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Abstract: In this study, we propose an extension of the modified Newton-Householder methods
to find multiple roots with unknown multiplicity of nonlinear equations. With four functional
evaluations per iteration, the proposed method achieves an optimal eighth order of convergence. The
higher the convergence order, the quicker we get to the root with a high accuracy. The numerical
examples have shown that this scheme can compete with the existing methods. This scheme is also
stable across all of the functions tested based on the graphical basins of attraction.
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1. Introduction

One of the most popular problems in mathematics has been finding roots of nonlin-
ear equations f(x) = 0. In practice, an exact solution to the root is almost impossible.
And hence, an iterative scheme is necessary. The most famous method of finding a simple
root iteratively is Newton’s method,

i1 = X f:'(&))’ 1)

which converges quadratically provided the initial guess is sufficiently close to the real
root. Since then, many researchers have improved the Newton method to higher orders
of convergence (see [1-5]). An example of a method which has cubic convergence is
Householder’s method,

Yo =y — flxn) F20en) 7 (xn)
n+1 n f/(xn) 2f’3(xn) .

Despite its high order of convergence, Householder’s method (2) is not widely used
because of the high number of function and derivative evaluations involved in the method.
Some modified forms of Householder’s methods are given in [6,7]. It is also hard for such
methods to reach an optimal convergence order based on the Kung-Traub hypothesis [8],
which states that an iterative scheme can reach the optimal convergence 25 when the
number of functional and the derivative evaluations is k + 1.
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The classical Newton method (1) will converge linearly to a multiple root [9]. The ear-
liest modified version of (1) for approximating a multiple root is due to Schréder [10] and

given as
f(xn)

f'(xn)’
which converges quadratically, where m, the multiplicity of the root, needs to be known in
advance. There have been quite a number of methods proposed for finding a multiple root
of known multiplicity of nonlinear equations [11-15]. In practice, however, both the root
and its multiplicty are unknown. Traub [16] converted the problem of approximating a
multiple root of unknown multiplicity of f(x) = 0 to finding a simple root of an equivalent
problem via the transformation

Xpy1 =2Xp —Mm

®)

_ [
(D(JC) f/ ( X) . (4)

However, in solving iteratively this transformed equation, evaluations of the first and
second derivatives are required, which most of the time, are more complicated than the
evaluation of f. Using a similar approach of Traub [16], Parida and Gupta [17] presented
a scheme which works for both cases of roots with known and unknown multiplicity.
By suitable accelerating generators of iterative functions, Petkovic et al. [18] proposed
two classes of methods for both cases of roots with known and unknown multiplicity.
A new fifth-order modified Newton’s method for finding multiple roots of nonlinear
equations with unknown multiplicity was developed by Li et al. [19]. Sharma and Bahl [20]
proposed a sixth-order modified Newton’s method based on Traub’s [16] transformation.
Jaiswal [21] claimed to be the first to propose an optimal eighth-order method for multiple
roots of unknown multiplicity. Many researchers have modified the Newton method
using Schroder’s approach [10] to develop new optimal methods for finding multiple
roots [11-14,22,23]. However, there have been much less work done on developing methods
using Traub’s conceptual approach [16].

In this paper, we aim to modify a Newton-Householder method by adopting Traub’s
concept and approximating the weight function as a rational function. The optimal method
we propose for finding multiple roots of unknown multiplicity is eighth-order with four
functional evaluations at each iteration.

2. Development of the Methods and Convergence Analysis

The Householder method only achieves convergence of order three and it is not
optimal according to the Kung-Traub conjecture. By eliminating the second derivative,
the Householder method can be made optimal. A modified version of the three-step
Newton-Householder method for approximating a simple root has been proposed by Sari-
man and Hashim [24] recently. The method is optimal and of eight order. Our motivation
here is to develop an optimal eighth-order Newton-Househodlder method for finding a
multiple root with unknown multiplicity.

