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 Abstract: A modified explicit hybrid method with four stages is presented, with the first stage 
exactly integrating exp(wx), while the remaining stages exactly integrate sin(wx) and cos(wx). Spe-
cial attention is paid to the phase properties of the method during the process of parameter selection. 
Numerical comparisons of the proposed and existing hybrid methods for several second-order 
problems show that the proposed method gives high accuracy in solving the Duffing equation and 
Kramarz’s system. 
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1. Introduction 
Many problems that arise in modelling physical phenomena in engineering and ap-

plied sciences are in the form of second ordinary initial value problems 

where the first derivative does not appear explicitly. These problems are often solved by 
using numerical methods such as Runge–Kutta–Nystrom methods, multistep methods, 
and hybrid methods (see [1–4]). The numerical methods can be grouped into two catego-
ries: (1) methods with constant coefficients and (2) methods with variable coefficients. The 
methods with variable coefficients require prior knowledge of the frequency of the prob-
lem, in contrast to the methods with constant coefficients in which the frequency of the 
problem is not needed. In this paper, our purpose is to derive a modified hybrid method 
with variable coefficients for solving the special second-order initial value problems by 
paying special attention to the phase properties of the methods. 

Consider the class of hybrid methods proposed by Kalogiratou et al. [5]:  

with 2
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It is noted that if 1iσ =  and 1iμ =  for i = 1, …, s + 1 then the above class of hybrid 
methods is reduced to the class of hybrid methods as stated in [6]: 
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Coefficients of this class of methods are as shown in Butcher tableau notation below: 
 
 
 

 

with 1 2( )T
sc c c c=  , 1 2( )T

sb b b b=  , and [ ]ij s sA a ×= . 

2. Phase Lag and Stability Analysis 
The standard equation 

2( ) ( )y t y tλ′′ = − , λ > 0  (3)

with exact solution 1 2( ) exp( ) exp( )y t C i t C i tλ λ= + −  is usually used to study the stability 
of numerical methods in solving second-order ordinary differential equations. Applying 
the hybrid methods defined in (1) with coefficients depending on v = wh, where w is the 
frequency of the problem and h is the step-size, to the differential Equation (3) gives us 

2 2
1 1( , ) ( , ) 0n n ny S H v y P H v y+ −− + =  (4)

where H = λh, (1 1 1)Te =  , 1 2( ) ( )T
svσ σ σ σ=  , 1 2( ) ( )T

svμ μ μ μ=   , 
2 2 2 1

1( , ) 2 ( ) ( ) ( )T
sS H v H b I H A v e cσ σ−
+= − + × + , 2 2 2 1

1( , ) ( ) ( )T
sP H v H b I H A v cμ μ−
+= − + ×  

and the symbol “×” denotes component-wise multiplication. The characteristic polyno-
mial associated with the difference Equation (4) is given by 

2 2 2( ) ( , ) ( , )S H v P H vπ ς ς ς= − +  (5)

The following definition gives a condition to be satisfied by the region of absolute 
stability of hybrid methods (refer to [5]). 

Definition 1. For hybrid methods corresponding to Equation (5), a region of absolute stability is 
the region of the H-v plane throughout which 2( , ) 1P H v <  and 2 2( , ) 1 ( , )S H v P H v< + . 

The phase properties of hybrid methods are given by these definitions (refer to [7]). 

Definition 2. For hybrid methods corresponding to Equation (5), the phase-lag or dispersion error 
is given by ( )2 2 2( , ) arccos ( , ) 2 ( , )H v H S H v P H vφ = −  and the phase-lag order is q if 

1 32( , ) ( ).q qH v c H O Hφφ + += +  

Definition 3. For hybrid methods corresponding to Equation (5), the amplification or dissipation 
error is given by 2 2( , ) 1 ( , )d H v P H v= −  and the dissipation order is u if 

2 1 3( , ) ( )u u
dd H v c H O H+ += + . The method is called zero dissipative if 2( , ) 0d H v = . 

3. Derivation of the New Method 
Consider the coefficients of a class of four-stage explicit hybrid methods defined in 

(1) as stated in Table 1. 
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Table 1. Coefficients of a class of four-stage explicit hybrid methods defined in (1). 

