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Abstract: Secure and compact designs of HIGHT block cipher on representative ARM microcon-
trollers are presented in this paper. We present several optimizations for implementations of the
HIGHT block cipher, which exploit different parallel approaches, including task parallelism and data
parallelism methods, for high-speed and high-throughput implementations. For the efficient parallel
implementation of the HIGHT block cipher, the SIMD instructions of ARM architecture are fully
utilized. These instructions support four-way 8-bit operations in the parallel way. The length of prim-
itive operations in the HIGHT block cipher is 8-bit-wise in addition–rotation–exclusive-or operations.
In the 32-bit word architecture (i.e., the 32-bit ARM architecture), four 8-bit operations are executed
at once with the four-way SIMD instruction. By exploiting the SIMD instruction, three parallel
HIGHT implementations are presented, including task-parallel, data-parallel, and task/data-parallel
implementations. In terms of the secure implementation, we present a fault injection countermea-
sure for 32-bit ARM microcontrollers. The implementation ensures the fault detection through the
representation of intra-instruction redundancy for the data format. In particular, we proposed two
fault detection implementations by using parallel implementations. The two-way task/data-parallel
based implementation is secure against fault injection models, including chosen bit pair, random bit,
and random byte. The alternative four-way data-parallel-based implementation ensures all security
features of the aforementioned secure implementations. Moreover, the instruction skip model is also
prevented. The implementation of the HIGHT block cipher is further improved by using the constant
value of the counter mode of operation. In particular, the 32-bit nonce value is pre-computed and
the intermediate result is directly utilized. Finally, the optimized implementation achieved faster
execution timing and security features toward the fault attack than previous works.

Keywords: efficient implementation; ARM Cortex-M4; HIGHT block cipher; fault attack detection

1. Introduction

Recently, advanced embedded platforms have supported data collection and data
mining to generate useful information on Internet of Things (IoT) services. Since the data
packet usually includes sensitive features in it, this should be securely encrypted before
sending through the wireless network or saving into the database. However, the data
encryption itself requires complicated computations and this is high overheads on low-end
embedded platforms equipped with low computation capability, limited battery power,
ROM storage, and RAM storage. For this reason, many works presented the efficient
encryption on embedded processors by suggesting optimal computation routines of target
block ciphers on target microcontrollers.

In this paper, we presented efficient and secure approaches for designs of the HIGHT
block cipher on low-end Cortex-M4 embedded processors. We exploited parallel mecha-
nisms, such as data-parallel, task/data-parallel, and task parallel methods to optimize the
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speed on the target microcontroller. Together with the performance, the required storage in
terms of ROM and RAM is reasonably small for the target microcontrollers.

Unlike previous works, this work utilized four-way ARM–SIMD instructions to ex-
ecute four-way parallel computations. The HIGHT block cipher algorithm consists of
8-bit-wise computations, and 8-bit-wise computations are executed in a parallel way. To
push the speed limit of the implementation, the assembly code of ARM Cortex-M4 micro-
controllers is heavily exploited. Furthermore, general purpose registers are also allocated
in an efficient manner.

An efficient fault attack-safe implementation is also explored. Proposed methods
prevent the fault attack through the intra-instruction redundancy feature. In particular, we
proposed two secure implementations by using task/data and data-parallel techniques.
The task/data-parallel-based implementation is secure against fault injection models,
including chosen bit pair, random bit, random byte and random word. The data-parallel
implementation ensures all features of aforementioned secure implementation and the
instruction skip model is also prevented. The implementation is further improved by using
the unique feature of counter mode of operation. Finally, the proposed implementation
of HIGHT block cipher obtained faster execution timing and security features against the
fault attack than the state-of-art works. Since proposed methods for implementations are a
generic approach, we can apply this technique to other works in a straightforward manner.

1.1. Research Contributions

1. Compact HIGHT implementations in task, data, and task/data-parallel methods: By utilizing
the four-way SIMD feature of 32-bit ARM Cortex-M4 microcontroller, we executed
four 8-bit-wise operations at once. With this instruction, F1 and F0 functions are
performed in the parallel way. With this proposed method, we suggested task, data,
and task/data-parallel-based implementations.

2. Fault attack safe implementations for HIGHT block cipher: This paper presented the fault
attack safe implementation for HIGHT block cipher on embedded processors. With
the parallel feature of a 32-bit ARM Cortex-M4 microcontroller, the intra-instruction
redundant feature is efficiently satisfied. We also suggested the random shuffling
routine to prevent the guessing by the attacker.

