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Abstract: This paper presents the dynamic responses of a fiber-reinforced composite beam under a
moving load. The Timoshenko beam theory was employed to analyze the kinematics of the composite
beam. The constitutive equations for motion were obtained by utilizing the Lagrange procedure. The
Ritz method with polynomial functions was employed to solve the resulting equations in conjunction
with the Newmark average acceleration method (NAAM). The influence of fiber orientation angle,
volume fraction, and velocity of the moving load on the dynamic responses of the fiber-reinforced
nonhomogeneous beam is presented and discussed.

Keywords: moving load problems; fiber-reinforced composite materials; Timoshenko beams; Ritz
method

1. Introduction

Conventional engineering materials may be classified as metals, polymers, ceramics,
and composites. Metals have high rigidity, ductility, mechanical strength, and thermal
stability. They are also exceedingly good conductors of electricity and heat. Polymers
have become one of the widely used engineering materials due to their lower density, easy
machinability, and corrosion resistance compared to other materials. Ceramics contain
strong covalent bonds and have almost zero thermal and electrical conductivities and
extremely good thermal stability and hardness.

A composite material is any solid consisting of at least two components contained
in separate phases. Wood is a natural composition of cellulose fibers in a lignin matrix.
Another well-known example of man-made composite material is reinforced concrete.
Steel and concrete maintain their individual characteristics in the resulting composite
structure. However, because they work in harmony, the steel carries tension loads, and
the concrete withstands compression loads. The main advantages of composite materials
include excellent strength-to-weight and stiffness-to-weight ratios. Additionally, composite
materials may have excellent resistance to corrosion.

Fiber-reinforced composite (FRC) structures are used in various engineering appli-
cations, for example, airplanes, machine, marine, and civil engineering projects, because
of their higher strength-to-weight ratios, greater lightweight, and better ductile proper-
ties [1–9]. The main practical applications of FRC structures comprise molded car panels,
helicopter and wind turbine blades, tennis rackets, ski-poles, and prosthesis. More details
can be found in [10,11]. Issues associated with a moving load are very important in FRC
structures used in bridges, roads, railways structures. With dynamically moving loads, the
mechanical behavior of structures varies significantly [12–18]. Therefore, understanding
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the dynamical behavior of FRC structures is crucial for their design. Some works on the
mechanical analysis of FRC beams are reported below.

A dynamic analysis of beams reinforced with fibers was performed by Teoh and
Huang [19]. Bending and stability responses of thin-walled beams reinforced with cast
polyamide, carbon, and glass fibers were perused by Eksi et al. [20]. The vibrational
response of a laminated beam with a SiC particle-reinforced Al6082 matrix in a magnetorhe-
ological fluid core was examined [21]. Large-amplitude vibration analyses of laminated
imperfect FRC beams were performed by Jin et al. [22]. Post-buckling and large deflection
analyses of an FRC beam were made with the finite element method by Akbas [23–25]. In
addition, the mechanical responses of composite beams reinforced with carbon fiber have
attracted the attention of researchers [26–29].

On the other hand, carbon nanotubes (CNTs) have also been used as a reinforcement
material. Due to the extraordinary properties of CNTs, many studies have been per-
formed on their mechanical characteristics [30–33]. The bending and buckling responses
of a nanocomposite beam reinforced with SWCNT were comprehensively examined [34].
Ke et al. [35] performed a large-amplitude vibration analysis of nonhomogeneous CNT-
reinforced beams on the basis of the Timoshenko beam theory. Yas and Samadi [36] perused
the dynamic and stability responses of CNT-reinforced composite beams surrounded by
an elastic medium by GDQM. More details about nanocomposite beams reinforced with
CNTs can be found in other related works [37–49]. Moreover, the vibration and buck-
ling behaviors of nanocomposite beams reinforced with graphene nanoplatelets were
studied [50–53].

As seen above, there are a number of studies on the mechanical analysis of reinforced
composite beams in the scientific literature. However, works about the dynamic analysis of
FRC beams under a moving load are very limited. To the best of the authors’ knowledge,
the dynamical response of fiber-reinforced composite beams subjected to a moving load
using the Newmark average acceleration and Ritz methods was examined for the first
time in a simply supported boundary condition. In the present study, dynamically moving
issues related to an FRC beam are investigated using the Timoshenko beam theory and Ritz
method. The governing equations for a reinforced composite beam in dynamic analysis
were obtained by using the Lagrange procedure. NAAM was utilized to solve the forced
vibration problem in time. The influence of fiber orientation angles, volume fraction, and
velocity of the moving load on the dynamical behavior of the FRC beam is presented.

