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Abstract: In this paper, we consider a queuing inventory system with heterogeneous customers of
K types arriving according to a marked Markovian arrival process. Each class of customers differs
by nature of the service they seek and different priorities are assigned for each class resulting in
different levels of inventory admitted to exhaust for customers of each class. A single service node is
provided for each class with exponential services having class-dependent service rates. All classes of
customers are served from a single source of inventory replenished according to (s, S) policy with
exponentially distributed lead time. Stability condition and steady state probabilities are obtained by
matrix-analytic method. Some important performance measures are also derived. Inventory recycle
time was analyzed in detail. Useful cost function and numerical illustrations are also given. The
optimization problem is interesting and can be solved in similar real scenario.

Keywords: MMAP[K]; heterogeneous inventory access; multi-server system; queuing-inventory;
matrix analytic model

1. Introduction

Queuing-inventory systems are in the focus of recent research due to practical applica-
bility in many fields including social, biological and technical systems. Access to a finite
consumable and refillable resource is a natural way of modeling interaction with retail shop
customers, office visitors, hospital patients, and even packages in the telecommunication
network. In such systems, various sophisticated models arise, including the models with
random demand and/or number of customers served [1,2], random order grouping [3] or
duplicate ordering from several facilities [4]. In operations research, queuing-inventory
system is a natural way to model load leveraging techniques, such as the leaky bucket
congestion avoidance scheme used in a wide range of systems, from large scale routers [5]
to electric vehicle charging stations [6].

Queuing inventory systems with positive service time were first investigated in Refer-
ence [7], followed by the work of Reference [8], in which an optimal quantity of inventory
to be ordered to minimize the cost rate was obtained. In queuing inventory framework with
positive service time, customers’ queue is formed even when some inventory is available.
We point the reader to a detailed survey of inventory systems with positive service time
given in Reference [9], which includes classical, retrial, and production inventory.

Many retailers and banks find it helpful to partition the customers into different cate-
gories (classes) according to specific characteristics and adopt an inventory management
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policy based on this differentiation strategy. In particular, long-term customers can be
treated as high priority as compared to walk-in customers. Given a limited resource, the
low priority customers may have to wait while some amount of resource is still available,
reserved for customers with higher priority. The reservation may be made by imposing
typical inventory levels for each class of customers according to their priority level. When
the inventory comes below the level, customers from corresponding classes may have
to wait until the inventory replenishment. Such a critical level policy is introduced and
studied in Reference [10]. Different classes experience congestion with a single inventory;
thus, customer sojourn times in a system are intrinsically correlated.

In most cases priorities are accompanied with heterogeneity of customer classes,
e.g., in terms of service time distribution either in single-server [11,12] or in multi-server
case [13–15]. As such, the arrival process also becomes heterogeneous, and the promising
candidate is the so-called Marked Markovian Arrival Process (MMAP) used, e.g., in the
works [11,14,16].

MMAP[K] is a generalization of Markov arrival processes (MAP) which have been
studied and used extensively in queuing theory. MAP was introduced in Reference [17]
to model non-Markovian point processes. While MAP is a useful tool to model point pro-
cesses with one class of customers, MMAP[K] introduced by Neuts (see Reference [18]) is
useful when multiple types of customers are present, while the model remains analytically
tractable [19]. The basic characteristics of MMAP, such as peakedness of the arrival process,
the first passage time to the arrival of an item of a specific type, and the behavior of the
MMAP during that first passage, are analyzed in Reference [18].

In this paper, we analyze a multi-server queuing-inventory system with K classes of
customers served from a single inventory which is managed according to the (s, S) with a
positive lead time. Following Reference [11,14,16], we use MMAP[K] to model the arrival
process. The servers are class-dependent, each server dedicated to one specific class of
customers. Only the highest priority customers are allowed to wait in an infinite buffer.
All other class customers can wait in respective finite buffers. The service for each class
of customers is carried out with different exponential rates, and the inventory item is
consumed at the end of service. A class-specific boundary level in the inventory is defined,
causing customers of this specific class to wait for inventory replenishment when this
boundary is down crossed. To the best of our knowledge, this model is new.

The structure of the paper is as follows. In Section 2, we give a detailed description
of the model. The example of K = 2 is also given for better illustration of the model. In
Section 3, an intuitive stability criterion for the system has been derived. Section 4 analyzes
the steady state of the system and expresses a few important performance measures. In
Section 5, a detailed analysis of the inventory recycle time has been carried out. Numerical
illustrations are provided in Section 6, in which an optimization problem of practical
importance has also been stated.

2. Model Description

We consider a multi-server queuing inventory system with heterogeneous customers.
A K-server station provides service to K classes of customers. Arrivals occur according to
the Marked Markovian Arrival Process (MMAP) driven by an irreducible continuous time
Markov chain (CTMC) {Z(t)}t≥0 with finite state spaceW . Let |W| = W. The sojourn
time in each state z ∈ W is distributed exponentially with rate σz and d.f.

Fzẑ(x) = 1− e−σzx.

At sojourn time expiration epoch, with probability P(k)(z, ẑ) the process Z(t) moves
from the state z to ẑ, generating a class k customer arrival, z, ẑ ∈ W , k = 0, 1, ..., K
(conventionally, no customer arrival is generated if k = 0). Note that, for any z ∈ W ,

K

∑
k=0

∑
ẑ∈W

P(k)(z, ẑ) = 1. (1)
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Thus, the MMAP is characterized by a set of K + 1 transition rate square matrices
D0, . . . , DK of order W defined as follows:

(Dk)zẑ =

{
σzP(k)(z, ẑ), z 6= ẑ,
−σz1k=0, z = ẑ,

z, ẑ ∈ W , k = 0, 1, . . . , K, (2)

where 1k=0 is the indicator of a non-random condition k = 0. The matrices Dk constitute a
generator matrix D of the Markov process {Z(t)}t≥0 such that

D =
K

∑
k=0

Dk.

Recall that De = 0, which also follows from (1) and (2). Hereinafter, e (0, respectively)
is the vector of ones (zeroes), and, if necessary, we designate the row vector with a transpose
sign, e.g., 0′. As such, denoting by θ the stochastic invariant vector of D (i.e., θD = 0, that is,
θ is the distribution of the corresponding Markov jump process governed by D), the class k
arrival rate, λk, equals

λk = θDke.