We begin with the following family of Newton-Householder method for a simple root:

f(xn)

T )
_ o flym) fyn)? (af(yn) + Bf (xn)
e e A () o
oy = f(zn)
n+1 n f/(zn)’
where «, B € R. First, we approximate f'(z,) by
Flan) ~ T ©)

VICATN
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where s = f(yu)/f(xn) and u = f(zn)/ f (yn). Next, following Lee et al. [25], we approxi-
mate #(s, 1) by the rational function

Po+ P15 + pas” + pas® + u(ps + pss + pes’) )
0+ 915 + 425% + q35° + u(qs + 955 + 465)

n(s,u) =

where p,, ,(0 < n < 6) € R. Substituting (6) and (7) into (5), we get

e f(xn)
A
_ o flym) fyn)? (af(yn) + Bf (xn)
T ) ,wwm( (4 — 10)? ) ®)

M f(zn)< po + P15 + p2s® + pas® + u(pa + pss + pes* ))
ntl T (xn) \ g0+ 15+ q252 + q3s® + u(qs + 955 + qes?) )

To make (8) efficient for finding multiple roots, we adopt the idea that has been
presented by Traub [16]. Hence, the new optimal method for multiple roots based on the
Newton-Householder scheme can be written as

_ CID(xn)
]/n - xl’l (Xn)/
@ (yn) D(yn)? [ a®(yn) + pP(xn)
=Y T @ (x) T 205 (xy) ( (Yn — xn)? ) ©)

(
it = 2 — DAzn) <P0+P15+P252+P353+M(P4+P55+P652)>
T @) \ o+ g1 + 3257+ 435° + u(qa + 455 + 4657)

where ®(x) = f(x)/f'(x), s = ®(yn)/P(xn), u = ©(24)/P(yn) and &, B, pu, Gu(0 < n <
6) € R. The scheme yields the optimal order of eight with four functional evaluations.
The convergence proof of the scheme (9) is given next.

Theorem 1. Assume that -y € C is the root of f(x) with multiplicity m. If the initial value xg is
sufficiently close to the root <y, the iteration scheme (9) can reach a convergence order of eight when

Ileof 1824/ Po = 4qo = 78/ p2 = 716/ p3 :25/ q1 = 161 q3 = 723/ q4 :Sr
P1=ps=pPs5=ps=1q2=1G5=1q6 =0,

azlol ,B:4/ pO:q():l/ pl:p6:2/ p2:P3:6/ p4:_1/ 5]4:_
Ps =1 =4q2 =43 = 45 = 46 = 0.

Proof. Let f(x) be defined as
f(x) = (x=7)"G(x), (10)

where 1y is a multiple root of the function f(x) with multiplicity m if f(x) # 0and G(7) # 0.
The first-order derivative of f(x) is

f1x) = m(x —9)" G (x) + (x — )" G (x). (11)

Substituting Equations (10) and (11) into Equation (4), we get a new kind of transfor-
mation function ®(x),

SO C R o <lCO W)
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Applying the transformation (12) to the scheme (8) for a simple root, the scheme will be
transformed to another scheme for multiple roots. Now expanding G(x) using the Taylor
series about 7, we have

G(xn) = G(7)[L + c1en + cael + c3el + caepy + ey, + Coely + c7el, + cgely + coey, + O(er’)], (13)

where ¢, = G(k)('y)/k!G('y), k=1,2,3,...and e, = x,; — 7. Using (13) and its derivative,
(12) can be written as:

enG(xy)
D(xy) =
(1) = G Ton) + en G () (14)
= wiey + wWie? + waes + wyel + wseh + weed + wrel, + wged + O(e)),
where