3. Detection on instruction skip attack: In order to detect the instruction skip attack, known
answer slots are assigned for intra-instruction redundant features of data-parallel
implementations. Total four encryption operations are performed at once by fully
utilizing the general purpose registers.

4. Counter mode of operation for data-parallel based HIGHT block cipher: The counter mode of
operation for data-parallel-based HIGHT block cipher is optimized by using unique
features of constant values. Furthermore, by skipping the packing step, the encryption
routine is optimized.

1.2. Extended Version of ICISC’19

The previous work in ICISC’19 is extended in this paper [1]. In [1], efficient and secure
implementations of the HIGHT block cipher on low-end ARM Cortex-M4 microcontrollers
were investigated. This work presents the optimal random shuffling routine and fault
attack resistance implementation against the instruction skip attack. Lastly, optimized
implementations of the counter mode of operation for HIGHT block cipher are proposed.

The paper is constructed as below. In Section 2, we introduce the HIGHT block cipher
together with former works on target embedded processors. In Section 3, we propose
optimized designs of HIGHT block cipher on target embedded processors. This is the
parallel implementation and achieved the feature of resistance against the fault attack. In
Section 4, we evaluated the optimized method and presented the comparison with other
works. In Section 5, the conclusion is given.
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2. Related Works
2.1. HIGHT Algorithm

In CHES’06 [2], the HIGHT block cipher was presented. The HIGHT algorithm was
selected as the international standard (i.e., ISO/IEC 18033-3). Since the HIGHT block cipher
was designed for Internet of Things (IoT) environments, its implementation on low-end
devices is suitable. Lengths of block and key are 64 bits and 128 bits, respectively. Each op-
eration is performed in the 8-bit-wise operation and this is the ARX (addition–rotation–
exclusive-or) structured block cipher. The number of rounds for encryption/decryption
is 32. Every round requires a 64-bit round key and this indicates that the size of the full
round key is 2048 bits. Descriptions of HIGHT algorithm are given in Figure 1.

Xi[7] Xi[6] Xi[5] Xi[4] Xi[3] Xi[2] Xi[1] Xi[0]

F0

Xi[7] Xi[6] Xi[5] Xi[4] Xi[3] Xi[2] Xi[1] Xi[0]

SK4i+3

F0

SK4i+1

F1 F1

SK4i+2 SK4i

F0(X)=X<<<1   X<<<2   X<<<7 F1(X)=X<<<3   X<<<4   X<<<6

Figure 1. Encryption of the HIGHT algorithm; X and SK indicate plaintext and round key, respec-
tively.

2.2. Previous Optimized Designs on Embedded ARM Processors

Designs of encryption algorithm on resource constrained 8-bit/16-bit IoT (Internet of
Things)-embedded processors have been actively studied [3–7] . Recently, many works
devoted to upgrade the execution timing of encryption operation on 32-bit ARM em-
bedded processors. Since the word size is 32-bit wise, 32-bit operations are efficiently
performed. Since the LEA algorithm relies on 32-bit wise computations, the performance of
the algorithm outperforms the AES implementation on 32-bit ARM microcontrollers [8,9]
In [10], the HIGHT block cipher, implementation is performed on embedded processors
(i.e., Cortex-M3 microcontroller). Since the microcontroller does not support the SIMD
instruction, they utilized the pseudo-SIMD approach to execute two encryption operations
at once. In [11], the optimal register allocation is applied to the HIGHT implementation on
the Cortex-M3 microcontroller. There are many public key cryptography implementations
on Cortex-M4 microcontrollers [12–15].

The optimized design of the HIGHT algorithm on ARM-embedded processors by
using the four-way SIMD instruction sets is given in this paper. With this instruction,
four-way parallelism is easily achieved. Afterward, the fault attack safe implementation is
introduced through the intra-instruction redundant features. Lastly, the counter mode of
operation is highly optimized. This skips many steps of HIGHT block cipher through the
pre-computation.