We would like to note that the MMAP process being a versatile Markov process, is
suitable for a wide range of applications due to variety of modeling features including
correlated arrivals [20]. However, capturing sophisticated features, such as Long-Range
Dependence (slow autocorrelation decay of the process that complicates application of the
standard methods of performance estimation), may require infinite number of sources [21].
As such, it is necessary to balance the size W of the MMAP state space with practical
capabilities of the model, including computational/storage capacity. Useful examples of
MMAP processes may be found in Reference [19].

If the server k is busy, then the arriving class k customer can wait in a buffer space
of capacity lk, where l1 = ∞ and lk < ∞, k = 2, . . . , K. The class k customer, finding the
respective buffer completely filled on arrival, leaves the system forever.

The inventory is divided into K segments,

s0 = 0 < s = s1 < s2 < · · · < sK = S.

Class k customer spends an exponentially distributed, with rate µk, time at the (class-
specific) server k = 1, . . . , K. At service completion epoch, one item from a single common
inventory is consumed by the customer. However, class k customers are served only if the
inventory level exceeds sk−1, k = 1, . . . , K. Thus, s is not only inventory replenishment
boundary, but also the critical level, at or below which only the class 1 customers ( highest
priority) are served. If the inventory level at service completion epoch is insufficient, the
corresponding customer of class k repeats an independent service time with the same rate,
µk, until a service completion coincides with a sufficient inventory level.

The inventory is replenished under (s, S) policy in an exponentially distributed lead
time with rate γ. That is, when the inventory hits level s, a request for replenishment is
issued, and the inventory level S is restored after an independent exponentially distributed
random time with rate γ. Finally, we note that the arrival process, service times and
replenishment times are independent. The structure of the system is presented on Figure 1.

Let Nk(t) be the number of class k customers in the system, k = 1, . . . , K, I(t) be the
inventory level, 0 ≤ I(t) ≤ S, and Z(t) ∈ W be the phase of the MMAP, at time t ≥ 0.
Then, the considered system can be modeled by the regular irreducible CTMC

ζ(t) = {N1(t), . . . , NK(t), I(t), Z(t)}, t ≥ 0,

with state space (n1, n2, . . . , nK, i, z), nk ∈ {0, . . . , lk}, k = 1, . . . , K, i ∈ {0, . . . , S} and z ∈ W .
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Figure 1. Structure of the system.

Fix the process ζ(t) at some state (n1, n2, . . . , nk, i, z). Due to independence of the com-
ponents of ζ(t), the transitions are now possible only to 2K + 2 states enumerated below:

• (n1, n2, . . . , nj + 1nj<lj
, . . . , nK, i, ẑ) with rate (Dj)zẑ, j = 1, . . . , K (arrival of class

j customer);
• (n1, n2, . . . , nj − 1, . . . , nk, i − 1, z) with rate µj, if nj > 0 and i > sj−1, j = 1, . . . , K

(departure of class j customer);
• (n1, . . . , nK, i, ẑ) with rate (D0)zẑ (MMAP phase switch);
• (n1, . . . , nK, S, ẑ) with rate γ, if i ≤ s (inventory replenishment).

This gives a very special structure of the infinitesimal generator matrix of the consid-
ered process {ζ(t)}t≥0. First, since the component N1(t) corresponds to the unbounded
buffer, while other components of ζ(t) are finite, and due to the fact that the transitions of
N1(t) are skip-free in both directions (i.e., it may be incremented/decremented by at most
one), the process ζ(t) is the so-called Quasi-Birth-Death (QBD) process with level N1(t)
and phase (N2(t), . . . , NK(t), I(t), Z(t)). Lexicographically ordered state space allows one
to write the generator matrix in block-tridiagonal form

Q =


A(0)

1 A0 O O . . .
A2 A1 A0 O . . .
O A2 A1 A0 . . .
...

. . . . . . . . . . . .

, (3)

where the matrix O is a zero block of corresponding dimension (we give the dimension
explicitly if and when necessary).

Define an integer-valued function of two arguments, i, j, such that 2 ≤ i ≤ j ≤ K:

α(i, j) =
j

∏
k=i

(lk + 1), (4)

and define α(i, j) = 0 otherwise. Then, the blocks Ai, i = 0, 1, 2, and A(0)
1 are square

matrices having size
α(2, K)(S + 1)W.

The matrix A0 consists of the rates of transitions corresponding to the arrival of
class 1 customer, A2 keeps the transition rates corresponding to departure of a class 1
customer, while A1 is related to 2K remaining possible transitions, such that the level
remains unaffected. It is quite straightforward to define A0, since, upon arrival of a class 1
customer, only the MMAP phase is switched; thus,

A0 = Iα(2,K)(S+1) ⊗ D1, (5)

where ⊗ is the Kronecker product and I is the identity matrix of corresponding dimension.
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We will need the following notation: hereafter ek
i:j is the (column) vector of dimension

k ≥ 0 with ith to jth components equal 1, and zero otherwise, i ≤ j ≤ k (conventionally we
take ek

i:j ≡ 1 if k = 0). To shorten the notation, we use for any i ≤ k

• ek
i ≡ ek

i:i (a single non-zero component at ith row, dimension k);
• ek ≡ ek

k:k (last non-zero component, dimension k);
• ek ≡ ek

1:k (all non-zero components of dimension k).

To define A2 and for further use, we need to construct some auxiliary matrices. Define
for j = 1, . . . , K the following square matrix of order S + 1:

Lj =

[
0′ 0

diag(eS
sj−1+1,S) 0

]
, (6)

where the matrix Lj has non-zero entries below main diagonal only for rows
sj−1 + 2, . . . , S + 1, and the zero vectors are of size S. The block matrix Lj corresponds
to possible transitions of the inventory for class j customer, and is indexed from 0 to S.
In particular, for class 1 customers the matrix L1 has the lower diagonal of ones (there
is no constraint for the inventory to be decremented). Since, upon departure of class 1
customer, the level, as well as the inventory, are decremented by one, the matrix A2 has the
following form:

A2 = Iα(2,K) ⊗ µ1L1 ⊗ IW . (7)

Now, to define A1, which contains the transition rates related to arrivals and departures
of class j customers, j ≥ 2, inventory replenishment and MMAP phase change, we need
auxiliary matrices of an increment/decrement in the corresponding (phase) component:

N(+)
j =

[
0 I lj

0 e′lj

]
, N(−)

j =

[
0′ 0
I lj

0

]
. (8)

Note that N(−)
j is a square matrix of order lj + 1 having lower diagonal of ones, while

N(+)
j is semi-upper diagonal. This asymmetry will be explained below.