1

w1 = %

1
Cl]z - W
0y — (c3( m+1)3—2c2m),

m
w (—=3csm? + 3 (—(m 4+ 1)?) + cocym(3m + 4))
4= ,

)
ws = % (—Zczc%m (2m2 +5m+ 3) + 2c3c1m? (2m 4 3) + 2m? (c%(m +2)— Zc4m) + cj(m + 1)3),
we = % [m3(cac3(5m +12) — Sesm) — czcim?® (5m? 4 14m +9) + cym?® (cym(5m + 8) — c3(5m>
+16m +12)) + 5 (—(m + 1)*) + cocim(m +1)*(5m + 8)],
wy = % [m3 (=23 (m +2)? + 2cycom(3m + 8) + 3m(c3(m + 3) — 2cem)) + 6¢3c3m* (m 4 1) (m + 2)

+ 3c3m? (m? + 3m +2)(c3(3m + 4) — 2cqm) — 2cym> (2cp¢3(3m* + 11m +9) — csm(3m + 5))
+§(m+1)° — 2coctm(m +1)3(3m + 5)],
wg = %[—Qc‘fﬂzz(ﬂz +1)3(7m +15) — c3m* (m 4+ 1)3(2c3(7m® + 24m + 20) — cym(7m + 16))
+ m*(c3c3 (— (7m* + 32m + 36)) + cscom(7m + 20) 4 m(czcq(7m 4 24) — 7eym)) + c3m3
x (m 4 1)(3cac3(7m?* + 27m + 24) — csm(7m +15)) + cym®(—2cqcom(7m? + 28m + 24)
+ m(cem(7m +12) — c3(7m?* + 30m +27)) + c5(m +2)2(7m +8)) + ¢f (—(m +1)°)
+ coacym(m + 1) (7m 4 12)).

Next, substituting (14) and its derivative
D (x) = Wy + 2wpey + 3wse? + dwyed + Swsel + 6ween, + 7wyed + 8wge!, + O0(ed), (15)
into the first substep of iteration scheme (9) gives
Y — 7 = ey + 3 + ey + sen + ok + ren + seh + O(ey), (16)

where
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C1
1102 = 7%/
2(c3 —200)
P53 = T’
(3(1 = 3m) + coc1(9m — 2) — 9czm)
Py = - ,
2(2cf(m — 1) + c2c3 (7 — 8m) + czc1(8m — 3) + 4c3(m — 1) — 8cqm)
Y5 = s ’
1
P = ﬁ[c?(—S(m —2)m — 1) + cac3 (m(25m — 47) + 4) + c3c3m(33 — 25m) + c1(c3((48
—25m)m — 4) 4 cqm(25m — 12)) + m(cpc3(25m — 42) — 25¢5m)],
1
Py = $[2(cg(—6m2 +20m — 8) + c§(m — 3)(3m — 1) — 2co¢} (m(9m — 29) + 8) + 6c3c3

x (m(3m — 8) + 1) + 3¢3(c3(m(9m — 29) 4 8) + 2c4m (5 — 3m)) + 2¢1(csm(9m — 5)
— 2cpc3(m(9m — 26) + 3)) + 2cpcqm(9m — 20) + 9m(c3(m — 3) — 2cem))],

g = %[c{(l —7m((m —5)m 4 3)) + cac] (m(m(49m — 240) +137) — 6) + cacim((214
—49m)m — 81) + ¢3(2c3(m((239 — 49m)m — 136) + 6) + c4m(m(49m — 163) + 24))
+ c3m(3cacs (m(49m — 221) + 84) 4 c5m (95 — 49m)) + c1(c5 (m(m(49m — 242) + 156)
—8) — 2cycom(7m(7m — 26) + 24) + m(c3((219 — 49m)m — 36) 4 cem(49m — 30)))
— m(c3c3(m(49m — 232) +132) + c5com (130 — 49m) + m(c3cy (204 — 49m) + 49¢c7m))).

