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Abstract: In this paper, spaces of sequences in fuzzy normed spaces are considered. These spaces are
a new concept in fuzzy normed spaces. We develop fuzzy norms for spaces of sequences in fuzzy
normed spaces. Especially, we study the representation of the dual of a space of sequences in a fuzzy
normed space. The approximation property in our context is investigated.
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1. Introduction

Since Katsaras first introduced the notion of fuzzy norm on a vector space [1], a
study for fuzzy normed spaces has actively progressed. In 1992, Felbin introduced a new
definition of a fuzzy norm (namely, Felbin-fuzzy norm, in this paper, fuzzy norm) related
to a specific fuzzy metric [2,3]. Because of his pioneering researches, topological properties
have been studied according to Felbin type’s fuzzy norms [4,5]. Especially, the authors
recently introduced the approximation properties in fuzzy normed spaces [6,7].

A study of spaces of sequences in vector spaces is a very important concept to research
functional analysis, because these spaces have been investigated for Shauder basis and op-
erator theory [8]. In 1989, Nanda introduced sequences of fuzzy numbers [9]. In 2000, Savaş
introduced summable sequences of fuzzy numbers [10–12]. Felbin investigated sequences
and their limits in the sense of fuzzy normed spaces [2]. In Felbin’s sense, Sencimen and
Pehlivan [13] introduced the notions of a statistically convergent sequence and statistically
Cauchy sequence in a fuzzy normed linear space. Hazarika [14,15] provided the concepts
of I -convergence, I -convergence, and I -Cauchy sequence in a fuzzy normed linear space
in terms of general framework. For more researches of sequences in fuzzy normed spaces,
we refer to [16–18].

In previous studies, many researchers concentrated on investigating the convergency
of sequences in fuzzy normed spaces and their topological properties. However, until now,
no research for spaces of sequences in fuzzy normed spaces itself has been done, because it
is difficult to define fuzzy norm for spaces of sequences in fuzzy normed space. Because
the space of sequences in fuzzy normed spaces itself is very important in fuzzy functional
analysis, we need to investigate that space in terms of fuzzy norms.

In this paper, we study spaces of sequences in fuzzy normed spaces. We establish a
well-defined fuzzy norm for spaces of sequences in fuzzy normed spaces and its complete-
ness. This is an important contribution of our paper. Moreover, we investigate the fuzzy
dual of spaces of sequences in fuzzy normed spaces. We characterize the approximation
property for spaces of sequences in fuzzy normed spaces. The contribution of our paper is
to make tools for fuzzy analysis, because we characterize the duality and approximation
property in the sense of sequences in fuzzy normed spaces.

Our paper is organized, as follows. Section 2 gives some preliminary results. In
Section 3, we define fuzzy norms for spaces of sequences in fuzzy normed spaces. Fur-
thermore, we provide their completeness and several examples. In Section 4, we give the
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representation of the dual space of the space of sequences in a fuzzy normed space. In
Section 5, we provide the results of the approximation property for spaces of sequences in
fuzzy normed spaces (for reference, see [19]).

2. Preliminaries

Definition 1 (See [2]). A mapping η : R→ [0, 1] is called a fuzzy real number with α-level set
[η]α = {t : η(t) > α}, if it satisfies the following conditions:

(i) there exists a t0 ∈ R such that η(t0) = 1
(ii) for each α ∈ (0, 1], there exist real numbers η−α 6 η+

α , such that the α-level set [η]α is equal
to the closed interval [η−α , η+

α ]

The set of all fuzzy real numbers is denoted by F(R). If η ∈ F(R) and η(t) = 0
whenever t < 0, then η is called a non-negative fuzzy real number and F∗(R) denotes
the set of all non-negative fuzzy real numbers. We note that the real number η−α > 0 for
all η ∈ F∗(R) and all α ∈ (0, 1]. Because each r ∈ R can be considered as the fuzzy real
number r̃ ∈ F(R) denoted by

r̃(t) =
{

1, t = r
0, t 6= r,

hence, it follows that R can be embedded in F(R).

Lemma 1 (See [20]). Let η, γ ∈ F(R) and [η]α = [η−α , η+
α ], [γα] = [γ−α , γ+

α ]. Then for all
α ∈ (0, 1],

[η ⊕ γ]α = [η−α + γ−α , η+
α + γ+

α ],

[η 	 γ]α = [η−α − γ+
α , η+

α − γ−α ],

[η ⊗ γ]α = [η−α γ−α , η+
α γ+

α ], ∀η, γ ∈ F+(R),

[1̃/η]α = [
1

η+
α

,
1

η−α
], ∀η−α > 0,

[|η|]α = [max(0, η−α ,−η+
α ), max(|η−α |, |η+

α |)].

Definition 2 (See [20]). Let η, γ ∈ F(R) and [η]α = [η−α , η+
α ], [γα] = [γ−α , γ+

α ], for all α ∈
(0, 1]. Define a partial ordering by η � γ in F(R) if and only if η−α 6 γ−α , η+

α 6 γ+
α , for all

α ∈ (0, 1]. The strict inequality in F(R) is defined by η ≺ γ if and only if η−α < γ−α , η+
α < γ+

α ,
for all α ∈ (0, 1].