Using these constructions, it is rather straightforward to define the transition rates of
all possible transitions constituting the matrix A1:

A1 =A(a)
1 + A(b)

1 + A(c)
1 − ∆, where (9)

A(a)
1 =

K

∑
j=2

Iα(2,j−1) ⊗
(

N(+)
j ⊗ Iα(j+1,K) ⊗ IS+1 ⊗ Dj (10)

+ N(−)
j ⊗ Iα(j+1,K) ⊗ µjLj ⊗ IW

)
, (11)

A(b)
1 =Iα(2,K) ⊗ γeS+1

1:s+1e′S+1 ⊗ IW , (12)

A(c)
1 =Iα(2,K) ⊗ IS+1 ⊗ D0. (13)

Conventionally, in (10) and (11), we define the zero-size identity matrix I0 = 1. Note
that (10) corresponds to arrival of class j customer, (11) is the corresponding class depar-
ture, (12) is a replenishment (where in fact the corresponding vector product gives a matrix
with only last column being non-zero), while (13) is the MMAP phase change. It is worth
noting that asymmetry in N(+)

j (non-zero last row), defined in (8), is used in (10) to indicate
an arrival of a class j customer that is lost, while the MMAP phase is changed according to Dj.
The matrix ∆ is a diagonal matrix that guarantees (A0 + A1 + A2)e = 0; thus,

∆ = diag
[(

A0 + A(a)
1 + A(b)

1 + A(c)
1 + A2

)
e
]
. (14)
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Straightforward algebra allows to obtain ∆, the diagonal matrix of dimension
α(2, K)(S + 1)W, from (14) in a closed form as follows:

∆ = diag
[
δ(a) + δ(b) + δ(d)

]
,

where δ(a) is the vector of transition rates due to departure of customers of classes 2, . . . , K,
δ(d) contains transition rates due to a class 1 customer departure, and δ(b) is the vector of
transition rates due to replenishment given as follows:

δ(a) =
K

∑
j=2

µjeα(2,j−1) ⊗ e
lj+1
2:lj+1 ⊗ eα(j+1,K) ⊗ eS+1

sj−1+2:S+1 ⊗ eW , (15)

δ(b) = γeα(2,K) ⊗ eS+1
1:s+1 ⊗ eW , (16)

δ(d) = µ1eα(2,K) ⊗ eS+1
2:S+1 ⊗ eW . (17)

It remains to define the block A(0)
1 corresponding to possible transitions of the model

from within the states having zero class 1 customers. Note that such a matrix is very similar
to the matrix A1, and the only difference is in the diagonal balancing matrix (14). Indeed,
from the condition (A(0)

1 + A0)e = 0, define

∆0 = diag
[(

A0 + A(a)
1 + A(b)

1 + A(c)
1

)
e
]
. (18)

The matrix A(0)
1 is then defined as follows:

A(0)
1 = A(a)

1 + A(b)
1 + A(c)

1 − ∆0, (19)

where it follows from (14) and (18) that ∆0 = diag
[
δ(a) + δ(b)

]
.

We note that the definitions of subblocks may be rewritten in a more compact form
using Kronecker sums. Moreover, by defining unbounded analogs of the matrices given
in (8), the generator matrix itself may be rewritten similarly. However, we skip this
possibility to keep parsimony of the notation.

To illustrate (3), we consider the case K = 2. Recall that class 1 customers have priority
over class 2 customers. Class 1 customers are allowed to wait in an infinite buffer, whereas
class 2 customers cannot enter the system if there are l2 class 2 customers already in the
system. Server 1 serves class 1 customers with rate µ1 and server 2 serves class 2 customers
with rate µ2. Customers are served with an inventory from a common source running
according to (s, S) policy with exponential lead time (rate γ). Even if the server 2 is free,
class 2 customers will be served only if the inventory level is at least s + 1.

We consider the CTMC ζt = {N1(t), N2(t), I(t), Z(t)}, t ≥ 0 with state space (n1, n2, i, z),
where n1 ≥ 0, 0 ≤ n2 ≤ l2, 0 ≤ i ≤ S, z ∈ W . Since K = 2, it follows from (4) that
α(2, K) = l2 + 1. Corresponding to each level n1, there will be (l2 + 1)(S + 1)W phase
states. The infinitesimal generator matrix of ζt is given by (3), where the non zero blocks
A(0)

1 , A0, A1, and A2 are of size (l2 + 1)(S + 1)W and have the following forms:

A0 = I(l2+1)(S+1) ⊗ D1,

A2 = I l2+1 ⊗ µ1L1 ⊗ IW

where L1 is a matrix of order S + 1 with a non-zero lower diagonal, defined as

L1 =

[
0′ 0
IS 0

]
.
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The subblocks A1, A(0)
1 also have the block-tridiagonal structure with l2 + 1 blocks

over the main diagonal indexed by the number of class 2 customers:

A(0)
1 =



A(2)
1 A(1)

0 O O . . . O
A(1)

2 A(1)
1 A(1)

0 O . . . O

O A(1)
2 A(1)

1 A(1)
0

. . . O
...

. . . . . . . . . . . .
...

... . . . . . .
. . . A(1)

1 A(1)
0

... . . . . . . . . . A(1)
2 Â

(1)
1


, A1=



A(4)
1 A(1)

0 O O . . . O
A(1)

2 A(3)
1 A(1)

0 O . . . O

O A(1)
2 A(3)

1 A(1)
0

. . . O
...

. . . . . . . . . . . .
...

... . . . . . .
. . . A(3)

1 A(1)
0

... . . . . . . . . . A(1)
2 Â

(3)
1


.

Submatrices A(1)
0 , A(1)

2 , A(i)
1 , i = 1, . . . , 4, of order (S + 1)W, are given below.

A(1)
0 = IS+1 ⊗ D2,

A(1)
2 = µ2L2 ⊗ IW ,

where L2 has non-zero entries in the lower diagonal from s + 2nd row onward,

L2 =



0 0 . . . 0 . . . 0 0
...

... . . .
... . . .

...
...

0 0 . . . 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 . . . 0 . . . 1 0

.