2. Materials and Methods

In Figure 1, a simply supported FRC beam with length L, height h, and width b under
a moving load is shown. Q and vQ represent the magnitude and the constant velocity of
the load, respectively.

Figure 1. A simply supported FRC beam under a moving load.

The axial (εz) and shear (γzy) strains can be written based on the first-order shear
deformation beam theory as

εz=
∂u0

∂z
−Y

∂∅
∂z

(1a)
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γzy =
∂u0

∂y
+

∂v0

∂z
(1b)

where u0, v0, and ∅ denote axial and vertical displacements and rotation, respectively. The
constitutive relation is presented as follows{

σz
σzy

}
=

[
R11 R16
R16 R66

]{
εz

γzy

}
(2)

where Rij represents the transformed components of the reduced constitutive tensor. They
can be expressed for orthotropic materials as

R11 = Q11c4 + 2(Q12 + 2Q66)c2s2 + Q22s4 (3a)

R12 = (Q11 + Q22 − 4Q66)s2c2 + Q12

(
c4 + s4

)
(3b)

R16 = (Q11 −Q12 − 2Q66)sc3 + (Q12 −Q22 + 2Q66)s3c (3c)

R22 = Q11s4 + 2(Q12 + 2Q66)s2c2 + Q22c4 (3d)

R26 = (Q11 −Q12 − 2Q66)s3c + (Q12 −Q22 + 2Q66)sc3 (3e)

R66 = (Q11 + Q22 − 2Q12 − 2Q66)s2c2 + Q66

(
s4 + c4

)
(3f)

where c = cos θ, and s = sin θ. θ specifies the fiber orientation angle, and Qij can be defined as

Q11 =
E1

1− ν12ν21
, Q22 =

E2

1− ν12ν21
(4a)

Q12 = Q21 =
ν12E2

1− ν12ν21
=

ν21E1

1− ν12ν21
(4b)

Q66 = G12 (4c)

where E1 and E2 are, respectively, the elastic modulus in the Z and Y directions, ν12
and ν21 are Poisson’s ratios, and G12 is the shear modulus in the ZY plane. The me-
chanical properties of composite materials can be calculated according to the relations in
Equations (5a)–(5e) [54]

E1 = E f Vf + Em

(
1−Vf

)
(5a)

E2 = Em

E f + Em +
(

E f − Em

)
Vf

E f + Em −
(

E f − Em

)
Vf

 (5b)

ν12 = ν f Vf + νm

(
1−Vf

)
(5c)

G12 = Gm

G f + Gm +
(

G f − Gm

)
Vf

G f + Gm −
(

G f − Gm

)
Vf

 (5d)

ρ = ρ f Vf + ρm

(
1−Vf

)
(5e)

where f and m indicate the fiber and matrix, respectively, and Vf is the volume fraction of
the fiber. Also, E, G, ν, and ρ denote the material’s properties, i.e., Young’s modulus, shear
modulus, Poisson’s ratio, and mass density, respectively.

The strain energy (US), kinetic energy (T), and potential energy of the external loads
(Ue) can be expressed as

US =
1
2

∫ L

0

[
A0

(
∂u0
∂z

)2
+ A2

(
∂∅
∂z

)2
]

dZ +
1
2

∫ L

0
KsB0

[(
∂v0
∂z

)2
− 2

∂v0
∂z

∅+∅2

]
dZ (6a)
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T =
1
2

∫ L

0

(
I0

(
∂u0

∂t

)2
+ I2

(
∂∅
∂t

)2
+ I0

(
∂v0

∂t

)2
)

dZ (6b)

where Ks is a shear correction factor, chosen as 5/6 in the present study and

A0 = R11bh , A2 = R11bh3/12, B0 = R66bh, I0 = ρbh , I2 = ρbh3/12 (7)

The Lagrangian function can be written as

I = T − (Ui + Ue) (8)

An approximate solution can be achieved as a series of n terms of the following form,
according to the Ritz method

u0(z, t) =
∞

∑
i=1

dn (t)ϕn(z) (9a)

v0(z, t) =
∞

∑
i=1

en (t)χn(z) (9b)