2.3. 32-Bit ARM Embedded Processors

Thirty-two-bit ARM embedded processors provide the energy-efficient architecture
together with high-performance. In particular, 32-bit ARM Cortex-M4 processors support
both Thumb and Thumb-2 instruction sets. Basic operations take one clock cycle while
memory-related operations take at least two clock cycles. The processor supports SIMD
instructions, such as UADD8 and USUB8 instructions. These instructions perform byte-wise
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operations in a parallel way. For the evaluation, we utilized the MK20DX256VLH7@72 MHz
development board.

3. Proposed Methods

In this section, we present novel HIGHT algorithm implementations on 32-bit embed-
ded processors (i.e., Cortex-M4 microcontroller). For the high security with reasonably
fast computations, we present the fault attack resistance design by using parallel computa-
tions. Furthermore, the counter mode of operation is optimized with efficient packing and
unpacking techniques for the parallel computation.

Largely, the parallel acceleration can be achieved through two ways, such as task and
data-parallel ways. The data-parallel implementation is performing the single instruc-
tion on multiple data sets, which ensures high speed and high throughput. On the other
hand, the task of parallel implementation executes multiple instructions with multiple
information sets. This ensures low latency for specific algorithms. The optimized parallel
implementations of the HIGHT algorithm on Cortex-M4 embedded processors are pro-
posed in this paper. By using parallel features, the secure implementation is also efficiently
achieved.

3.1. Key Scheduling

The key scheduling of HIGHT algorithm requires addition and rotation operations in
a byte-wise fashion. Byte-wise rotation operations are not supported in the 32-bit ARM
architecture. Only word-wise rotation operations are supported on the target processor.
For this reason, the byte-wise rotation operation can be performed with the word-wise
rotation and the masking/padding approach. This firstly performs the rotation operation.
Afterwards, the correction with the masking/padding operation is performed. For the case
of addition or subtraction operation in the byte-wise manner, the four-way SIMD instruc-
tion (UADD8 or USUB8) can be utilized and this does not incur overflow or underflow for
byte-wise addition or subtraction operation, respectively. The embedded ARM processor
provides fourteen registers for general purposes. For the key scheduling procedure, almost
all registers (13 general purpose registers) are utilized to cache the intermediate result.
Firstly, the master key pointer is assigned to the R0 register. Afterwards, the delta pointer
is assigned to the R0 register. The R1 register keeps the round key pointer. Registers from
R2 to R5 maintain delta variables. The R6 register keeps the loop counter. Registers from
R7 to R8 are used for temporal variables. Registers from R9 to R12 are used for round keys.
The register R14 is not utilized.

The detailed register allocation is given in Table 1. For the encryption in the task
parallel way, two bytes of each round key is set in the word. This representation has two
padding slots and two round keys in each word. For the encryption in the data and task
parallel way, empty slots are used for the copy of the round key. For this reason, each word
contains two bytes of round keys and two copied bytes. In other words, the word is
fully utilized.

Table 1. Register assignment for key scheduling of HIGHT block cipher on the Cortex-M4
microcontroller.

Register Assignment

R0 secret–key pointer→ constant pointer
R1 session–key pointer

R2∼R5 constant variables
R6 routine counter

R7∼R8 extra registers
R9∼R12 session–key
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3.2. Parallel Implementations

Three implementation approaches, including task parallel, task and data parallel,
and data parallel are presented in this paper. Implementations with the task parallelism
executes the single encryption by dividing the task into multiple sub tasks and executing
them in parallel. The parallel implementation with task and data executes two blocks in
a parallel way. The implementation in a data parallel executes four blocks in a parallel
way. In Table 2, detailed assignments of general purpose registers are given. Since the
decryption part of the HIGHT algorithm is similar to the encryption part, we only describe
the implementation of the encryption part in detail.

Table 2. Register details of parallel and fault-safe implementations on target processors.

Register Task-Parallel Task/Data-Parallel Data-Parallel Fault Resistance (2-Way) Fault Resistance (4-Way, CTR)

R0
plaintext
pointer plaintext pointer text pointer→

temporal#1 text pointer→ random text pointer→
temporal#1

R1
round key

pointer
round key

pointer
temporal

variable#2 round key pointer temporal variable#2

R2 plaintext#1 plaintext#1 temporal
variable#3 plaintext#1 temporal variable#3

R3 plaintext#2 plaintext#2 temporal
variable#4 plaintext#2 temporal variable#4

R4 plaintext#3 plaintext#3 plaintext#1 plaintext#3 plaintext#1
R5 plaintext#4 plaintext#4 plaintext#2 plaintext#4 plaintext#2
R6 mask mask plaintext#3 mask plaintext#3