It remains to define A(i)
1 , i = 1, . . . , 4. These matrices have semi-block-diagonal struc-

ture with main diagonal and last column containing S + 1, possibly non-zero, blocks,
indexed by the number of inventory items available, each block being a square matrix of
order W. Indeed, since the departures of class 1 customers are not possible from level 0,

A(2)
1 = IS+1 ⊗ D0 −



γIW O . . . O . . . −γIW
...

. . . . . . . . . . . .
...

O . . . γIW O . . . −γIW
O . . . O O . . . O
... . . . . . . . . . . . .

...
O . . . . . . O . . . O


,

where, from s + 1st row onward, the diagonal elements are D0 (only MMAP phase change
is possible). Similarly, since A(1)

1 corresponds to states with positive number of class
2 customers,

A(1)
1 = A(2)

1 −



O . . . O . . . O
... . . .

... . . .
...

O . . . µ2 IW . . . O
... . . .

...
. . .

...
O . . . O . . . µ2 IW

.

Since A1 corresponds to positive levels of the process ζt, i.e., the number of class
1 customers is positive,

A(4)
1 = A(2)

1 − I(0)S+1 ⊗ µ1 IW , A(3)
1 = A(1)

1 − I(0)S+1 ⊗ µ1 IW ,
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where I(0)S+1 is a square matrix of order S + 1 consisting of a zero column, zero row, and
identity matrix as follows:

I(0)S+1 =

[
0 0
0 IS

]
.

Indeed, the matrices A(4)
1 and A(3)

1 correspond to positive number of class 1 customers;
thus, their diagonals include the service rates of class 1 customers, except the case of

the empty inventory. As a final note, the last diagonal blocks in matrices, Â
(1)
1 and Â

(3)
1 ,

correspond to arrivals of class 2 customers that are lost; hence,

Â
(i)
1 = A(i)

1 + A(1)
0 , i = 1, 3.

3. Stability Condition

The necessary and sufficient condition for existence of the non-zero steady-state
probability is the specific version of Foster ergodicity condition known as the Neuts
ergodicity criterion [22],

πA0e < πA2e, (20)

where the stochastic vector π is the solution of the system

πA = 0, (21)

and
A = A0 + A1 + A2.

Note that, due to the properties of Ai, i = 0, 1, 2, the matrix A is a generator matrix of a
finite state space CTMC giving the projection of the phase transition at high levels; thus, the
vector π may be considered as the steady-state probability of the phase at high levels [22].
It now follows from (5), (7), and (9) that A has block-tridiagonal structure indexed by the
number of class-2 customers as follows:

A =



R(0)
1 R0 0 0 . . . 0

R2 R1 R0 0 . . . 0
0 R2 R1 R0 . . . 0
...

...
. . . . . . . . .

...
0 0 . . . R2 R1 R0
0 0 . . . 0 R2 R̂1


.

The blocks R(0)
1 , R̂1, and Ri, i = 0, 1, 2, are square matrices, and their structure follows

from (5), (7), and (9). Indeed,

R0 =Iα(3,K) ⊗ IS+1 ⊗ D2,

R2 =Iα(3,K) ⊗ µ2L2 ⊗ IW ,

R1 =Iα(3,K) ⊗
((

γeS+1
1:s+1e′S+1 + µ1L1

)
⊕ (D0 + D1)

)
+

K

∑
j=3

Iα(3,j−1) ⊗
(

N(+)
j ⊗ Iα(j+1,K) ⊗ IS+1 ⊗ Dj

+ N(−)
j ⊗ Iα(j+1,K) ⊗ µjLj ⊗ IW

)
− ∆̂,

where ⊕ is the Kronecker sum defined as A ⊕ B = I ⊗ B + A ⊗ I; ∆̂ being a diagonal
matrix that guarantees (R0 + R1 + R2)e = 0, and obvious convention ∑K

j=3 = 0 for

K < 3 is used. It remains to note that, since R(0)
1 corresponds to states with no class-2
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customers, R(0)
1 = R1 +diag[R2e], while the matrix R̂1 = R1 + R0 includes the lost arrivals

of class-2 customers. Recall that the losses of class 2 customers appear here due to the
specific indexing of the blocks of matrix A, and corresponding losses of classes 3, . . . , K are
encoded in the components of matrix R1. It is worthwhile to note that, despite the expected
independence of the MMAP component evolution on the system state, the changes in the
phase occur upon arrival of customers of classes 2, . . . , K, both in the corresponding queue
size and in MMAP phase; similar simultaneous changes occur upon departure of such
customers (both counter and inventory). In the case K = 2, the subblocks of A have the
following clear structure:

R0 = O⊕ D2, R2 = µ2L2 ⊕O,

R1 =
(

γeS+1
1:s+1e′S+1 + µ1L1

)
⊕ (D0 + D1)− ∆̂,

R̂1 =
(

γeS+1
1:s+1e′S+1 + µ1L1

)
⊕ D− ∆̂.

Note that the Kronecker sums in the phase transition rate matrices appear due to the
multidimensional structure of the phase state space. These sums highlight the independent
changes of one of the components of the phase vector, and O is used if the corresponding
component remains unchanged due to a transition.

To solve the system (21), the following numerically stable algorithm is suggested.
Let the row vector π be presented in the form π =

(
π0, π1, . . . , πl2

)
. The vectors

πm, m = 0, . . . , l2, are considered to have the following form:

πm = πm−1Um−1 = π0

m

∏
k=1

Uk−1, m = 1, . . . , l. (22)

The matrices Um, m = 0, . . . , l2 − 1, are obtained from the system (21) using (22),
starting from the last column, i.e., calculated using the backward recursion,

Um = −R0(R1 + Um+1R2)
−1, m = l2 − 2, . . . , 0, (23)

under the initial condition (following from the last column of the matrix A)

U l2−1 = −R0

(
R̂1

)−1
.

Note that, since A is a generator matrix, R̂1 is diagonally dominant and, hence,
invertible. Finally, the vector π0 is the unique solution to the system (obtained from the
first column of A and the fact that π is stochastic)π0

(
R(0)

1 + U0R2

)
= 0,

π0

(
e + ∑l2

m=1 ∏m
k=1 Uk−1e

)
= 1.

(24)

Now, let us consider the l.h.s. of (20). The vector π is the steady-state probability
vector of the finite state space CTMC defined by the matrix A and having the state space

E = {(n2, . . . , nK, i, z), nk ∈ {0, . . . , lk}, k = 2, . . . , K, i ∈ {0, . . . , S}, z ∈ W}. (25)

However, it is possible to shrink the state space E into the following subsets defined
for all z ∈ W :

Ez = {(n2, . . . , nK, i, z0) ∈ E : z0 = z}.

