uN), V = (v1, v2, . . . , vN)
and P = (p1, p2, . . . , pN) we have the following form of the Hamiltonian

H(K, V, P) =
N

∑
i=1

pi(t)

(
vi(t)

N

∑
j=1

sjbjk j(t)cj(t) + s̃ibiki(t)ci(t)

)

where pi, i ∈ {1, 2, . . . , N} are the adjoint functions of the optimal control problem.
The corresponding adjoint equations can be written as

.
pr(t) = −

∂H
∂kr

= −
N
∑

i=1
pi(t)vi(t)srbrcr(t)− pr(t)s̃rbrcr(t),

pr(T) = bcr(T),

for ∀r ∈ {1, 2, . . . , N}. We can easily see that each function pi is decreasing since it’s
derivative is negative, the adjoint functions pi being positives.

By using the Pontryagin maximum principle we get for K̂ the optimal state and Û the
optimal control, that

H
(

K̂, V, P
)
≤ H

(
K̂, V̂, P

)
which implies that

N

∑
i=1

pi(t)

(
vi(t)

N

∑
j=1

sjbj k̂ j(t)cj(t) + s̃ibi k̂i(t)ci(t)

)

≤
N

∑
i=1

pi(t)

(
v̂i(t)

N

∑
j=1

sjbj k̂ j(t)cj(t) + s̃ibi k̂i(t)ci(t)

)
.

By an elementary calculus we have that(
N

∑
j=1

sjbj k̂ j(t)cj(t)

)(
N

∑
i=1

pi(t)(vi(t)− v̂i(t))

)
≤ 0

and since the first sum is always positive, we get that

N

∑
i=1

pi(t)(vi(t)− v̂i(t)) ≤ 0.

Keeping in mind that

vl(t) = 1−
N

∑
r=1
r 6=l

vr(t)

and

v̂l(t) = 1−
N

∑
r=1
r 6=l

v̂r(t)
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we obtain by replacing in the previous inequality that

N

∑
i=1
i 6=l

(vi(t)− v̂i(t))(pi(t)− pl(t)) ≤ 0

⇔
N

∑
i=1
i 6=l

(ui(t)− ûi(t))(pi(t)− pl(t)) ≤ 0.

(3)

This is the necessary condition for the optimal solution we are looking for.
By using the relation above we can now discuss the optimal policy. We shall consider

an arbitrary moment t and l∗(t) the region where pl∗ is the biggest at this moment t. Let us
emphasize that l∗(t) depends on the moment t.

This implies that pi(t)− pl∗(t) ≤ 0 for all i ∈ {1, 2, . . . , N} and therefore we have the
necessary condition (3) with l = l∗ satisfied only if

ûl∗(t) = 1− α and ûi(t) = 0, ∀i ∈ {1, 2, . . . , N}\{l∗}. (4)

Due to the complexity of the model, the necessary conditions of optimality are difficult
to obtain by direct calculus. Therefore we shall use the numerical resolution which is
presented in the next section.

3. Some Numerical Results

Thanks to the optimality condition (4) on the control function ui and keeping in mind
that vi(t) = α

N + ui(t), we can rewrite the adjoint system as follows:

ṗr(t) = −
N

∑
i=1

pi(t)vi(t)srbrcr(t)− s̃rbr pr(t)cr(t)

= − α

N
srbrcr(t)

 ∑
i 6=l∗(t)

pi(t)

− (1− α +
α

N

)
pl∗(t)srbrcr(t)− s̃rbr pr(t)cr(t)

(5)

where we recall that
l∗(t) = argmax

l∈{1,··· ,N}
pl(t)

Since at final time the adjoint function pr(T) is known (it does not depend on ki(T)),
we can numerically solve the above system of differential equation, using here a classical
Runge-Kutta scheme. The implementation has been done in Python using Numpy [25].
Doing so, we are able to compute l∗(t) at each (discretized) time and to determine at each
time in which region we shall inject the money. In other words, this gives the optimal
funding strategy.