R7 loop counter temporal
variable#1 plaintext#4 temporal variable plaintext#4

R8 round key#1 round key#1 plaintext#5 round key#1 plaintext#5
R9 round key#2 round key#2 plaintext#6 round key#2 plaintext#6

R10
temporal

variable#1
temporal

variable#2 plaintext#7 temporal variable plaintext#7

R11
temporal

variable#2
temporal

variable#3 plaintext#8 temporal variable plaintext#8

R12
temporal

variable#3
temporal

variable#4
round key

pointer temporal variable round key pointer

R14 – loop counter loop counter loop counter loop counter and
random number

3.2.1. Task Parallelism

For the task parallel implementation of the HIGHT block cipher, two bytes are paired
to perform the single encryption in parallel way. In [10], F1 and F0 functions are executed
with the rotation and masking/padding approach. For two combinations (exclusive-or
operation after addition operation, and addition operation after exclusive-or operation), the
special SIMD instruction (UADD8) is utilized. For the exclusive-or operation, the ordinary
XOR operation is performed. The comparison between with and without SIMD instruction
sets is given in Table 4 of [1].

3.2.2. Data Parallelism

In this paper, we investigated the two-way or four-way data-parallel implementation
of the HIGHT algorithm. For the two-way data-parallel implementation, we combined the
data-parallel and task parallel approaches. In the 32-bit word of ARM, 16 bits is allocated
for data-parallel features and the remaining 16 bits is allocated for task parallel features.
The order of data format is as follows: {Xi[4], X′i [4], Xi[0], X′i [0]}, {Xi[5], X′i [5], Xi[1], X′i [1]},
{Xi[6], X′i [6], Xi[2], X′i [2]}, and {Xi[7], X′i [7], Xi[3], X′i [3]}, where X represents the plaintext.

Both F1 and F0 functions need to perform rotation operations. However, the task and
data-parallel implementation fully uses the 32-bit word and this does not allow padding
or margin to prevent the overflow or underflow error. For this reason, additional steps
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to avoid the overflow or underflow error are added. This is namely the correction parts
in the implementation. Detailed procedures are described in Algorithm 1 of [1]. Firstly,
the 16-bit data are extracted from the 32-bit data. Afterwards, the F0 function is performed
with the 16-bit data, which has a 16-bit padding or margin to avoid overflow or underflow
error. The F0 function on the remaining 16-bit data is executed similar way. This step also
ensures the overflow-free condition through zero padding. Finally, both 16-bit results are
masked to remove the overflow and added together to construct the 32-bit result.

Similarly, we investigated the 4-way data-parallel implementation. The register uti-
lization of the 4-way data-parallel implementation is given in Table 2. This approach
utilized 8 registers (R4∼R11) for plaintext. Four registers are used for temporal registers.
Two registers maintain a round key pointer and loop counter. The computation is identical
to the task and data-parallel-based implementation.

3.2.3. Fault Attack Resistance

The optimized implementation ensures high-speed and high-throughput. However,
this is not enough when it comes to certain active attacks (e.g., fault attack). To prevent
the fault attack, the cryptography implementation should equip fault-safe features in
nature. In the previous section, we introduced the high-speed HIGHT implementation,
which focused on the performance. In this section, we added security features to make
the implementation more robust and secure against the active attack. The fault attack
model can manipulate the instruction opcodes or data stream and change the program
flow (e.g., nop instruction). These attacks can be generalized in instruction skip, chosen bit
pair, random bit, random byte, and random word models [16,17].

In order to prevent these fault attack models, we introduced the intra-redundant-
instruction-based fault attack detection mechanisms for the HIGHT algorithm on embed-
ded processors. We first duplicated message packets. Afterwards, packets are randomly
shuffled to make find attack points hard throughout executions. For the proper alignment
of the round key and message, the shuffling process was also performed on the round key
with the random seed. Detailed procedures are given as follows:

Data Loading→ Data Copy→
Data / Round Key Mixing #1→ Round #1→
· · ·
Data / Round Key Mixing #32→ Round #32→
Last Data Mixing→ Last Round Function→
Fault Attack Detection→ Result Storing