Substituting Equations (14)—(16) into the second substep of iterative scheme (9), we obtain

(B—4)c2 By (3 (a—3B+2(2B—7)m+4) +4(7 — 2B)cocym) 4

L 2m3 En
3 (17)
+ ) Gk 4+ 0len),
k=0
where {; = {x(a, B,m,c1,¢2,. .., cg). To eliminate ez, we take B = 4 and this gives
(S (a+2m—8) —4dcicom) , S kid 9
Zn — Yn = 503 ey + Z Quest™ 4+ 0(ey), (18)

k=0

where
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—6c301m?% — 8c2m? + cA(2(a — 4) + m(—3a — 4m + 24)) + 2coc2m(3(a — 8) + 7m
2 1 1

Op = pr ,
1
O =5 < [—84cpcam® 4 Bezcim?® (9a 4 22m — 70) + 8cym? (c3(6a + 12m — 49) — 3cym)
+ 3 (9a 4 20m3 + 21 (& — 8)m?* — 32(a — 4)m — 24) + cpc3m(64(x — 4) + m(—75a
— 94m +602))],

O, = % [2(2c1m3 (cac3(—27a — 521 + 216) + 5esm) + m> (—4c3 (4a + 5m — 34) + 40cycr m
+27¢3m) + cacim?® (m(39a + 48m — 308) — 36(a — 4)) + c5m?*(c3(m(84n + 87m — 682)
—96(a — 4)) — 2cam(6a + 15m — 46)) + 2¢§(—2a + m(11a + 5m> + 7(a — 8)m?
—18(& — 4)m — 28) +4) + coctm(—4da + m(132(a — 4) 4 m(—69a — 58m + 554))
+112))],

O3 = % [4m*(2c3(c3(54a + 58m — 453) — 5lcym) — 65cyc5m) + c3m>(coc3(1728x — 17 m

X (81a 4 78m — 650) — 6900) + 5csm (15a + 38(m — 3))) 4 cym>(—4c3 (—256a + m
x (156 + 121m — 1286) 4 1028) + 8cycom (484 + 91m — 380) + 3m(c3(81a + 146 m
—636) — 20cem)) + cacim®(6(67a — 176) + m(—1120a + m(537a + 428m — 4268)
+4482)) + c§m? (2c5 (688 + m(—1696a + m(687a + 478m — 5555) + 6792) — 1664)
+ c4m(8(32a — 129) + m(—267a — 326m +2090))) + cf (5(5a — 8) + 2m(—90

+ m (239 + m(—240a + 7m(9(a — 8) + 5m) +961) — 592) + 168)) + coc3m (360
+ m(—1778& + m(2464a + m(—777x — 480m + 6236) — 9866) + 4384) — 672)].

Using (14)—(18), the functions s and u can be rewritten as

e2(c2(2m —1) — 4com 4
5 = —C—len + (ci 2) 2 )6,21 + Z k3 0(ed), (19)
m m =
deom —c2(a+2m—8 5
u - e 12(m2 ))eﬁ + ) 0+ 0(e]), (20)
k=0

where &, = &(m,c1,¢p,...,c8) and 6y = Oc(m,cq,¢,...,cs) respectively. Substituting
(14)—(20) into the third substep of iteration scheme (9), we get the error with the convergence
order of four,

(o +2m —8) — deycom — 4
eniy = {3 tiem)pZ i)yt L ¥ et a0, @)
2(m qO) k=0

where p = pr(m,c1,ca,...,cg).
Our intention is to achieve optimal convergence order of eight, and so we choose the
values of the constants of &, p, and g,(0 < n < 6) as follows:

a«a=10, po=qgo=-8 pr=-16, p3=25 g1 =16, g3 =-23, q4=38,

(22)
P1L=pPs=pP5=PpPe6=1q2=45=1qs = 0.
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1 2
Cn+1 = am’ [Cl