∅(z, t) =
∞

∑
i=1

fn (t)ψn(z) (9c)

where dn, en, and f n are the unknown time-dependent generalized coordinates, and
ϕn(z),χn(z), and ψn(z) are the admissible functions dependent on the boundary conditions.
ϕn(z),χn(z), and ψn(z) can be written, for a simply supported beam, as

ϕn(z) = zn (10a)

χn(z) = (L− z)zn (10b)

ψn(z) = z(n−1) (10c)

where n states the order of polynomials in the approximate functions.
Substituting Equations (9a)–(9c) into Equations (6a) and (6b) and then implementing

the Lagrange’s equation yields Equation (11)

∂I
∂rn
− ∂

∂t
∂I
∂

.
rn

= 0 (11)

where rn represents dn, en, and fn. The equation of motion is achieved as

[K]{r(t)}+ [M]
{..

r(t)
}
= {F(t)} (12)

The components of these matrices and vector are presented below

[K] =

 K11 K12 K13
K21 K22 K23
K31 K32 K33

 (13)

where

K11 =
n

∑
i=1

n

∑
j=1

∫ L

0
A0

∂ϕi
∂z

∂ϕj

∂z
dz, K12 = 0, K13 = 0 (14a)

K21 = 0, K22 =
n

∑
i=1

n

∑
j=1

∫ L

0
KsB0

∂χi
∂z

∂χj

∂z
dz, K23 = −

n

∑
i=1

n

∑
j=1

∫ L

0
KsB0

∂χi
∂z

ψjdz (14b)
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K31 = 0, K32 = −
n

∑
i=1

n

∑
j=1

∫ L

0
KsB0ψi

∂χj

∂z
dz (14c)

K33 =
n

∑
i=1

n

∑
j=1

∫ L

0
A2

∂ψi
∂z

∂ψj

∂z
dz +

n

∑
i=1

n

∑
j=1

∫ L

0
KsB0ψiψjdz (14d)

[M] =

 M11 M12 M13
M21 M22 M23
M31 M32 M33

 (15)

in which

M11 =
n

∑
i=1

n

∑
j=1

∫ L

0
I0 ϕi ϕjdz , M12 = 0, M13 = 0 (16a)

M21 = 0, M22 =
n

∑
I=1

n

∑
j=1

∫ L

0
I0χiχjdz, M23 = 0 (16b)

M31 = 0,M32 = 0 (16c)

M33 =
n

∑
i=1

n

∑
j=1

∫ L

0
I2ψiψjdz (16d)

{F(t)} = Qχj(vQt) 0 ≤ t ≤ L
vQ

(17)

Equation (12) can be solved within the time domain by NAAM. The procedure of
NAAM is presented as follows [

K(t)
]
{dn}r+1 =

{
F(t)

}
(18)

where [
K(t)

]
= [K] + a0[M] (19){

F(t)
}
=
{

F(t)
}

r+1 + [M]
(

a0{dn}r + a1

{ .
dn

}
r
+ a2

{ ..
dn

}
r

)
(20)

where
a0 =

1
β∆t2 , a1 =

1
β∆t

, a2 =
1− 2β

β
, (21)

where ∝= 0.5, β = 0.25. After evaluating {dn}r+1 at time tr+1 = tr + ∆t, the acceleration
and velocity vectors can be determined by{ ..

dn

}
j+1

= a0
(
{dn}r+1 − {dn}r

)
− a1

{ .
dn

}
r
− a2

{ ..
dn

}
r

(22)

{ .
dn

}
r+1

=
{ .

dn

}
r
+ a3

{ ..
dn

}
r
+ a4

{ ..
dn

}
r+1

(23)

where a3 = (1− α)∆t, and a4 = α∆t.
The dimensionless transversal displacement and time are respectively presented as

follows
v =

v
L

, t∗ =
t
L

vQ (24)

3. Numerical Results

In this section, dynamical displacements of the FRC simply supported beam under
a moving load are presented and discussed according to different material and load
parameters. In the numerical examples, the materials of the beams were selected as
consisting of a graphite fiber-reinforced polyamide composite, and its parameters were as
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follows [55]: Em = 2.756 GPa, Ef = 275.6 GPa, Gm = 1.036 GPa, Gf = 114.8 GPa, νm = 0.33,
νf = 0.2, ρm = 1600 kg/m3, ρf = 1900 kg/m3. The geometry properties of the beam were
selected as b = h = 0.1 m, and L = 10h. The amplitude of the dynamic load was selected
as Q0 = 1 kN.