Furthermore, knowing l∗(t), we can compute ki(t) since we have:

k̇i(t) = vi(t)
N

∑
j=1

sjbjk j(t)cj(t) + s̃ibiki(t)ci(t)

=


α
N ∑N

j=1 sjbjk j(t)cj(t) + s̃ibiki(t)ci(t) if i 6= l∗(t)

(1− α + α
N )∑N

j=1 sjbjk j(t)cj(t) + s̃ibiki(t)ci(t) if i = l∗(t)

(6)

Two examples of study modelling lockdown: Let us illustrate these results with two
examples. In each case, we have taken T = 10. We have considered the situation of 5 regions
with the same initial capital ki(0) = 1, and we have chosen the following parameters:
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[b1, b2, b3, b4, b5] = [0.12, 0.118, 0.115, 0.12, 0.117],

[s1, s2, s3, s4, s5] = [0.2, 0.21, 0.195, 0.2, 0.198],

[s̃1, s̃2, s̃3, s̃4, s̃5] = [0.11, 0.12, 0.13, 0.11, 0.1].

(7)

For the first example, each function ci(t) is given by

ci(t) =
1− (t−(i−1))(i+1−t))

2 if t ∈ [i− 1, i + 1]

1 if not
(8)

This choice of functions is represented on Figure 1 and (in some way) models the fact
that the productivity is reduced in each region gradually and then come back to normal.
The effect “propagates” over time from the first region to the last one.

Figure 1. Representation of the function ci(t) versus time for the first example (on the left) and for
the second example (on the right).

In the second case, we have taken the same values for bi, si and s̃i but we have changed
the functions cj(t):

[c1(t), c2(t), c3(t), c3(t), c5(t)] =

[1, 1, 1, 1, 1] if t ∈ [0, 2]

[0.8, 0.7, 0.5, 0.5, 0.6] if t ∈]2, 4]

[0.6, 0.4, 0.8, 1, 0.7] if t ∈]4, 6]

[1, 1, 0.7, 0.6, 0.8] if t ∈]6, 8]

[1, 1, 1, 1, 1] if t ∈]8, 10]

(9)

which corresponds to a situation where the effect of the lockdown is much stronger and is
applied abruptly in each region.

For this first example, we have represented on Figure 2 the obtained results for l∗(t)
and ki(t) taking α = 0. We can see that the investment strategy is not obvious. It leads to
y(T) ' 0.838. Furthermore, we can show that it does not correspond to invest only in the
region with the maximum rate gi(t) = sibici(t) at time t. Indeed, Figure 3, where we have
represented the function gi(t), would suggest to invest first in region 2, then in region 4
and, finally, again in region 2. If we apply this strategy, we get y(T) ' 0.836 whereas we
get y(T) ' 0.838 with the optimal strategy.

Let us now illustrate the effect of parameter α. Taking for the same example α = 0.8,
which we recall means that at least a part of the profit is equally distributed between regions,
we obtained a different optimal strategy, as shown on Figure 4. Furthermore, as expected,
the final income y(T) = 0.844 is lower than the one obtained by taking α = 0. However,
this strategy ensures that every regions receives a minimal support and it considerably
reduces disparities.
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Figure 2. Evolution of the capital ki(t) over time (on the left) and optimal index l∗(t) of the region
over time (on the right) taking α = 0.

Figure 3. Representation of the function gi(t) versus time.

Figure 4. Evolution of the capital ki(t) over time (on the left) and optimal index l∗(t) of the region
over time (on the right) taking α = 0.8.
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For the second example, we have represented the obtained results on Figure 5, taking
α = 0. Once again, one can see that the strategy is not obvious. Furthermore, it is clearly
not the same as in the first case, for the same α, which accounts for the change of function
ci(t).

Figure 5. Evolution of the capital ki(t) over time (on the left) and optimal index l∗(t) of the region
over time (on the right) taking α = 0.

To emphasize the impact of the parameter α, we have computed the optimal strategy
taking α = 0.5, see Figure 6. Here again, we can observe that the optimal strategy is
changed and increasing α alleviates the disparities.

Figure 6. Evolution of the capital ki(t) over time (on the left) and optimal index l∗(t) of the region
over time (on the right).

A last example modelling seasonal effect: To end this section, let us consider the
case of periodic functions ci(t). This can be interpreted as seasonal effect, for instance a
region close to the sea will be more attractive in summer, whereas a region with mountains
will be more attractive in winter. We have consider the case of three regions characterized
by the following parameters:
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[b1, b2, b3] = [0.2, 0.18, 0.2],

[s1, s2, s3] = [0.2, 0.2, 0.2],

[s̃1, s̃2, s̃3] = [0.1, 0.1, 0.1].