0 0 0 0 0 0 0 
1 2σ  2μ  21a  0 0 0 

3c  3σ  3μ  31a  32a  0 0 

4c  4σ  4μ  41a  42a  43a  0 

 5σ  5μ  
1b  2b  3b  

4b  

Using these coefficients, 2( , )P H v  is given by 

2 2 2 2 2 2 2 2
2 43 4 3 32 43 4 3 3 42 4 2

2
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( , ) (( ) )( ) ( ) ( )
( )
P H v H H a b b H a H H a b c H H a b

b c b c b H
μ μ μ

μ μ μμ
= − − + + +

− − − +
 

 

Setting 1 0b = , 32 0a = , 42 0a = , and 43 0a = , then solving the order conditions for 
fourth-order hybrid method as listed in [6] 
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c
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where 4c  and 21a  are free parameters. By experiment, we choose 4

1
2

c = −  to make 
2( , )P H v  as close as possible to 1 as 0v → . In order to obtain 21a , iσ  and iμ , we asso-

ciate each stage formula of the method with linear operator ( )L y t    as follows: 
2

1 2 2 21( ) 2 ( ) ( ) )( ) (L y t h y t y t ht a ty h yσ μ ′′= + − − − +  
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Assume that v = wh. Setting 1 0wxL e  =  , 1 sin( ) 0L wx  =   and 1 cos( ) 0L wx  =   re-
sults in 

2

21 2

2 1v v

v

e ea
e v
− += ,

2

2

2cos( ) 2 1
2

v v v

v

e v e e
e

σ + − += , 2 1μ =   

This implies 
2

31 2

( 2 1) 9
8 32

v v

v

e ea
e v

− − += +  and 
2

41 2

9 2 1
40 10

v v

v

e ea
e v

− += − + . Finally, by set-

ting 

 2 sin( ) 0L wx  =  , 2 cos( ) 0L wx  =  , 3 sin( ) 0L wx  =  , 3 cos( ) 0L wx  =  , 4 sin( ) 0L wx  =  , and 

4 cos( ) 0L wx  =   

we have 
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2sin( / 2)
sin( )

v
v

μ = , 
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s

)
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27 s n(
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v
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The resulting method is denoted by MEHM. This method has the following quanti-
ties: 

2 2 3 2 2 2 2
2

3

( 2 2 54)cos ( / 4) (6 6 27)cos( / 4) 4 4( , )
54 cos ( / 4) 27 cos( / 4)

H v v H v v H vP H v
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S H v v v v v v v v
v v

cos v v v v v v v v v v
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It is also noted that 2

0
lim ( , ) 1

v
P H v

→
=  and 2 2 4

0

1lim ( , ) 2
12v

S H v H H
→

= − + + , with 
2( , )

2
S H v  being the rational approximation for the cosine as v → 0. The method is consid-

ered to be zero dissipative whenever v → 0. Solving 2 41 2 2
12

H H− + + <  for H > 0, we 

obtain 2 3H < . It is also observed that the local truncation error is O(h6) as v → 0. The 
region of absolute stability of this method depicted using Maple 2020 software is shown 
below in Figure 1. 

 
Figure 1. Region of absolute stability of the proposed method. 

4. Results 
The new and existing codes are abbreviated as follows. 
MEHM: The modified explicit hybrid method with four stages derived in this paper. 
EHM5IIPA: The phase-fitted and amplification-fitted explicit hybrid method with 

four stages derived in [8]. This method was derived based on the fifth-order hybrid 
method of the form (2). 

Several problems are used to provide numerical comparisons in a constant step-size 
setting. Maximum global errors produced by each method are tabulated in Tables 2–5. All 
numerical computations have been done in Maple 2020 software with 20 precision digits. 

Problem 1 (Prothero–Robinson problem) 

Source: D’Ambrosio et al. [9] 
2 ( )( ) ( ( ) )) , (0) 1, (0) , 0 10t ty t y t e e y y tμ μμ μ− −′′ ′= − − + = = − ≤ ≤  

Exact solution: ( ) ty t e μ−= . We use v = h in computing the numerical solutions for μ = 1, 
with MEHM and EHM5IIPA codes. 
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Table 2. Maximum global error in solving Problem 1. 