Now, we show that, for each state from Ez, the transition rate to the set Eẑ (i.e., the
sum of corresponding transition rates to individual states) equals (D)zẑ. Indeed, to obtain
this transtion rate, the matrix A needs to be multiplied by the matrix that would sum up
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the corresponding transition rates, that is, eα(2,K)(S+1) ⊗ IW . As such, using the fact that,
for any matrices Bi, i = 1, . . . , 4, the following equation holds good,

(B1 ⊗ A2)(B3 ⊗ B4) = B1B3 ⊗ B2B4, (26)

it can be obtained from (5) that

A0(eα(2,K)(S+1)⊗IW) = (Iα(2,K)(S+1)⊗D1)(eα(2,K)(S+1)⊗IW) = eα(2,K)(S+1)⊗D1. (27)

It follows from (7) and (17) that

(A2 − diag(δ(d)))(eα(2,K)(S+1) ⊗ IW) =

(Iα(2,K)⊗ µ1L1⊗IW)(eα(2,K)⊗ eS+1⊗IW)− µ1eα(2,K)⊗ eS+1
2:S+1⊗ diag(eW)) = 0.

(28)

Finally, it follows from (9), (15), (16), after some algebra, that(
A(a)

1 + A(b)
1 + A(c)

1 − diag(δ(a) + δ(b))
)
(eα(2,K)(S+1) ⊗ IW)

= eα(2,K)(S+1) ⊗
(

D0 + ∑K
j=2 Dj

)
.

(29)

Then, it follows from (27)–(29) that

A(eα(2,K)(S+1) ⊗ IW) = eα(2,K)(S+1) ⊗ D.

Thus, the subsets Ez, z ∈ W , are the states of a CTMC defined by the matrix D. Now,
we note that

πA(eα(2,K)(S+1) ⊗ IW) = π(eα(2,K)(S+1) ⊗ I)D;

hence, θ = π(eα(2,K)(S+1) ⊗ I). Finally, from (5), obtain

πA01 = θD11W = λ1.

Now, taking into account (7), (22), (24), and using the property (26) for the unit vector
e, the r.h.s. of the stability condition (20) becomes

l2

∑
m=0

πm

(
Iα(3,K) ⊗ µ1L1 ⊗ IW

)
e =

l2

∑
m=0

πmeα(3,K) ⊗ µ1eS+1
2:S+1 ⊗ eW .

Finally, (20) becomes

ρ := λ1

[
l2

∑
m=0

πmeα(3,K) ⊗ µ1eS+1
2:S+1 ⊗ eW

]−1

< 1. (30)

Note that the stability condition (30) has a nice interpretation, since λ1 is the upward
drift, while the sum in brackets is the mean downward drift of class 1 customers at high lev-
els obtained by aggregation of the components phase probabilities vector π corresponding
to the states with positive departure probability of class 1 customers.

4. Steady State Performance

If the stability condition (30) holds, the stochastic vector of stationary probabilities, q,
exists and is the solution of the steady-state equation involving the infinitesimal generator
Q given in (3):

qQ = 0. (31)

Note that the components of the vector q are ordered lexicographically, that is, for
nk ∈ {0, . . . , lk}, k = 1, . . . , K, i ∈ {0, . . . , S} and z ∈ W ,

q(n1, . . . , nK, i, z) = lim
t→∞

P(N1(t) = n1, . . . , NK(t) = nK, I(t) = i, Z(t) = z).



Mathematics 2021, 9, 1037 11 of 23

Since the matrix Q defines a level-independent QBD, the soluton can be obtained in
matrix-geometric form [22]. Indeed, splitting the vector q into finite vectors q0, q1, . . . by
the (value of the) first coordinate, we assume that

qi = q0Ri. (32)

The matrix R is the so-called rate matrix, being the minimal non-negative solution
of the matrix quadratic equation (which follows from (31) using the block-tridiagonal
structure of Q and (32)),

R2 A2 + RA1 + A0 = 0. (33)

The boundary conditions for obtaining q0 follow from the first block-column of Q
and are [23]

q0(A(0)
1 + RA2) = 0, (34)

q0(I − R)−11 = 1. (35)

However, in order to avoid numerical difficulties, it is recommended to use the
alternative matrix quadratic equation for the substochastic matrix G being the minimal
non-negative solution of the system

A0G2 + A1G + A2 = 0, (36)

obtain the R matrix by the known relation [23]

R = A0(−A1 − A0G)−1,

and, finally, use (32) to obtain the vector q.
After obtaining the steady-state probability vector, it is straightforward to define the

steady-state performance measures of interest. To do so, we use an auxiliary vector j(n) of
size n + 1 containing the sequence (0, . . . , n), i.e.,

j(n) = (0, . . . , n).

Average number of class 1 customers in the system:

E1 =
∞

∑
i=1

iqie
α(2,K)(S+1)W = q0R(I − R)−2eα(2,K)(S+1)W . (37)

Average number of class k = 2, . . . , K customers in the system:

Ek = ∑∞
i=0 qie

α(2,k−1) ⊗ j(lk) ⊗ eα(k+1,K) ⊗ e(S+1)W

= q0(I − R)−1eα(2,k−1) ⊗ j(lk) ⊗ eα(k+1,K) ⊗ e(S+1)W . (38)

Average inventory size in the system:

Ī =
∞

∑
i=0

qie
α(2,K) ⊗ j(S) ⊗ eW = q0(I − R)−1eα(2,K) ⊗ j(S) ⊗ eW . (39)

Replenishment rate, where δ(b) is given in (16),

R̄ =
∞

∑
i=0

qiδ
(b) = q0(I − R)−1δ(b). (40)
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Class k loss rate, k = 2, . . . , K:

Lk =λk

∞

∑
i=0

qie
α(2,k−1) ⊗ elk+1 ⊗ eα(k+1,K) ⊗ e(S+1)W =

λk(I − R)−1eα(2,k−1) ⊗ elk+1 ⊗ eα(k+1,K) ⊗ e(S+1)W . (41)

We note that the average number of queued customers can be obtained by the cor-
responding formula for the average number of customers in the system by replacing i to
(i− 1). Finally, the corresponding sojourn times of class k ≥ 1 customer are obtained by
Little’s law as follows:

Esk =
Ek

λ̂k
,

where λ̂k is the effective arrival rate of class k, i.e., λ̂1 = λ1 and

λ̂k = λk − Lk.