Definition 3 (See [21]). Let X be a vector space over R. Assume that the mappings L, R :
[0, 1]× [0, 1]→ [0, 1] are symmetric and non-decreasing in both arguments, and that L(0, 0) = 0
and R(1, 1) = 1. Let ‖ · ‖ : X → F∗(R). The quadruple (X, ‖ · ‖, L, R) is called a fuzzy normed
space with the fuzzy norm ‖ · ‖, if the following conditions are satisfied:

(F1) if x 6= 0, then inf0<α61 ‖x‖−α > 0,
(F2) ‖x‖ = 0̃ if and only if x = 0,
(F3) ‖rx‖ = |r̃|‖x‖ for x ∈ X and r ∈ R,
(F4) for all x, y ∈ X,
(F4L) ‖x+ y‖(s+ t) > L(‖x‖(s), ‖y‖(t))whenever s 6 ‖x‖−1 , t 6 ‖y‖− and s+ t 6 ‖x+ y‖−1 ,
(F4R)‖x+ y‖(s+ t) 6 R(‖x‖(s), ‖y‖(t)) whenever s > ‖x‖−1 , t > ‖y‖− and s+ t > ‖x+ y‖−1 .

Remark 1 (See [2]). If L(s, t) = min(s, t) and R(s, t) = max(s, t) for all s, t ∈ [0, 1], then the
triangle inequality (F4) shown in Definition 4 is equivalent to

‖x + y‖ � ‖x‖ ⊕ ‖y‖.
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In this paper, we fix L(s, t) = min(s, t) and R(s, t) = max(s, t) for all s, t ∈ [0, 1]
because of the triangle inequality, and we write (X, ‖ · ‖).

Definition 4 (See [2]). Let (X, ‖ · ‖) be a fuzzy normed space. A sequence {xn} of X is said to
converge to x ∈ X (limn→∞ xn = x) if

lim
n→∞

‖xn − x‖+α = 0

for all α ∈ (0, 1]. A subset A of X is called compact in (X, ‖ · ‖) if each sequence of elements of A
has a convergent subsequence in (X, ‖ · ‖).

Remark 2. Let (X, ‖ · ‖) be a fuzzy normed space. Subsequently, for all α ∈ (0, 1], (X, ‖ · ‖−α )
and (X, ‖ · ‖+α ) are normed spaces.

Definition 5 (See [21]). Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be fuzzy normed spaces. The linear operator
T : X → Y is said to be a strongly fuzzy bounded if there is a real number M > 0, such that
‖Tx‖∼ � M̃⊗ ‖x‖ for all x ∈ X. We will denote the set of all strongly fuzzy bounded operators
from (X, ‖ · ‖) to (Y, ‖ · ‖∼) by F(X, Y). Afterwards, F(X, Y) is a vector space. For all M > 0,
we denote F(X, Y, M) by

{T ∈ F(X, Y) : ‖Tx‖∼ � M̃⊗ ‖x‖, ∀x ∈ X},

where M is a positive real number.

A is called a bounded in F(X, Y) if A = F(X, Y, M) for some M > 0. Moreover,
we denote the set of all finite rank strongly fuzzy bounded operators from (X, ‖ · ‖) to
(Y, ‖ · ‖∼) by F (X, Y). Subsequenty, F (X, Y) is a subspace of F(X, Y). Similarly, we define
F (X, Y, M) for some M > 0.

3. Spaces of Bounded Sequences and Null Sequences in Fuzzy Normed Spaces

In this section, we provide definitions of fuzzy norms for spaces of bounded sequences
and null sequences in fuzzy normed spaces. Recall that a sequence {xn} of a fuzzy normed
space X is said to be bounded if there exists a fuzzy real number η, such that

‖xn‖ � η, ∀n ∈ N.

([9]).

Definition 6. Let (X, ‖ · ‖) be a fuzzy normed space. We denote, by `∞(X, ‖ · ‖), the set of
all bounded sequences in (X, ‖ · ‖). A set `∞(X, ‖ · ‖) is clearly vector space with respect to
componentwise summation and componentwise multiplication by a scalar. We define ‖(xn)‖`∞ by,

[‖(xn)‖`∞ ]α =

[
sup

n
‖xn‖−α , inf{η+

α : ‖xn‖ � η, ∀n}
]

.

We shall write ‖(xn)‖−`∞α = supn ‖xn‖−α and ‖(xn)‖+`∞α = inf{η+
α : ‖xn‖ � η, ∀n}.

Lemma 2 (See [3]). Let [aα, bα], 0 < α 6 1 be a given family of non-empty intervals. Assume

(a) [aα1 , bα1 ] ⊇ [aα2 , bα2 ] for all 0 < α1 6 α2.
(b)

[
limk→∞ aαk , limk→∞ bαk

]
= [aα, bα] whenever {ak} is an increasing sequence in (0, 1]

converging to α.

Subsequently, the family [aα, bα] represents the α-level sets of a fuzzy number. Conversely, if
[aα, bα], 0 < α 6 1, are the α-level sets of a fuzzy number the conditions (a) and (b) are satisfied.
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Theorem 1. Let (X, ‖ · ‖) be a fuzzy normed space and (xn) a bounded sequence in (X, ‖ · ‖).
Afterwards, ‖(xn)‖`∞ is a fuzzy real number.

Proof. Let α ∈ (0, 1] be given. There exists a fuzzy real number η such that ‖xn‖ � η, ∀n.
Subsequently, we have

sup
n
‖xn‖−α 6 η−α 6 η+

α ,

thus we obtain
sup

n
‖xn‖−α 6 inf{η+

α : ‖xn‖ 6 η, ∀n}.

Hence, [‖(xn)‖`∞ ]α =
[
‖(xn)‖−`∞α, ‖(xn)‖+`∞α

]
is a nonempty interval for all α ∈ (0, 1].

We show that the interval [‖(xn)‖`∞ ]α satisfies conditions (a) and (b) in Lemma 2.

(a) Let 0 < α1 6 α2. Afterwards,

sup
n
‖xn‖−α1

6 sup
n
‖xn‖−α2

.