The duplication of the message was performed with the feature of barrel-shifter in-
struction. Thanks to the barrel-shifter instruction, many rotation operations are performed
without additional costs. When registers (R5, R4, R3, R2) are paired in two bytes (i.e., {–,
Xi[4], –, Xi[0]}, {–, Xi[5], –, Xi[1]}, {–, Xi[6], –, Xi[2]}, and {–, Xi[7], –, Xi[3]}), the copied of
message is executed with the logical-or and barrel-shifter operations:

ORR R5, R5, R5, LSL#8→ ORR R4, R4, R4, LSL#8→
ORR R3, R3, R3, LSL#8→ ORR R2, R2, R2, LSL#8→

The random shuffling is performed with the swap operation. The instruction swaps
the inner word whenever the target random value indicates the one. The number of rounds
for the HIGHT block cipher is 32. If we perform the random shuffling in every round,
the random seed should be 32 bits. Fortunately, 32-bit ARM Cortex-M4 microcontrollers
support a 32-bit word and we only need to keep one random word in the register for
efficient implementation. The message is shuffled in every round. However, the round
key does not shuffle in every round since each round requires a different round key in
the ordinary order. In order to properly update the shuffling order of the round key, we
accumulated the shuffling order in the register and the shuffling for the round key is
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performed at once in the last. This allows the synchronization of the order of the message
and round key, which ensures the correct location of both values.

Firstly, the bit is selected from the random word. If the bit indicates 16, the shift-offset
becomes 16. If not, the shift-offset becomes 0. Then, the input data are randomly mixed
by referring to the shift-offset. Afterwards, the updated random offset is extracted from
the memory. The random bit in the register is updated to the random offset. The updated
result is stored again in the memory. Finally, the updated offset value is utilized for the
mixing of the round key.

Before finishing the operation, the procedure of fault attack detection is performed
by checking the output. The pair of 4 bytes is grouped into two groups. Two results are
exclusive-ored to compare the result. Then, the distinguished bits are accumulated. Lastly,
the fault attack detection word (R0) is returned with the result.

Similarly, we also investigated the 4-way fault resistance implementation by using the
4-way data-parallel encryption model. Unlike the 2-way fault resistance implementation,
this implementation is secure against the instruction set skip model by constructing the
32-bit packet with 28-bit known answer, one plaintext, and one copied plaintext. For the
four-way computation, the message should be packed in 4-way before the encryption
and unpacked after the encryption to be compatible with other systems. During the
computation, the message and round key shuffling is executed and detailed procedures
are described in Algorithm 1.

Algorithm 1 Message and Round Key Shuffling for 4-Way Fault Resistance Implementation

Input: message variables (R4∼R11), round
key variable (R3), round key pointer
(R12), temporal variable (R14), random
number (R0).

Output: randomly mixed data variables
(R4∼R11), randomly mixed round key
variable (R3).

1: POP {R0}

2: AND R2, R0, #16

3: ROR R0, R0, #1

4: ROR R4, R4, R2

5: ROR R5, R5, R2

6: ROR R6, R6, R2

7: ROR R7, R7, R2

8: ROR R8, R8, R2

9: ROR R9, R9, R2

10: ROR R10, R10, R2

11: ROR R11, R11, R2

12: EOR R14, R14, R2

13: PUSH {R0}

14: LDM R12!, {R3}

15: ROR R3, R3, R14

3.2.4. Optimized Implementation of CTR

The CTR (counter mode) for the block cipher is actively utilized in TLS (transport
layer security)/SSL (secure sockets layer) and SSH (secure shell) protocols. In the view
of the implementation, the input of encryption consists of counter and nonce parts. The
nonce part consists of a constant value. For this reason, this part can be pre-computed
and the result is determined by the counter value [18–21]. By using this feature, many
computations of the HIGHT algorithm, including 5 XOR, 5 addition, 3 F0, 3 F1, and 4
memory accesses, can be replaced in 6 memory accesses [22]. Detailed procedures are
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drawn in Figure 2. Left figure shows the original structure of HIGHT block cipher. Lower
parts of data (X[0], X[1], X[2], X[3]) painted in red color is the nonce part. Remaining
parts (X[4], X[5], X[6], X[7]) painted in black color are the counter part. Before the
computation with the counter value, the nonce part can be pre-computed since the nonce
part is always the constant value. The pre-computation can be available until Round 4. In
the right figure, the optimized implementation of HIGHT-CTR is given. Only memory
accesses are required in Rounds 2, 3, 4, and 5.