5. Analysis of Inventory Recycle Time

Starting with inventory level S, the time taken to hit the level S again is called inventory
cycle time, say, Γ. The distribution of inventory cycle time depends on the number of
customers of all classes in the system and the phase of the arrival process. However, we
note that, since the replenishment happens only at the event when the inventory hits the
level s, the inventory cycle is essentially the lead time plus the time it takes to reach s from
S by the steps decreasing the inventory, made by the process ζ(t). It is clear that such a
process is a time until absorption of the process, where the absorption happens at the level
s. It is known that such a time can be modeled by a phase-type distribution (for details on
this type of distributions, see Reference [24]), and below we obtain the parameters of such
a distribution.

Indeed, consider the inventory level I(t) = S. If Nk(t) ≥ S− sk−1, then the class k
customers present in the system are capable of consuming all the inventory allowed for
such a class, either before stopping service for this specific class at the boundary level
sk−1, or before hitting the absorbing inventory state I(t) = s, and in such case the time to
absorption does not depend on the arrivals of class k customers after time t. Otherwise,
arrivals of class k customers can be tracked until the condition Nk(t) ≥ S− sk−1 is met
(if this happens before absorption). Moreover, if the level Nk(t) hits the value S− sk−1
from below, the departures of class k customers need not be tracked, but instead, only the
inventory decreasing process should take into account the corresponding rate of the class
k customer service, µk. Thus, the time it takes I(t) to reach s (time to absorption) can be
modeled by a finite state space absorbing CTMC, which is essentially a restriction of ζ(t)
to the set

{0, . . . , S− s}×{0, . . . , S− s}×{0, . . . , S− s2}×. . . {0, . . . , S− sK−1}×{s + 1, . . . , S}×W .

This means that the time to reach inventory level s has a phase-type distribution
PH(β, T), where β is the initial distribution of the restricted chain (N̂1(t), . . . , N̂k(t), Î(t), Z(t))
at time 0, and T is the transition matrix which follows from Q and the aforementioned
restrictions. In particular, it is straightforward to define the transition rate matrix T
as follows.

T =


B(0)

1 B0 O O . . . O
B2 B1 B0 O . . . O
O B2 B1 B0 . . . O
...

. . . . . . . . . . . .
...

O . . . . . . . . . O B̂1

. (42)
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Note that T is a block-tridiagonal finite matrix, with S− s + 1 blocks on the main
diagonal, where the first block corresponds to states with N1(t) = 0, while the last block
is for N1(t) = S− s, respectively. The rows corresponding to the last block have zeroes
except the block on the main diagonal, since upon reaching the level N1(t) = S− s, neither
the departures, nor the arrivals, of class 1 customers are tracked, but the rate µ1 is taken
into account in the value of the inventory decreasing rate. Moreover, the inventory states
become in fact re-numbered so as to have S− s states starting from inventory level s + 1,
numbered sequentially, that is, compared to the original inventory component I(t), it
holds that

Î(t) = I(t)− s, (43)

and the absorption happens when Î(t) makes a transition to 0. The size of the blocks is

α̂(2, K)(S− s)W,

where, for 2 ≤ i ≤ j ≤ K,

α̂(i, j) =
j

∏
k=i

(S− sk−1 + 1), (44)

and α̂(i, j) = 0 otherwise.
It is straightforward to see

B0 = I α̂(2,K)(S−s) ⊗ D1, (45)

and
B2 = I α̂(2,K) ⊗ µ1 L̂1 ⊗ IW , (46)

where L̂j is obtained from the matrix Lj defined in (6) by reducing the latter to rows and
columns from sj−1 + 2 to S + 1, i.e.,

L̂j = Jsj−1+1,S+1Lj J′sj−1+1,S+1,

where the matrix Ja,b removes the first a rows, 1 ≤ a ≤ b, that is,

Ja,b =
[
O(b−a)×a Ib−a

]
,

with an exception for L̂1 defined as

L̂1 = Js+1,S+1L1 J′s+1,S+1.

Let us restrict the matrices N(+)
j and N(−)

j defined in (8) to the finite state space of the

absorbing CTMC, and modify the last row of N(−)
j so as to force N̂j(t) to stay at the level

S− sj−1 once reached, j ≥ 2. To do so, denote

Ha,b =
[
Ia Oa×(b−a)

]
.

Multiplication by Ha,b on the left leaves only the first a rows in the resulting matrix
and removes the last b− a rows, while multiplication on the right by H ′a,b removes the last

b− a columns. Then, the matrices N̂
(+)
j and N̂

(−)
j are defined as follows:

N̂
(+)
j = HS−sj−1+1,S+1N(+)

j H ′S−sj−1+1,S+1 + diag(eS−sj−1+1),

N̂
(−)
j = HS−sj−1+1,S+1N(−)

j H ′S−sj−1+1,S+1diag(eS−sj−1+1 − eS−sj−1+1) + diag(eS−sj−1+1),
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where the S + 1-dimensional vector eS+1 is zero vector except the last component equal to
one, while eS+1 is the S + 1-dimensional vector of ones. Now, we are ready to define the
matrix B1 as follows:

B1 =
K

∑
j=2

I α̂(2,j−1) ⊗
(

N̂
(+)
j ⊗ I α̂(j+1,K) ⊗ IS−s ⊗ Dj

+ N̂
(−)
j ⊗ I α̂(j+1,K) ⊗ µj L̂j ⊗ IW

)
+ I α̂(2,K) ⊗ IS−s ⊗ D0 − ∆̃.

Note that the diagonal matrix ∆̃ holds the exit rates from states which do not lead
to absorption, that is, transitions from inventory levels Î(t) = 2, . . . , S− s according to
enumeration (43). As such, this matrix can be defined explicitly as follows:

∆̃ = µ1eα̂(2,K) ⊗ eS−s
2:S−s ⊗ eW +

K

∑
j=2

µje
α̂(2,j−1) ⊗ e

S−sj−1+1
2:S−sj−1+1 ⊗ eα̂(j+1,K) ⊗ eS−s

sj−1−s+2:S−s ⊗ eW .

Similarly to (19), the matrix B(0)
1 differs from B1 only on the diagonal (the states

corresponding to B(0)
1 have no class 1 customers), so that

B(0)
1 = B1 − µ1eα̂(2,K) ⊗ eS−s

2:S−s ⊗ eW .