Because η+
α2

6 η+
α1

, we have

inf{η+
α2

: ‖xn‖ � η, ∀n} 6 inf{η+
α1

: ‖xn‖ � η, ∀n},

hence [‖(xn)‖`∞ ]α2
⊆ [‖(xn)‖`∞ ]α1

.
(b) Let (αk) be a increasing sequence in (0,1] converging to α. Subsequently, αk 6 αk+1 6 α

and, thus,
sup

k
sup

n
‖xn‖−αk

6 sup
n
‖xn‖−α .

Let ε > 0. Afterwards, there exists n0 ∈ N such that ‖xn0‖−α > supn ‖xn‖−α − ε. By
Lemma 2 (b), we have ‖xn0‖−α = limk ‖xn0‖−αk

. Subsequently, there exists k0, such that

‖xn0‖−αk0
+ ε > ‖xn0‖−α .

Hence, we have

sup
k

sup
n
‖xn‖−αk

+ 2ε > ‖xn0‖−αk0
+ 2ε > sup

n
‖xn‖−α .

Because ε→ 0,
sup

k
sup

n
‖xn‖−αk

> sup
n
‖xn‖−α

On the other hand, by the proof of [5] (Theorem 5.4), we can show that

lim
k

inf{η+
αk

: ‖xn‖ � η, ∀n} = inf{η+
α : ‖xn‖ � η, ∀n},

hence the interval [‖(xn)‖`∞ ]α satisfies conditions (a) and (b) in Lemma 2.

Remark 3. Let (X, ‖ · ‖) be a fuzzy normed space and (xn) in `∞(X, ‖ · ‖). Let

Aη = {η : ‖xn‖ � η, η ∈ F∗(R)}.

Afterwards, the fuzzy real number ‖(xn)‖`∞ is the element of Aη , such that ‖(xn)‖`∞ � η for
every η ∈ Aη , i.e., ‖(xn)‖`∞ is the smallest fuzzy real number of Aη . Indeed, take any η ∈ Aη and
α ∈ (0, 1]. Subsequently, we have

‖(xn)‖+`∞α = inf{η+
α : ‖xn‖ � η, ∀n} 6 η+

α ,
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‖(xn)‖−`∞α = sup
n
‖xn‖−α 6 η−α .

Additionally, since ‖xn‖+α 6 η+
α , we have

‖xn‖+α 6 inf{η+
α : ‖xn‖ � η, ∀n},

‖xn‖−α 6 sup
n
‖xn‖−α ,

hence it follows that ‖(xn)‖`∞ ∈ Aη and ‖(xn)‖`∞ � η.

Theorem 2. The vector space `∞(X, ‖ · ‖) that is equipped with the norm defined in Definition 9
is a fuzzy normed space.

Proof. We shall show that ‖ · ‖`∞ satisfies the conditions (F1)–(F4) of Definition 4.

(F1) Let (xn) 6= 0 in `∞(X, ‖ · ‖). Afterwards, there exists n0 ∈ N such that xn0 6= 0. We
have for all α ∈ (0, 1]

0 < inf
0<β61

‖xn0‖−β 6 ‖xn0‖−α 6 sup
n
‖xn‖−α ,

so we obtain 0 < inf0<β61 ‖xn0‖−β 6 inf0<α61 supn ‖xn‖−α = inf0<α61 ‖(xn)‖−`∞α.

(F2) Let (xn) ∈ `∞(X, ‖ · ‖). It is clear that if (xn) = 0, then ‖(xn)‖`∞ = 0̃. Conversely, let
‖(xn)‖`∞ = 0̃. Subsequently, we have for all α ∈ (0, 1]

‖(xn)‖−`∞α = ‖(xn)‖+`∞α = 0,

so we obtain supn ‖xn‖−α = 0. Afterwards, it is clear that xn = 0 for all n.
(F3) Let r 6= 0 ∈ R and (xn) ∈ `∞(X, ‖ · ‖). For all α ∈ (0, 1], we have

[‖r(xn)‖`∞ ]α =

[
sup

n
‖rxn‖−α , inf{η+

α : ‖rxn‖ � η, ∀n}
]

=

[
|r| sup

n
‖xn‖−α , inf{η+

α : ‖xn‖ �
1
|r|η, ∀n}

]
=

[
|r| sup

n
‖xn‖−α , inf{|r|γ+

α : ‖xn‖ � γ, ∀n}
]

=

[
|r| sup

n
‖xn‖−α , |r| inf{γ+

α : ‖xn‖ � γ, ∀n}
]

= [|r|‖(xn)‖`∞ ]α

(1)

where γ = 1
|r|η.

(F4) Let α ∈ (0, 1] be given. It is clear that

‖(xn)+ (yn)‖−`∞α = sup
n
‖xn + yn‖−α 6 sup

n
(‖xn‖−α + ‖yn‖−α ) 6 ‖(xn)‖−`∞α + ‖(yn)‖−`∞α.

Now, let ε > 0 be given. There are fuzzy real numbers η, γ, such that

‖(xn)‖+`∞α + ε > η+
α ,

‖(yn)‖+`∞α + ε > γ+
α

where ‖xn‖ � η and ‖yn‖ � γ for all n. Subsequently, we have

‖xn + yn‖ � ‖xn‖ ⊕ ‖yn‖ � η ⊕ γ.
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Therefore,

‖(xn) + (yn)‖+`∞α 6 η+
α + γ+

α < ‖(xn)‖+`∞α + ‖(yn)‖+`∞α + 2ε.