By using the counter mode of operation, we further improved the fault resistance im-
plementation. Firstly, we optimized half of the packing procedure by the pre-computation
of packing for the nonce part, since every encryption has the same packed nonce parts.
Secondly, the fault attack detection part is also simplified. The fault of the known answer
part is directly detected in the packed format before the unpacking process. In Algorithm 2,
detailed descriptions of fault attack detection are given. In Step 1∼7, all outputs (R4, R5,
R6, R7, R8, R9, R10, R11) are exclusive-ored and this process generates the eight-bit
accumulated result (R0). In Step 8, the result of known answer (R1) is loaded from the
memory pointer (R14). In Step 9, the known answer part is checked. This step only verifies
the half of word (i.e., known answer part). In Step 10, the duplicated part is checked by
8-bit shifting operations.

X0[7] X0[6] X0[5] X0[4] X0[3] X0[2] X0[1] X0[0]

F0

SK3

F0

SK1

F1 F1

SK2 SK0

X1[7] X1[6] X1[5] X1[4] X1[3] X1[2] X1[1] X1[0]

F0

SK7

F0

SK5

F1 F1

SK6 SK4

X2[7] X2[6] X2[5] X2[4] X2[3] X2[2] X2[1] X2[0]

F0

SK11

F0

SK9

F1 F1

SK10 SK8

X3[7] X3[6] X3[5] X3[4] X3[3] X3[2] X3[1] X3[0]

F0

SK15

F0

SK13

F1 F1

SK14 SK12

X0[7] X0[6] X0[5] X0[4] X0[3] X0[2] X0[1] X0[0]

F0

SK3

F1

SK2

X1[7] X1[6] X1[5] Cache X1[0]

F0

SK7

F1

SK4

X2[7] X2[6] Cache X2[2] X2[1] X2[0]

F0

SK11

F0

SK9

F1

SK8

X3[7] Cache X3[4] X3[3] X3[2] X3[1] X3[0]

F0

SK13

F1 F1

SK14 SK12

Cache

Cache

Cache

Figure 2. Counter mode of operation for HIGHT, (left) red colored routes represent the constant
nonce part, (right) blue colored routes represent the optimized part.
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Algorithm 2 Simplified Fault Attack Detection for Counter Mode of Operation for HIGHT

Input: message variables (R4∼R11), tem-
poral variable (R0), random number
pointer (R14).

Output: fault attack detection variable (R0).

1: EOR R0, R4, R5

2: EOR R0, R0, R6

3: EOR R0, R0, R7

4: EOR R0, R0, R8

5: EOR R0, R0, R9

6: EOR R0, R0, R10

7: EOR R0, R0, R11

8: LDM R14!, {R1}

9: EOR R0, R0, R1

10: EOR R0, R0, R0, LSR #8

4. Evaluation

We evaluated the proposed implementation of the HIGHT block cipher on embedded
processors in terms of speed (clock cycles) and memory (RAM and ROM). The performance
evaluation is given in Table 3. Since previously no HIGHT implementation on target
processors was explored, our base comparison was done with the HIGHT implementation
on Cortex-M3 microcontrollers. Compared with HIGHT implementation on Cortex-M3
microcontrollers, the Cortex-M4 provides high performance improvements. These improve-
ments come from the optimized utilization of SIMD instruction and efficient Cortex-M4
architecture (e.g., pipelining).

Firstly, the execution timing of the task and data-parallel implementation shows better
than the task parallel implementation because the task parallel only performs one encryp-
tion at once. However, the task/data-parallel implementation executes two encryption
operations in the parallel way.

On the other hand, four-way data-parallel implementation shows the low performance
than task parallel and task/data-parallel implementations. Since the parallel implemen-
tation assigned many registers for plaintext, the round key access in multiple ways is
not available in target processors with small set of registers. The four-way data-parallel
implementation is beneficial for the implementation of four-way fault resistance. In terms
of the security model, we tested different fault attack scenarios, such as random word,
random byte, random bit, and chosen bit pair, studied in previous works [16].

The two-way fault-safe implementation achieved the reasonable code size. The execu-
tion timing is longer than other plain implementations. The secure implementation executes
a single HIGHT algorithm to detect fault attacks. Furthermore, it requires additional steps,
such as message random shuffling. Compared with the task parallel implementation,
the two-way fault-safe implementation consumes twice as large clock cycles.