Step-Size MEHM EHM5IIPA 
0.4 8.12463 × 10−6 3.03912 × 10−5 
0.2 4.72859 × 10−7 1.19831 × 10−6 
0.1 2.80407 × 10−8 4.23368 × 10−8 

0.05 1.69979 × 10−9 1.41116 × 10−9 
0.025 1.04445 × 10−10 4.55621 × 10−11 

Problem 2 (Duffing equation) 

Source: Yusufoğlu [10] 
3( ) 3 ( ) 2 ( ) cos( )sin(2 ), (0) 0, (0) 1, 0 20y t y t y t t t y y t′′ ′+ − = = = ≤ ≤  

Exact solution: ( ) sin( )y t t= . For MEHM and EHM5IIPA codes, v = h was used. 

Table 3. Maximum global error in solving Problem 2. 

Step-Size MEHM EHM5IIPA 
0.4 2.48225 × 10−14 1.02736 
0.2 5.51845 × 10−13 2.71483 × 10−1 
0.1 2.95522 × 10−13  8.20955 × 10−2 

0.05 3.76672 × 10−12 2.97346 × 10−3 
0.025 4.66915 × 10−12 9.77418 × 10−5 

Problem 3 (The well-known two-body problem) 

Source: Franco [11] 

1
1 1 12 2 ( 3/2)

1 2

, (0) 1 , (0) 0,
( )

y
y y e y

y y
′′ ′= − = − =

+
 

2
2 2 (3/2)
1

2 2
2

2

1, (0) 0, (0) , 0 20
( 1)

ey y y
y

y y
t

e
+′′ ′

+
= − = = ≤ ≤

−
 

 

Exact solution: 2
1 2( ) cos( ) , ( ) 1 sin( )y t R e y t e R= − = − , where R satisfies the Kepler’s 

equation sin( )t R e R= −  and e is the eccentricity of the orbit. In this numerical experi-
ment, we consider the case e = 0.03. For MEHM and EHM5IIPA codes, v = h. 

Table 4. Maximum global error in solving Problem 3. 

Step-Size MEHM EHM5IIPA 
0.4 1.42361 × 10−2 2.29762 × 10−1 
0.2 9.29187 × 10−4 1.98607 × 10−3 
0.1 6.00156 × 10−5 1.82083 × 10−4 

0.05 3.81442 × 10−6 6.89947 × 10−6 
0.025 2.40430 × 10−7 2.27004 × 10−7 

Problem 4 (Kramarz’s system) 

Source: D’Ambrosio et al. [12] 
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2 2 2 2 0
( ) ( ), (0) , (0)

1 1 2 1 0
y t y t y y

μ μ
μ μ

     − −
′′ ′= = =     − − −     

 

where 2500μ =  and 0 5t≤ ≤ . 
Exact solution: 1 2( ) 2cos( ), ( ) cos( ).y t t y t t= = −  For both codes, v = h is used. 

Table 5. Maximum global error in solving Problem 4. 

Step-Size MEHM EHM5IIPA 
0.05 1.16031 × 10−16 1.74602 × 10−16 
0.025 1.72165 × 10−16 1.67037 × 10−15 

0.0125 5.41637 × 10−15 5.97021 × 10−16 
0.00625 7.41002 × 10−15 1.49427 × 10−14 
0.003125 2.45548 × 10−14 5.03433 × 10−14 

5. Discussion and Conclusions 
In this paper, a modified explicit hybrid method with four stages was proposed. The 

derivation of the method is based on the modified formula of hybrid method given in (1) 
while taking into consideration 2

0
lim ( , )

v
P H v

→
. For this method, it was our intention to 

achieve 2

0
lim ( , ) 1

v
P H v

→
=  in such a way that 

2( , )
2

S H v  is the rational approximation for 

the cosine, as studied by Coleman [13]. Moreover, the first stage of the modified formula 
is imposed to exactly integrate wxe , while the remaining stages are imposed to exactly 
integrate sin(wx) and cos(wx) where w ∈ C. The maximum global errors of the new 
method were tabulated and compared with that of the phase-fitted and amplification fi-
ted hybrid method in [8]. From the numerical results, the new method was observed to 
achieve high accuracy in solving the Duffing equation and Kramarz’s system. Further-
more, the new method performs with better accuracy for bigger step-sizes than that of the 
existing method for solving both the Prothero and Robinson and the two-body problems. 
Hence, this study offers evidence that, by taking into account 2

0
lim ( , )

v
P H v

→
, the resulting 

modified explicit hybrid method is capable of solving second-order ordinary differential 
equations ( ) ( , )y t f t y′′ = . 
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