Hence,
‖(xn) + (yn)‖+`∞α 6 ‖(xn)‖+`∞α + ‖(yn)‖+`∞α

Recall that a sequence (xn) is called Cauchy if, for a given ε > 0, there exists N ∈ N,
such that, for all m, n > N

lim
n,m→∞

‖xm − xn‖ < ε.

Additionally, a fuzzy normed space (X, ‖ · ‖) is said to be complete if every Cauchy
sequence converges in (X, ‖ · ‖)[5].

Theorem 3. Let (X, ‖ · ‖) be a complete fuzzy normed space. Subsequently, `∞(X, ‖ · ‖) is a
complete fuzzy normed space.

Proof. Let Xn = (x(n)1 , x(n)2 , · · · ) be a Cauchy sequence. First, we claim that, for each j,

there exists zj ∈ X, such that x(n)j −→ zj as n→ ∞ in (X, ‖ · ‖). Indeed, take any ε > 0 and
α ∈ (0, 1]. Subsequently, there exists n0 ∈ N, such that n, ` > n0,

‖Xn − X`‖+`∞α < ε,

i.e., we have inf{η+
α : ‖x(n)j − x(`)j ‖ � η, ∀j} < ε for all n, ` > n0. Fix n, ` > n0. Afterwards,

there exists a fuzzy real number η0 such that

η+
0α < inf{η+

α : ‖x(n)j − x(`)j ‖ � η, ∀j}+ ε < 2ε,

‖x(n)j − x(`)j ‖ � η0, ∀j.

Therefore,
sup

j
‖x(n)j − x(`)j ‖

+
α < η+

0α < 2ε.

Hence,
sup

j
‖x(n)j − x(`)j ‖

+
α < 2ε, ∀n, ` > n0.

Thus, j = 1, we obtain ‖x(n)1 − x(`)1 ‖+α < 2ε, ∀n, ` > n0, so it follows that (x(n)1 ) is a
Cauchy sequence in (X, ‖ · ‖). Because (X, ‖ · ‖) is complete, there exists z1 ∈ X, such
that x(n)1 −→ z1 as n → ∞. Continuing this process, it proves our claim. Now, we put
Z = (z1, z2, · · · ).

Second, we claim that Xn
‖‖`∞−→ Z as n → ∞. Let ε > 0 and α ∈ (0, 1] be given.

By results of the first claim, if n, ` > n0, then there exists a fuzzy real number η0, such that
we have

η+
0α < 2ε,

‖x(n)j − x(`)j ‖ � η0, ∀j.

Now, we fix j ∈ N. There exists `0 ∈ N with `0 ≥ n0, such that ` ≥ `0,

‖x(`)j − zj‖+α < ε.
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Therefore, if n > n0, we have

‖x(n)j − zj‖ � ‖x
(n)
j − x(`0)

j ‖ ⊕ ‖x(`0)
j − zj‖ � η0 ⊕ ε̃.

Hence, if n > n0, we obtain for all j,

‖x(n)j − zj‖ � η0 + ε̃,

so if n > n0,

‖Xn − Z‖+`∞α = inf{η+
α : ‖x(n)j − zj‖ � η, ∀j} 6 η+

0α + ε < 3ε.

Finally, we show that Z ∈ `∞(X, ‖ · ‖). By the second claim, there exist a fuzzy real
number η0 and n0 ∈ N, such that n > n0, we obtain for all j,

‖x(n)j − zj‖ � η0 ⊕ ε̃

Now, we fix n > n0. Since Xn ∈ `∞(X, ‖ · ‖), there exists a fuzzy real number η1
such that

‖x(n)j ‖ � η1

Hence, for all j, we obtain

‖zj‖ � ‖x
(n)
j − zj‖ ⊕ ‖x

(n)
j ‖ � η0 ⊕ ε̃⊕ η1.

Definition 7. Let (X, ‖ · ‖) be a fuzzy normed space. A bounded sequence (xn) in (X, ‖ · ‖) is
null if

xn −→ 0.

We denote, by c0(X, ‖ · ‖), the set of all null sequences in (X, ‖ · ‖) with the same vector space
operations and fuzzy norm as `∞(X, ‖ · ‖), i.e.,

‖(xn)‖c0 = ‖(xn)‖`∞ , ∀(xn) ∈ c0(X, ‖ · ‖).

Corollary 1. Let (X, ‖ · ‖) be a complete fuzzy normed space. Subsequently, c0(X, ‖ · ‖) is a
complete fuzzy normed space.

Proof. We are enough to show that c0(X, ‖ · ‖) is a closed subspace of `∞(X, ‖ · ‖). Let us
take a sequence Xn ∈ c0(X, ‖ · ‖) converging to Z in `∞(X, ‖ · ‖) and α ∈ (0, 1] and ε > 0.
Put Xn = (x(n)1 , x(n)2 , · · · ) and Z = (z1, z2, · · · ). Afterwards, there exists n0 ∈ N, such that
if n > n0,

‖Xn − Z‖+`∞α = inf{η+
α : ‖x(n)j − zj‖ � η, ∀j} < ε.

We fix n > n0. Subsequently, there exists a fuzzy real number η0, such that

η+
0α < inf{η+

α : ‖x(n)j − zj‖ � η, ∀j}+ ε < 2ε,

‖x(n)j − zj‖ � η0, ∀j.

Because Xn ∈ c0(X, ‖ · ‖), there exists j0 ∈ N, such that if j > j0,

‖x(n)j ‖
+
α < ε.
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Hence, if j > j0, we obtain

‖zj‖+α < ‖x(n)j − zj‖+α + ‖x(n)j ‖
+
α < η+

0α + ε < 3ε.

Example 1. Consider the linear space R of all real numbers. Let us define

‖x‖(t) =
{

1, t = |x|
0, otherwise.