(10)

The function ci(t) is represented on Figure 7 and is given by:

[c1(t), c2(t), c3(t)] =
[

cos
(
(t− 2)π

2

)
, cos

(
(t− 1)π

2

)
, cos

(
tπ
2

)]
× 0.4 +

1
2

(11)

These three regions can be interpreted as follows: region 1 corresponds to sea region,
region 2 to countryside and region 3 to mountain region. When the sea region is more
attractive (usually in summer), the mountain region is less attractive. In order to see which
region has the best productivity gj(t) = cj(t)sjbj at each time t, we have also represented
on Figure 7 the functions gj(t). One can see that globally region 1 and region 3 have the
highest productivity alternatively, and on a short period region 2 has the best productivity.

Figure 7. Representation of the function ci(t) versus time (on the left) and the function gj(t) (on
the right).

On Figure 8, we have represented the optimal solution of our optimization problem
(taking α = 0) and, as we can see, the optimal strategy consists simply in injecting the
money in the same region (region 1). In this case, the final value y(T) ' 0.453.

Figure 8. Evolution of the capital ki(t) over time (on the left) and optimal index l∗(t) of the region
over time (on the right).
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This result might seem counter-intuitive and one could think that a better strategy
consists in injecting money in the most productive region, that is to say, to take:

l∗(t) = argmax
l∈{1,··· ,N}

gl(t) (12)

To compare the two strategies, we have represented on Figure 9 the results obtained
following this second strategy. In that case, the final value y(T) ' 0.392 is smaller than the
one obtained by the optimal strategy (which is logical).

Figure 9. Evolution of the capital ki(t) over time (on the left) and index l∗(t) over time (on the right).
These results have been obtained using strategy (12).

4. Conclusions and Discussion

In this work, we have proposed a mathematical model to describe the impact of a
regional lockdown or seasonal effect on the economy. In particular, we have emphasized
that constructing the optimal strategy is not obvious and requires numerical methods.
Furthermore, one interesting feature of the proposed model is the fact that we can consider
a particular policy to avoid keeping or increasing regional disparities. Clearly, if we wish to
minimize the disparities and to sustain poor regions, we need to take α = 1. Yet, doing so,
no strategy can be established (since we no longer have control parameters) and it can quite
highly affect the final income y(T), and also slowdown the development of other regions.

A first and direct extension of the model would be to consider a variable in time
parameter α(t) instead of a constant value α. Furthermore, one could consider that the
part of the benefit generated by the different regions is not equally distributed among the
regions. This implies to consider αi(t) depending both on time and region i. These two
generalisations are straightforward and do not change the analysis.

A second improvement of the model would be to consider another cost-functional,
such as

J(T) =
N

∑
i=1

biG(ki(T)− k̃)ci(T)

where G(X) is a function equal to X if X ≥ 0 and fastly decreasing when X < 0 decreases.
Doing so, we would penalize the fact that a region does not reach a minimal capital k̃.
Another improvement would be to consider an economic growth model more realistic such
as logistic growth:

k̇i(t) =
( α

N
+ ui(t)

) N

∑
j=1

sjbj

(
k j(t)−

k2
j (t)

Kmax

)
cj(t)
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In this model, Kmax represents a limit capital that can be reached. Yet, these two
improvements leads to much involved difficulties to solve the optimization problem.

As a final extension, let us also mention the addition of a stochastic term in the model.
This term would account for random influences on the model. Considering the fact that the
stochastic version of Pontryagin’s principle is different from the one used in this work, this
extension would be required to fully review the analysis. The numerical part would also
be quite different, since the adjoint equation would be a backward stochastic differential
equation. In particular, in this future work, it would be very interesting to see the impact
of a stochastic term on the optimal policy.

Regarding the usefulness of the proposed model, it can be applied both for situations
of prolonged regional lockdown over longer periods, and for temporary situations due to
possible natural disasters. From the point of view of managerial implications, the model
can be adapted both for companies and for decision makers in the field of public policies: at
zonal level (mayors, prefectures) and at regional/national level (local government, national
government, ministry of finance). The model can be applied depending on the purpose
pursued by the policy maker: maximizing revenues or ameliorating regional disparities.
As a future research direction, the inclusion of other parameters or restrictions in the model
can be considered, adapted according to the type of lockdown or interruption of activities.
For example, a set of constraints and variables that emulate situations in which all activities
in a region are interrupted or only activities in a certain field of activity.
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