This yields the error
(c3(m +1) — 2com) (12c3m* + ¢3(2m — 3) (2m + 7) — deyeym(3m +4))]ed + O(e)). (23)
Another set of parameter values that gives convergence of order eight is
«=10, po=qo=1 p1=ps=2 p2=p3=6 ps=-1 q=-2 (24)
Ps =41 =q2 =43 = 45 = g6 = 0,
which gives
1-4 3 3 1)-2
0 p1= (c2(cd —4cp) +3c1c3) (3 (m + 1) — 2com) &40, 25)

m°

Based on the errors given in (23) and (25), we can conclude and confirm that our
method has order of convergence eight with four functional evaluations (®(x;), ®'(x,),
®P(yn), P(zn)) at each iteration. [

Based on the two sets of parameter values as given in (22) and (24), we obtain the
following schemes:
1.  Taking the parameter values (22) for the weight function # (s, u) and choosing & = 10
and = 4 in the proposed scheme (9), we obtain a new modified Newton-Householder
scheme for multiple roots with unknown multiplicity:

. P (xn)
]/n - x}’l q)/(x”)/
Sy P(yn)* (109 (yn) + 4P (xn)
VT S 2000\ (e —w)? ) (26)
. P(z) —8 — 16s% 4 253
Tl =2 T @) \ 28+ 165 — 235% + 8u )’

where ®(x,) = f(x1)/f' (xn), s = P(yn)/P(xy) and u = P(z,) /P (yn).
2. Similarly, the parameter values in (24), and & = 10 and B = 4 yield a scheme with the
first two steps exactly the same as in (26) and a slightly different last step as follows:

®(zy) <1+Zs+6s3+252(3+u)—u>. 27)

Tl =20 ) 1-2u

3. Numerical Examples

In this section, our methods (26) and (27), abbreviated as mNH1 and mNH2 respectively,
will be compared against the classical Newton method (1), the methods of Jaiswal [21] and
Zafar et al. [23], abbreviated as NM, JM and ZM respectively, and given below:

1.  Jaiswal [21] introduced the scheme that achieves optimal convergence order eight

as follows:
. f(xn)
Yn = In gl(xnfzn)’
f(yn)
n=—Yn— s 28
! Y gz(xnl]/n/zn) @8
Xpi1 = Uy — f(un)

gB(xn/]/n/ Zn, un) ’
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where

/ Nf(zn)—f(xn) _
f'(xn) ~ W = g1(xn,zn),
/ ~ Flxn, Ynl flyn, zn] _
f (y”) ~ f[xn,Zn] - gZ(xn/]/n/Zn)/

f/(u”) ~ b2 - b1b4 = g3(xnrynzzn/ ul’l)/

and zy = Xy + f(xn), b1 = f(un), by = (flyn, tin, Xn] — flYn, vin,zn])/ (flyn, za] —
flyn,xnl), b3 = flyn, tin, z2n] + baf[yn,zn| and by = flyn, un] — b3 (yn — un) + f(yn)bs.

The divided differences appearing above have their usual definitions.

2. The following iterative method presented by Zafar et al. [23] has optimal convergence

order of eight with four functional evaluations and derivations:

f(xn)
f'(xn)’
B 1+ 8uy + 112\ f(xn)
R ’”( 1+ 6y )ff(xn>
ta ) f(xn)

=zp—m(1l+t,+ 2 2+ 4t
Xn+1 Zn m( +ty + > +un( + n+wn) f,(xn)wn/

where uy = [f(yu)/f(xa)]"", ta = [f(za)/ f(ya)]"" and wy = [f(za) / f (2a)]"' ™.

The iteration scheme (29) still requires to identify the multiplicity of the roots before it
can be used.

Yn =Xy —m

Uy, (29)

For comparison purposes, let us consider the test functions [26]:
o fi(x) = x(x2+1)(2e" 1 + x2 — 1) cosh®(7x/2), root =i, m =5, xg = 1.3
o fo(x) = (xe —sin?(x) + 3cos(x) +5)%, root = —1.207647827 ..., m = 4, xg = —1
e f3(x) = (sin®(x) — x> +1)?, root = 1404491648 ..., m =2, xg = 2
o fi(x) = (x* —e* —3x+2)°, root = 0.2575302854 ..., m = 5, xg = 0.