It is clear that ‖ · ‖ is a fuzzy normed space and

[‖x‖]α = [|x|, |x|]

for all α ∈ (0, 1]. Consider (1, 0, 1, 0, · · · ) ∈ `∞(R, ‖‖). Afterwards, for all α ∈ (0, 1], we have

‖(1, 0, 1, 0, · · · )‖−`∞α = sup
n,an∈{0,1}

‖an‖−α = 1

‖(1, 0, 1, 0, · · · )‖+`∞α = inf{η+
α : ‖an‖ � η, an ∈ {0, 1}, ∀n} = 1.

Hence, we have
‖(1, 0, 1, 0, · · · )‖`∞ = 1̃

Example 2. Consider the linear space R of all real numbers. Let us define

‖x‖(t) =
{

1, t = |x|
0, otherwise.

It is clear that ‖ · ‖ is a fuzzy normed space and

[‖x‖]α = [|x|, |x|]

for all α ∈ (0, 1]. Consider { 1
n : n ∈ N} ∈ c0(R, ‖‖). Subsequently, for all α ∈ (0, 1], we have

‖( 1
n
)‖−c0α = sup

n
‖ 1

n
‖−α = 1

‖( 1
n
)‖+c0α = inf{η+

α : ‖ 1
n
‖ � η, ∀n} = 1.

Hence, we have

‖( 1
n
)‖c0 = 1̃

4. The Dual Space of c0((X,‖ · ‖))
We note that, if Y = R, we define a function ‖r‖∼ : R→ [0, 1] by

‖r‖∼ =

{
1, t = |r|
0, t 6= |r|

Afterwards, ‖ · ‖∼ is a fuzzy norm on R and α-level sets of ‖r‖∼ are given by

[‖r‖∼]α = [|r|, |r|], 0 < α 6 1.

Definition 8 (See [4]). Let (X, ‖ · ‖) be a fuzzy normed space. A strongly fuzzy bounded operator
from (X, ‖ · ‖) to (R, ‖ · ‖∼) is called a strongly fuzzy bounded functional. Denote by (X, ‖ · ‖)∗
the set of all strongly fuzzy bounded functionals over (X, ‖ · ‖)∗. Let f ∈ (X, ‖ · ‖)∗. Subsequently,
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{[
supx 6=0

| f (x)|
‖x‖+α

, supx 6=0
| f (x)|
‖x‖−α

]
; α ∈ (0, 1]

}
is a nested bounded and closed intervals of real

numbers and, thus, it generates a fuzzy interval say ‖ f ‖∗, By [4] (Definition 6.3, ‖ · ‖∗ is a fuzzy
norm of (X, ‖ · ‖)∗. We call (X, ‖ · ‖)∗ the strong fuzzy dual space of (X, ‖ · ‖).

Remark 4. The definition of a strong fuzzy bounded operator on (X, ‖ · ‖) introduced by T. Bag
and S. K. Samanta [4] is slightly different from Definition 8. However, they have the same strong
fuzzy dual space.

Subsequently, it is natural to consider the following question.

Q. Let (X, ‖ · ‖) be a fuzzy normed space. What is the representation of f ∈ c0(X, ‖ ·
‖)∗?

The answer is positive. First, we consider the following lemma.

Lemma 3. If a`n is monotonically increasing in ` and the sequence c`n = a`n − a`−1n is monoton-
ically increasing in n, then we have

lim
`→∞

lim
n→∞

a`n = lim
n→∞

lim
`→∞

a`n

Proof. This lemma is a well-known result in real analysis. For completeness, we give a
proof. By the assumption, we obtain that each c`n > 0 and that the c`n are monotonically
increasing in n. Afterwards, by the Monotone Convergence theorem with respect to the
counting measure, we have

lim
n→∞

∫
c`n =

∫
lim

n→∞
c`n.

By the property of the counting measure, we have,

lim
n→∞

∞

∑
`=1

c`n =
∞

∑
`=1

lim
n→∞

c`n,

so we obtain

lim
n→∞

lim
L→∞

L

∑
`=1

c`n = lim
L→∞

lim
n→∞

L

∑
`=1

c`n.

Hence, we have
lim

n→∞
lim
`→∞

a`n = lim
`→∞

lim
n→∞

a`n.

Now, we provide the representation of strong fuzzy dual space of space of null
sequence in fuzzy normed spaces.

Theorem 4. Let (X, ‖ · ‖) be a fuzzy normed space. If f ∈ (c0(X, ‖ · ‖))∗, then there is only one
the sequence ( fn) in (X, ‖ · ‖)∗, such that ∑∞

n=1 ‖ fn‖∗+α = ‖ f ‖∗+α , ∑∞
n=1 ‖ fn‖∗−α = ‖ f ‖∗−α , ∀α ∈

(0, 1) and

f ((xn)) =
∞

∑
n=1

fn(xn), ∀(xn) ∈ c0(X, ‖ · ‖).

Proof. Let f be in (c0(X, ‖ · ‖))∗. Subsequently, there exists M > 0, such that

| f ((xn))| ≤ M‖(xn)‖−c0α, ∀(xn) ∈ c0(X, ‖ · ‖), α ∈ (0, 1).
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For each n ∈ N, we define

fn(x) := f ((0, · · · , 0, x, 0, · · · )),

where x is the n-th component. Clearly, fn is linear functional on (X, ‖ · ‖). Additionally,
we have fn ∈ (X, ‖ · ‖)∗ for all n ∈ N since

| fn(x)| = | f ((0, · · · , 0, x, 0, · · · ))| ≤ M‖(0, · · · , 0, x, 0, · · · )‖−c0α = M sup
n
‖x‖−α = M‖x‖−α

for all x ∈ X, α ∈ (0, 1). First, we claim that

f ((xn)) =
∞

∑
n=1

fn(xn), ∀(xn) ∈ c0((X, ‖ · ‖)).