The four-way fault resistance version requires more execution timing since it requires
a greater number of shuffling, packing, unpacking, and memory accesses than that of the
two-way version. The counter variant of four-way fault resistance implementation shows
better performance than the original four-way fault resistance implementation, because
it skips certain rounds of HIGHT algorithm and packing/unpacking routines. For the
purpose of pre-computation, the RAM consumption of the counter version is larger than
Electronic Code Book (ECB) version.

In terms of fault attack models, we considered random word, random byte, random
bit, chosen bit pair, and instruction skip models described in [16].

Detailed fault-safe features are described in Table 4. The plain HIGHT implementation
is vulnerable to all fault attack models since there is no fault detection mechanism. Previ-
ously, a bitslicing-based approach and an SIMD-based approach were investigated [16,17].
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Table 3. Performance evaluation of HIGHT algorithm on ARM Cortex-M series in terms of RAM (bytes), execution time
(clock cycles), and code size (bytes). EKS, ENC, DEC, and SUM represent encryption key scheduling, encryption, decryption,
and summation, respectively.

Implementation
Code Size RAM Execution Time

(Bytes) (Bytes) (Cycles per Byte)

EKS ENC DEC SUM EKS ENC DEC EKS ENC DEC

32-bit ARM Cortex-M3

w/LUT (2-way) [10] 316 860 896 1560 324 704 704 34 269 298
w/o LUT (2-way) [10] 316 344 384 1044 324 180 180 37 258 287

32-bit ARM Cortex-M4 (all implementations without LUT)

Task parallel (1-way) 116 348 332 796 316 180 180 18 76 71
Task/data parallel (2-way) 160 592 544 1296 316 188 188 49 56 55
Data parallel (4-way) 196 596 548 1340 860 620 620 142 145 145
Fault resistance (2-way) 160 536 520 1216 316 188 188 98 143 143
Fault resistance (4-way) 196 780 784 1760 860 612 612 142 688 688
Fault resistance (4-way, CTR) 196 1864 2060 860 656 656 142 660 660

However, the HIGHT algorithm is an ARX-structured block cipher. For this reason, the bit-
slicing is not an efficient approach. Furthermore, target embedded processors do not
support 128-bit wise SIMD instructions. By considering the low-end microcontroller envi-
ronments, we utilized the two-way or four-way data-parallel implementation to achieve
the intra-redundancy. Both implementations utilized the random shuffling to make the
fault attack complicated. The two-way implementation duplicates the plaintext and this
allows to detect many fault injections including random byte, random bit, chosen bit pair,
and instruction skip. For the random word attack, it is hard to prevent since the duplicated
data can be altered together with the original data. This is protected in the four-way
implementation since it contains the known answer part.

For the case of instruction skip attack, the known answer data can detect faults. This is
available in the four-way parallel implementation. As we explored in Table 3, performance
and security features have the trade-off relation. For this reason, the strength of fault
resistance should be considered depending on the service or application.

Table 4. Comparison of fault detection capability depending on the implementation of HIGHT algorithm on target
embedded processors. Red color and green color represent disadvantage and advantage of approaches, respectively.

Approach Architecture Shuffle Random Word Random Byte Random Bit Chosen Bit Pair Instruction Skip
[10] ARM – – – – – –
This work (2-way) SIMD –

√ √ √ √
–

This work (4-way) SIMD
√ √ √ √ √ √

5. Conclusions

In this paper, the optimized HIGHT implementation on 32-bit embedded processors
was investigated. For the high performance, several parallel HIGHT implementations
were presented, such as task parallel, task/data parallel, and data parallel. In particular,
primitive operations were fully utilized with power features of ARM processors such as
barrel-shifter and four-way SIMD instruction. For the SIMD-like rotation, we utilized the
padding and masking approach. In order to achieve the fault-safe implementation, the intra-
instruction redundancy is utilized. The proposed implementation is secure against chosen
bit pair, random bit, random byte, random word, and instruction skip attacks through
four-way parallel encryption approaches.
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This paper shows the new approach for fault detection on 32-bit ARM embedded
processors. For this reason, we can exploit this approach for other block cipher imple-
mentations on embedded processors. Another research direction is that of optimized fault
detection for high-end processors. They provide new instructions and features. These can
be beneficial for securely computing on these platforms.
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