Finally, we need to define the matrix B̂1 corresponding to the boundary states. Since
at the level (number of class 1 customers) S− s, neither arrivals nor departures of the class
1 customers are tracked,

B̂1 = B0 + B1 + B2.

It remains to denote t0 = −Te as the corresponding absorption rate vector, and note
that the initial state probability vector should be taken so as to have initial inventory equal
to S, that is, P(I(0) = S) = 1.

To simplify comprehension, we outline the transitions possible for the chain

{(N̂1(t), . . . , N̂K(t), Î(t), Z(t))}, t ≥ 0,

according to the subgenerator matrix T and the absorption vector t0. For some t ≥ 0, fix
(N̂1(t), . . . , N̂K(t), Î(t), Z(t)) = (n1, . . . , nK, i, z). Then, the state after transition is one of
the following:

• (n1, . . . , nj + 1nj<S−sj−1 , . . . , nK, i, z′), with rate (Dj)z,z′ (arrival of a class j customer),
• (n1, . . . , nj, . . . , nK, i, z′), with rate (D0)z,z′ (change of the MMAP phase),
• (n1, . . . , nj − 1nj<S−sj−1 , . . . , nK, i − 1, z′), with rate µj, if nj > 0 and i > sj−1 − s

(departure of a class j customer, if allowed).

Note that the absorption happens if the transition is made from the inventory level
i = 1 downward. In particular, this means that, since s2 > s, the absorption happens only
due to a transition caused by service completion of either class 1, or class 2 customer.

It is well known that time to absorption, say X, of an absorbing CTMC defined by a
subgenerator T and initial state probability vector β has a phase-type distribution with
mean [24]

EX = β(−T)−1e. (47)

Thus, to define the mean inventory cycle time, EΓ, it only remains to convert the
steady-state probability vector q obtained in (32) into the initial state probability vector for
the corresponding phase-type distribution defined by the matrix (42).

We summarize our findings in the following Lemma.
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Lemma 1. Let Γ be the inventory cycle time. Then,

EΓ =
1
γ
+

∞

∑
n=0

q̂n(−T)−1e, (48)

where the vector q̂, split into finite subvectors by the first component, is defined from the vector q in
a component-wise manner as follows: if nk < S− sk−1, k = 1, . . . , K, then

q̂(n1, . . . , nK, S, z) = q(n1, . . . , nK, S, z),

and if for some m ≥ 1 and indices k1, . . . , km, holds nkj
= S− skj−1, j = 1, . . . , m, then

q̂(n1, . . . , nK, S, z) = ∑
n̂1,...,n̂K∈N

q(n̂1, . . . , n̂K, S, z),

where

N =
{
(n̂1, . . . , n̂K) : n̂k = nk, k ∈ {1, . . . , m}\{k1, . . . , km}; n̂kj

≥ S− skj−1, j = 1, . . . , m
}

.

The vector q̂ is zero elsewhere.

It remains to note that the expectation is taken so as to summarize the resulting times
by the appropriate steady-state probabilities involving the inventory level S, and the term
1
γ is added to emphasize the exponentially distributed lead time.

6. Numerical Illustration
6.1. Stability Condition Parametric Sensitivity

In this section we illustrate the sensitivity of the stability condition (30) on the pa-
rameters. In particular, we take K = 2, fix the MMAP arrival process, inventory size S
and queue size for the second class customers, l2. We then vary the rates µ1, µ2 and γ for
several values of replenishment level s, ceteris paribus, and plot the resulting dependency.
In the experiment we use the following default settings:

S = 100, s = 7, l2 = 15, µ1 = 7, µ2 = 15, γ = 10.

The MMAP arrival process with W = 2 is driven by the following matrices:

D0 =

[
−13 1

2 −14

]
, D1 =

[
1 2
3 4

]
, D2 =

[
5 4
3 2

]
. (49)

Thus, the arrival rate of class 1 customers may be calculated as λ1 ≈ 4.867.
In the first experiment we consider ρ defined in (30) to be the function of µ2 ∈ [2, 15]

for values s = 5, 6, 7. The resulting curves depict ρs(µ2) versus µ2 on Figure 2 (top). While
in absolute values the variability of ρ is rather small, a non-linear dependency is clearly
visible, and the dependency on s is motivated by the relatively higher impact of the second
class customers on the system load for smaller values of s. Counter-intuitively though, the
load increases (slightly) with an increasing service rate of the second class customers.

To investigate this interesting effect, we consider the probability P(N2 = i) for two
boundary values, i = 0, l2, that is, the probability that second class customer queue is
empty or full. We plot the corresponding estimates within the setup of the first experiment
on Figure 3. It can be observed that, for smaller values of µ2 (that is, for larger mean service
times of class 2 customers), the queue is mostly overloaded (with high probability the
queue is full), which causes relatively high loss of class 2 customers. In contrast, for µ2 > 7,
the probability of an empty class 2 queue overtakes the probability of a queue completely
occupied, and the former is increasing, while the latter is decreasing with increasing µ2.
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We note that, in the experiment, we used only s = 7 since, as numerical results show, the
effect of s on empty/full probability of class 2 customers is negligible for s = 5, 6, 7.
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Figure 2. Dependency of ρ on µ2 ∈ [2, 15] (top, fixed γ = 10) and on on γ ∈ [2, 10] (bottom, fixed
µ2 = 15) for s = 5, 6, 7 and other parameters fixed: S = 100, l2 = 15, µ1 = 7, MMAP arrival process
parameters given in (49).
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Figure 3. Dependency of the probabilities of an empty (full) class 2 queue on µ2 ∈ [2, 15], fixed
γ = 10, s = 7, S = 100, l2 = 15, µ1 = 7, MMAP arrival process parameters given in (49).

In the second experiment, we fix µ2 = 15 and consider ρ defined in (30) to be the
function of γ ∈ [2, 10] for values s = 5, 6, 7. The resulting curves depict ρs(γ) versus γ on
Figure 2 (bottom). In this experiment, the non-linear dependency on γ follows the intuition:
higher replenishment rate decreases the customer’s queuing time and results in a lower
system load.

Finally, we fix µ2 = 15, γ = 10 and consider ρ defined in (30) to be the function of
µ1 ∈ [7, 12]. However, since the dependency on s is rather weak, we take more contrast
values s = 1 and s = 50. The resulting curves depict ρs(µ1) versus µ1 on Figure 4. As
expected, increasing µ1, and, hence, decreasing the service time of class 1 customers,
causes a dramatic decrease of the system load. The additional load caused by a “lazy”
replenishment at the level s = 1 is also visible.