Firstly, a convergence study was performed to determine the suitable number of
polynomials, as shown in Figure 2. The maximum dimensionless dynamic displacements
at midspan of the FRC beam under a moving load were calculated for Vf = 0.3, θ = 10◦,
VQ = 10 m/s. It Figure 2, it can be observed that the number of polynomials has a crucial
effect on the convergence of the dynamic displacements. It is also apparent that an increase
in the number of polynomials yields an increase in the maximum dynamic displacements
and the divergence between the maximum dynamic displacements diminishes for a higher
number of polynomials, i.e., for n > 9. Consequently, the number of polynomials is chosen
as 10 in the numerical results.

Figure 2. Convergence of maximum dimensionless dynamic displacements (vm) of the FRC beam
under a moving load for Vf = 0.3, θ = 10◦, VQ = 10 m/s.

Then, in order to demonstrate the accuracy and validity of the present analysis, the
results were compared with those of a previous work available in the literature. For this,
the dynamic lateral displacements at midspan of a homogeneous and isotropic beam under
a moving load were compared with [56] in Figure 3. For a validation purpose, the material
parameters were chosen as E = 210 GPa, ρ = 7800 kg/m3, ν = 0.3, v f = 30 m/s. As shown
in this figure, it is clear that our findings are in agreement with other established results.

In Figure 4, the effects of the fiber orientation angle (θ) on the dimensionless lateral
dynamical displacements at midspan (vm) of FRC beams are presented for the different
values of θ and velocity of loads in the dimensionless time history for Vf = 0.3. The
dimensionless displacements (v) and time (t∗) quantities defined in Equation (24) were
used in the time history graphs. As seen in Figure 4, the dynamical lateral dimensionless
displacements of the FRC beam increased with an increment in θ. The bending rigidity
decreased when increasing the fiber orientation angles according to Equation 3, so the
displacements increased. In addition, the velocity of the load had an important influence
on the effects of the fiber orientation angle. With different values of the velocity of the load,
the effects of the fiber orientation angle on the dynamic results changed considerably. For
lower values of the velocity of the load, the effect of the fiber orientation angle were larger
than for higher load velocities.
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Figure 3. Dynamic lateral displacements at midspan (vm) of a homogeneous and isotropic beam
under a moving load.

Figure 4. Time history of dimensionless dynamic displacements at midspan of the FRC beam under
a moving load for different values of the fiber orientation angle (θ).
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The influences of Vf and VQ on the dimensionless dynamic displacements of a simply
supported FRC beam are depicted within time history in Figure 5 for θ = 30

◦
. It is seen from

Figure 5 that increasing volume fraction of the fiber decreased the dynamical displacements,
as expected. It is also evident that the dimensionless dynamic displacements evaluated for
Vf = 0.1 and Vf = 0.2 were close to each other, while those for Vf = 0.3 were very different.
In addition, the effects of the volume fraction of fiber on the dynamic responses varied
considerably for different values of load’s velocity. For different values of VQ, the behavior
of the fibers in the dynamic response changed. For example, for VQ = 10 m/s and t* = 1,
the effects of the volume fraction of fiber were very different from those for other VQ and
t*. This revealed that VQ has an important effect on the dynamic responses of FRC beams.

Figure 5. Time history of dimensionless dynamic displacements at midspan of the FRC beam under
a moving load for different values of the volume fraction of fiber (Vf).

4. Conclusions

A dynamic analysis of an FRC simply supported beam under a moving load was
carried out based on the Timoshenko beam theory by using the Ritz method. The governing
equations in motion were achieved with the aid of the Lagrange procedure. The Newmark
average acceleration procedure was employed in the time history. The influence of fiber
orientation angle, volume fraction, and load velocity on the dynamic displacements of the
FRC beam was investigated in detail. It is concluded from the reported results that the
fiber orientation angle and the volume fraction exert an important effect on the dynamic
responses of FRC beams under a moving load. With variations in these parameters, the
dynamic responses of the FRC beam change significantly. By changing the values of
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load velocity, the effects of fiber orientation angle and volume fraction on the dynamical
responses change considerably.
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