Fix (xn) ∈ c0(X, ‖ · ‖). We can easily observe that

`

∑
n=1

fn(xn) = f ((x1, · · · , x`, 0, · · · )), ∀` ∈ N.

Additionally, we have

f ((x1, · · · , x`, 0, · · · ))→ f ((xn))

as `→ ∞, since, for each α ∈ (0, 1)

| f ((xn))− f ((x1, · · · , x`, 0, · · · ))| = | f ((0, · · · , 0, x`+1, x`+2, · · · )| 6 M sup
`<n
‖xn‖−α

and sup`<n ‖xn‖−α → 0 as `→ ∞, hence it proves the first claim.
Second, we claim that ∑∞

n=1 ‖ fn‖∗+α = ‖ f ‖∗+α , ∑∞
n=1 ‖ fn‖∗−α = ‖ f ‖∗−α , ∀α ∈ (0, 1).

Indeed, take any α ∈ (0, 1). Afterwards, we obtain that for each (xn) ∈ c0((X, ‖ · ‖)),

| f ((xn))| = |
∞

∑
n=1

fn(xn)| ≤
∞

∑
n=1
| fn(xn)|

≤
∞

∑
n=1
‖ fn‖∗+α ‖xn‖−α

≤ (
∞

∑
n=1
‖ fn‖∗+α ) sup

n
‖xn‖−α

= (
∞

∑
n=1
‖ fn‖∗+α )‖(xn)‖−c0α,

(2)

hence, we have ‖ f ‖∗+α ≤ ∑∞
n=1 ‖ fn‖∗+α . Now, let us show the converse. By definition of

‖ · ‖∗+α , for each n ∈ N, there exists a sequence (xk,α
n )∞

k=1 in B(X,‖·‖−α ), such that

lim
k→∞
| fn(xk,α

n )| = ‖ fn‖∗+α .

Because, for each n, k, there is a scalar γk,α
n , such that |γk,α

n | = 1 and fn(γ
k,α
n xk,α

n ) =

| fn(xk,α
n )|, we may assume that fn(xk,α

n ) ≥ 0 for each n, k and, so, that

lim
k→∞

fn(xk,α
n ) = ‖ fn‖∗+α
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and fn(xk,α
n ) is monotonically increasing in k. Put a`k = ∑`

n=1 fn(xk,α
n ). Because a`k is mono-

tonically increasing in ` and the sequence c`k = a`k − a`−1k is monotonically increasing in
k, by Lemma 3, we have

lim
`→∞

lim
k→∞

`

∑
n=1

fn(xk,α
n ) = lim

k→∞
lim
`→∞

`

∑
n=1

fn(xk,α
n ).

Because
f ((xk,α

1 , · · · , xk,α
` , 0, · · · )) ≤ ‖ f ‖∗+α , ∀k, ` ∈ N,

we have

∞

∑
n=1
‖ fn‖∗+α =

∞

∑
n=1

lim
k→∞

fn(xk,α
n ) = lim

`→∞
lim
k→∞

`

∑
n=1

fn(xk,α
n )

= lim
k→∞

lim
`→∞

`

∑
n=1

fn(xk,α
n )

= lim
k→∞

lim
`→∞

f ((xk,α
1 , xk,α

2 , · · · , xk,α
` , 0, · · · ))

≤ ‖ f ‖∗+α ,

(3)

it proves our claim. Additionally, we shall show that ∑∞
n=1 ‖ fn‖∗−α = ‖ f ‖∗−α , ∀α ∈ (0, 1)

Indeed, for any α ∈ (0, 1] and (xn) ∈ c0((X, ‖ · ‖)), we have

| f ((xn))| = |
∞

∑
n=1

fn(xn)| ≤
∞

∑
n=1
| fn(xn)| ≤

∞

∑
n=1
‖ fn‖∗−α ‖xn‖+α ≤ (

∞

∑
n=1
‖ fn‖∗−α ) sup

n
‖xn‖+α ,

so we have

| f ((xn))| ≤ (
∞

∑
n=1
‖ fn‖∗−α ) inf{η+

α : ‖xn‖ � η, ∀n},

so,

‖ f ‖∗−α =
| f ((xn))|
‖(xn)‖+c0,α

=
| f ((xn))|

inf{η+
α : ‖xn‖ � η, ∀n}

≤
∞

∑
n=1
‖ fn‖∗−α ,

hence, it follows ‖ f ‖∗−α ≤ ∑∞
n=1 ‖ fn‖∗−α . For the converse part, we can use the method for

showing ” ∑∞
n=1 ‖ fn‖∗+α ≤ ‖ f ‖∗+α ”. Indeed, by the definition of ‖ · ‖∗−α , for each n ∈ N,

there exists a sequence (xk,α
n )∞

k=1 in B(X,‖·‖+α ), such that

lim
k→∞
| fn(xk,α

n )| = ‖ fn‖∗−α .

Subsequently, the remain part is similar to the proof of ” ∑∞
n=1 ‖ fn‖∗+α ≤ ‖ f ‖∗+α ”.