6.2. Steady-State Performance Sensitivity

In this section, we illustrate the sensitivity of the performance measures (37)–(41)
described in Section 4 to the management parameter γ, that is, the lead time intensity. To
do so, we take K = 2 and slightly modify the parameters used in the previous section, so
as to make computations more convenient. Namely, we take

S = 50, s = 5, l2 = 10, µ1 = 7, µ2 = 15.

We use the same MMAP defined in (49). We vary γ = 1, . . . , 10 and obtain the
performance measures (37)–(41) for given γ, ceteris paribus. Finally, we depict the obtained
numerical results.

Figure 5 (top) describes the dependency of the mean number of class 1 and class 2
customers given in (37) and (38), on the replenishment rate γ. A decreasing pattern with
increasing γ is caused by decreasing load ρ given in (30); see Figure 5 (bottom).
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l2 = 15, µ1 = 7, µ2 = 15, γ = 10, MMAP arrival process parameters given in (49).
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Figure 5. Dependency of Ei, i = 1, 2 (top) and ρ (bottom) on γ = 1, . . . , 10 for S = 50, s = 5,
l2 = 10, µ1 = 7, µ2 = 15, MMAP arrival process parameters given in (49).

Figure 6 (top) describes the dependency of the mean inventory level Ī defined in (39),
while, in Figure 6 (bottom), the replenishment rate R̄ is depicted, for γ = 1, . . . , 10. As ex-
pected, with increasing γ the inventory contents increases, along with the replenishment rate.

●

●

●

●

●

●

●

●
●

●

2 4 6 8 10

21
22

23
24

25
26

27

γ

M
ea

n 
in

ve
nt

or
y 

si
ze

Figure 6. Cont.



Mathematics 2021, 9, 1037 20 of 23

●

●

●

●
● ● ● ● ● ●

2 4 6 8 10

0.
25

4
0.

25
6

0.
25

8
0.

26
0

0.
26

2
0.

26
4

0.
26

6

γ

R
ep

le
ni

sh
m

en
t r

at
e

Figure 6. Dependency of Ī (top) and R̄ (bottom) on γ = 1, . . . , 10 for S = 50, s = 5, l2 = 10,
µ1 = 7, µ2 = 15, MMAP arrival process parameters given in (49).

Finally, Figure 7 describes the dependency of the class 2 customer loss rate L2 defined
in (41), on γ = 1, . . . , 10. As expected, with increasing γ the customer loss rate is decreasing.
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Figure 7. Dependency of L2 on γ = 1, . . . , 10 for S = 50, s = 5, l2 = 10, µ1 = 7, µ2 = 15, MMAP
arrival process parameters given in (49).
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6.3. Total Cost Optimization

Based on the above performance measures, we obtain expected total cost per unit time
in the considered system as follows:

ETC = cI Ī +
K

∑
k=2

cLk Lk + cRR̄ +
K

∑
k=1

cwk Ek, (50)

where the non-negative coefficients are defined on a per system|customer|item per time
unit basis:

• cI is the holding cost of inventory (per item per unit time),
• cLk is the cost due to a class k customer loss (per system per unit time),
• cR is the reorder cost (per system per unit time),
• cwk is the waiting cost of class k customer (per customer per unit time), k ≤ K.

Using the same 2-class system with same parameters as in Section 6.2, that is,

S = 50, s = 5, l2 = 10, µ1 = 7, µ2 = 15,

and MMAP defined in (49), we perform a numerical exploration of sensitivity of the cost
function ETC given in (50) on the parameter cI . This is motivated as follows. Since the
per-customer measures are decreasing, while the per-system measures are increasing, there
should be a trade-off between keeping a high inventory level and compromising some
second-class customer losses. This is regulated by the inventory holding cost parameter cI .
For the experiment, we take cI = 1, 5, 10 and vary γ = 1, . . . , 10, as in the previous section.
We depict the resulting curves on Figure 8 and observe clearly that the optimal (minimal)
cost shifts to lower values of γ with increasing cI , which is intuitive.
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Figure 8. Total cost ETC versus γ = 1, . . . , 10 for various cI = 1, 5, 10; the parameters are S = 50,
s = 5, l2 = 10, µ1 = 7, µ2 = 15, MMAP arrival process parameters given in (49).

7. Conclusions

We have analyzed a queuing inventory system with correlated arrivals of heteroge-
neous customers. The general case of K types of customers was investigated, where each
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class of customers is assigned some priority according to which the inventory access is
managed. We illustrated the general system and a special case of K = 2. An intuitive
stability condition was derived and the steady state probability vector was obtained. Key
performance measures of the system were obtained. The inventory cycle time was analyzed
and it was shown that the inventory cycle follows a phase type distribution.

The large scale models have computational difficulties due to a large state space
(while the matrices are sparse), so we cannot rely on numerical investigation only. Thus,
we performed numerical experiments only to highlight interesting features of the model,
and an interesting cost optimization problem has been stated which could be studied in
future for practical applications.

As future directions of investigation we would like to point out the following possi-
bilities. First, it is relatively easy to incorporate customer impatience (which will cause
additional flow of customers towards decreasing the level and the first K components of
the phase in the corresponding QBD process) and balking upon arrival finding the server
busy (which modifies the rates related to corresponding class customer arrivals). Phase-
type service times and replenishment times can also be incorporated leaving the model
mathematically tractable. At the same time, the inventory replenishment discipline can be
modified into booking-type, where the inventory items are booked for specific customers
upon arrival; thus, arriving customers are rejected if no items are available for booking.
Comparison of this type of model with the one analyzed in the present paper is one of the
promising directions for future research.

Thinking beyond simple extensions of the model, the retrial queues instead of classical
queues can be incorporated, while the stability part most likely can be extended towards a
regenerative input. Finally, it might be interesting to consider the inventory with common
lifetime of items and priorities related to item “freshness”.

It might be also interesting to consider the model in transient regime, according to
possible applications in social systems. A few methods are available for this type of analysis
of QBD processes [25–27]. However, this might require inverting Laplace transforms which
might cause numerical instability. In this regard, we refer to a recent work, Reference [28],
where a novel method of numerically effective Laplace transform inversion is presented.
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