Finally, to show the uniqueness, suppose that there exist such two ( fn) and (gn) in
(X, ‖ · ‖)∗. Because

f ((xn)) =
∞

∑
n=1

fn(xn) =
∞

∑
n=1

gn(xn), ∀(xn) ∈ c0((X, ‖ · ‖)),

we obtain that, for each n ∈ N and (0, · · · , 0, x, 0, · · · ),

fn(x) = gn(x),

hence we have ( fn) = (gn).
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5. Approximation Properties of c0((X,‖ · ‖))
In this section, we show that, given a fuzzy normed space (X, ‖ · ‖), c0((X, ‖ · ‖))

has the approximation property, even the bounded approximation property. The authors
gave the definitions of approximation properties in fuzzy normed spaces [7]. Recently, the
author also provided the definitions of approximation properties in Felbin-fuzzy normed
spaces (see [6]). The definitions are as follows.

Definition 9. A fuzzy normed space (X, ‖ · ‖) is said to have the approximation property, briefly
AP, if, for every compact set K in (X, ‖ · ‖) and for each α ∈ (0, 1] and ε > 0, there exists an
operator T ∈ F (X, X), such that

‖T(x)− x‖+α 6 ε

for every x ∈ K.

Definition 10. Let λ be a positive real number. A fuzzy normed space (X, ‖ · ‖) is said to have
the λ-approximation property, briefly λ-BAP, if for every compact set K in (X, ‖ · ‖) and for each
α ∈ (0, 1] and ε > 0, there exists an operator T ∈ F (X, X, λ), such that

‖T(x)− x‖+α 6 ε

for every x ∈ K. Additionally, we say that (X, ‖‖) has the BAP if (X, ‖‖) has the λ-BAP for some
λ > 0.

Lemma 4. Let (X, ‖ · ‖) be a complete fuzzy normed space. If a subset K in c0((X, ‖ · ‖)) is
compact, then for every α ∈ (0, 1] and ε > 0, there exists N ∈ N, such that

‖(0, 0, · · · , kN+1, kN+2, · · · )‖+c0,α
< ε

for all (kn) ∈ K.

Proof. Let α ∈ (0, 1] and ε > 0 be given. Because K is compact in c0((X, ‖ · ‖)), by [22]
(Theorem 4.2), there exists a finite subset F = {x1, x2, · · · , xr} of K such that ∀x ∈ K,

‖x− xi‖+c0,α
<

ε

4

for some xi ∈ F. Put
x1 = (k1

1, k1
2, k1

3, · · · ),

x2 = (k2
1, k2

2, k2
3 · · · ),

...

xr = (kr
1, kr

2, kr
3, · · · ),

for all ki
n ∈ X.

First, we claim that there exists N ∈ N, such that

‖(0, 0, · · · , ki
N+1, ki

N+2, · · · )‖+c0,α
<

ε

4

for all i = 1, 2, · · · , r. Consider x1. Subsequently, we can generate the following sequence
(y1

n) in c0((X, ‖ · ‖)):
y1

1 = (k1
1, k1

2, k1
3, · · · ),

y1
2 = (0, k1

2, k1
3 · · · ),

y1
3 = (0, 0, k1

3 · · · ),
...
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We shall show that (y1
n) is Cauchy sequence in c0((X, ‖ · ‖)). Indeed, let β ∈ (0, 1]

and δ > 0. Because x1 = (k1
1, k1

2, k1
3, · · · ) in c0((X, ‖ · ‖)), there exists N1 ∈ N, such that, if

n > N1, then ‖k1
n‖+β < δ. Now, take any m > n > N1. Subsequently, we have

y1
n = (0, 0, · · · , 0, k1

n, k1
n+1, · · · , k1

m−1, k1
m, · · · )

y1
m = (0, 0, · · · , 0, k1

m, k1
m+1 · · · ).

Afterwards, we have

y1
m − y1

n = (0, 0, · · · , 0, k1
n, k1

n+1, · · · , k1
m−1, 0, · · · ).

By [23] (Theorem 2), we can put

ω = max{‖k1
n‖, ‖k1

n+1‖, · · · , ‖k1
m−1‖}.

and ω is a fuzzy real number and ω+
β = max{‖k1

n‖+β , ‖k1
n+1‖

+
β , · · · , ‖k1

m−1‖
+
β }.

Subsequently, we have
‖y1

m − y1
n‖+c0,β 6 ω+

β < δ,

so it follows that (y1
n) is a Cauchy sequence in c0((X, ‖ · ‖)). Because c0((X, ‖ · ‖)) is

complete, we have
(y1

n)→ 0.

Afterwards, there exists n1 ∈ N such that if n > n1, then

‖y1
n‖+c0,α <

ε

4
,

i.e.,
‖(0, 0, , · · · , k1

n, k1
n+1, · · · )‖+c0,α <

ε

4
.

Continuing this process, for each i = 1, 2, · · · , r, there exists ni ∈ N, such that, if
n > ni, then

‖(0, 0, , · · · , ki
n, ki

n+1, · · · )‖+c0,α <
ε

4
.

Now, we put N = max{n1, n2, · · · , nr}. Afterwards, we prove our claim.
Now, we shall show our lemma. By the above claim, there exists a fuzzy real number

γ with γ+
α < ε

2 such that
‖ki

j‖ � γ

for all i = 1, 2, · · · , r and j = N + 1, N + 2, · · · . Now, take any (k j) ∈ K. Subsequently,
there exists (ki

j)
∞
j=1 ∈ F, such that

‖(k j − ki
j)j‖+c0,α <

ε

4
.

Afterwards, there exists a fuzzy real number η with η+
α < ε

2 such that

‖k j − ki
j‖ � η, ∀j.

Subsequenty, it follows that for all j > N + 1,

‖k j‖ � ‖k j − ki
j‖ ⊕ ‖ki

j‖ � η ⊕ γ,

(η + γ)+α = η+
α + γ+

α < ε.

Hence, we have
‖(0, 0, · · · , kN+1, kN+2, · · · )‖+c0,α

< ε.



Mathematics 2021, 9, 1040 14 of 16

Theorem 5. Let (X, ‖ · ‖) be a complete fuzzy normed space. If (X, ‖ · ‖) has the AP, then
c0((X, ‖ · ‖)) also has the AP.

Proof. First, we put Y = {(x1, x2, 0, · · · ) : x1, x2 ∈ X}. Afterwards, Y is a subspace of
c0((X, ‖ · ‖)). We simply denote

Y = {(x1, x2) : x1, x2 ∈ X}.

We shall show that Y has the AP. Let K ⊂ Y be compact and α ∈ (0, 1] and ε > 0. We
consider i1 (resp. i2) is the operator from (X, ‖ · ‖) into Y defined by i1(x) = (x, 0, 0, · · · )
(resp. i2(x) = (0, x, 0, · · · )). Afterwards, i1, i2 are strong fuzzy bounded operator, since, for
each α ∈ (0, 1], n = 1, 2

‖in(x)‖−c0,α = ‖x‖−α ,

‖in(x)‖+c0α = inf{η+
α : ‖x‖ 6 η} = ‖x‖+α .

Now, for each n = 1, 2, let us consider the projection Pn : Y → (X, ‖ · ‖) by

Pn((x1, x2)) = xn.

It follows that Pn is a strong fuzzy bounded operator, because, for each α ∈ (0, 1],

‖Pn((x1, x2))‖−α = ‖xn‖−α 6 sup
16k62

‖xk‖−α = ‖(x1, x2)‖−c0,α,

‖Pn((x1, x2))‖+α = ‖xn‖+α 6 inf{η+
α : ‖xk‖ 6 η, k = 1, 2} = ‖(x1, x2)‖+c0,α.

We note that Pn(K) is compact in (X, ‖ · ‖) for n = 1, 2 because Pn is strong fuzzy
bounded operator for n = 1, 2. Subsequently, n = 1, 2 there is a Tn ∈ F (X, X) such that

‖TnPn(k1, k2)− Pn(k1, k2)‖+α 6
ε

2

for every (k1, k2) ∈ K. Put T0 = i1T1P1 + i2T2P2 ∈ F (Y, Y). Afterwards, for all (k1, k2) ∈ K,
we have

‖T0(k1, k2)− (x1, x2)‖+c0 ,α = ‖i1T1P1(k1, k2) + i2T2P2(k1, k2)− i1P1(k1, k2)− i2P2(k1, k2)‖+c0 ,α

6 ‖i1T1P1(k1, k2)− i1P1(k1, k2)‖+c0 ,α + ‖i2T2P2(k1, k2)− i2P2(k1, k2)‖+c0 ,α

= ‖T1P1(k1, k2)− P1(k1, k2)‖+α + ‖T2P2(k1, k2)− P2(k1, k2)‖+α
6 ε,

(4)

hence, Y has the AP. Similarly, we can show that for all N ∈ N,

YN = {(x1, x2, · · · , xN , 0, · · · ) : xk ∈ X}

has the AP.
Finally, we shall show that c0((X, ‖ · ‖)) has the AP. Let K ⊂ c0((X, ‖ · ‖)) be compact

and α ∈ (0, 1] and ε > 0. By Lemma 5.3, there exists N ∈ N, such that

‖(0, 0, · · · , kN+1, kN+2, · · · )‖+c0,α
<

ε

2

for all (kn) ∈ K. Let PN be the projection from c0((X, ‖ · ‖)) into YN defined by PN((xn)) =
(x1, · · · , xN , 0, · · · ). Clearly, PN is a strong fuzzy bounded operator, because, for each
α ∈ (0, 1],

‖PN((xn))‖−c0,α = sup
16n6N

‖xn‖−α 6 sup
n
‖xn‖−α = ‖(xn)‖−c0,α,

‖PN((xn))‖+c0,α = inf{η+
α : ‖xn‖ 6 η, 1 6 n 6 N} 6 inf{η+

α : ‖xn‖ 6 η, ∀n} = ‖(xn)‖+c0,α.
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Since PN(K) is compact in YN and YN has the AP, there is a T0 ∈ F (YN , YN), such that

‖T0PN((kn))− PN((kn))‖+c0,α 6
ε

2

for all (kn) ∈ K. Now, T0PN ∈ F (c0((X, ‖ · ‖), c0((X, ‖ · ‖)) and for all (kn) ∈ K

‖T0PN((kn))− (kn)‖+c0,α = ‖T0PN((kn))− PN((kn))− (0, 0, · · · , kN+1, kN+2, · · · )‖+c0,α

6 ‖T0PN((kn))− PN((kn))‖+c0,α + ‖(0, 0, · · · , kN+1, kN+2, · · · )‖+c0,α

6 ε

(5)

Hence, c0((X, ‖ · ‖)) has the AP.

Corollary 2. Let (X, ‖ · ‖) be a complete fuzzy normed space. If (X, ‖ · ‖) has the BAP, then
c0((X, ‖ · ‖)) also has the BAP.

Proof. It comes from the proof of Theorem 5.

6. Conclusions and Further Works

In this paper, we have introduced spaces of sequences in fuzzy normed spaces and
investigated their several examples. We have established a well-defined fuzzy norm for
a space of sequences in fuzzy normed spaces. The completeness of the fuzzy nom in our
context has been proved. We provided the representation of of the dual of a space of
sequences in a fuzzy normed space. Moreover, the results of the approximation property
for spaces of sequences in fuzzy normed spaces are given. We hope that our approach may
provide a key role in fuzzy analysis by applying to fuzzy function spaces, for example,
spaces of fuzzy continuous functions.
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