The criteria that we desire to analyze are absolute difference between two consecutive
iterations, |x, — x,_1/, the residual error of the corresponding function, | f(x,)|, CPU time
processing, T, in milliseconds, asymptotic error constant, 7 = |x, — x,_1|/|x,—1 — x4—2|#,
theoretical order of convergence, y € Z*, and computational order convergence, p, in [27]

as follows: In( Ul )
N{|Xy+1 — Xn|/ |Xn — Xp—1
o~ . 30
0™ ol — tu 11/ Pt — 2]} )

All calculations were performed using Maple 18 mathematical software, which uses
multi-precision arithmetic with 3000 significant digits. In the numerical results, we marked
X x 10Y) as X(+Y).

First, in Table 1, we give absolute difference between two consecutive iterations,
|xy — x,_1]. We observe that mNH1 and mNH2 yield the smallest errors for all the test
functions, with the exception of mNH2 for f;. Table 2 shows that the corresponding
function’s absolute value, |f(x,)|, up to the third iteration. We can see that our method
mNH1 outperformed all the methods NM, JM and ZM, with mNH2 as the second best
in most cases. We note that the method ZM diverges when applied to f,, in addition it
needs the multiplicity to be known. Table 3 shows the methods with a near zero value
of the absolute asymptotic error 7 are mNH1, mNH?2, and JM. The closer the value of
the asymptotic error 5 to zero, the faster the method converges to the root. The CPU
time processing T for mNH1 and mNH?2 are much less compared to the NM, ZM and
JM methods.
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Table 1. Results of |x, — x,,_1].
NM M M mNH1 mNH2
|2 —x1|  4.72(=2) 6.97(— 6) 8.31(—8) 4.08(-8) 3.16(—6)
f1(x) |x3 —x2|  3.79(=2) 1.56(—42) 2.56(—58) 3.57(—61) 1.45(—45)
|xg —x3] 3.05(—2) 9.77(—366) 2.09(—462) 1.22(—485) 2.89(—360)
|[xp —x1|  4.22(-2) 3.96(— 5) 2.07(-2) 2.15(-5) 1.06(—5)
fa(x) |xz —xp|  2.77(-2) 6.87(—34) 2.07(—2) 1.16(—36) 1.63(—40)
|xg —x3]  1.90(—2) 5.62(—264) 2.07(—2) 8.30(—287) 5.04(—319)
|xo —x1|  1.50(—1) 5.64(— 4) 2.37(—3) 1.38(—4) 1.14(—4)
fa(x) |x3 —x2|  9.46(—2) 1.21(-27) 1.07(—20) 1.66(—31) 6.48(—33)
|xg —x3] 5.63(—2) 5.20(—-217) 1.72(—159) 7.31(—247) 7.02(—259)
|[xo —x1| 4.06(—2) 6.23(— 9) 3.04(—10) 1.67(—9) 1.74(-9)
fa(x) |x3 —x2| 3.28(—2) 7.80(—70) 9.14(—20) 4.15(-75) 1.25(—74)
|xg —x3] 2.65(—2) 4.70(—557) 5.78(—80) 6.10(—600) 9.08(—596)
Table 2. Results of | f(x,)].
NM M M mNH1 mNH2
|f(x1)] 4.63(—2) 7.67(—25) 1.85(—34) 5.27(—36) 1.46(—26)
fi(x) |f(xp)] 1.52(-2) 4.29(—208) 5.14(—287) 2.69(—301) 3.00(—223)
|f(x3)] 498(—3) 4.14(—1674) 1.85(—2307) 1.24(—2433) 9.44(—1797)
If(x1)] 2.92(+1) 4.20(—13) 9.02(+5180) 3.65(—14) 2.13(—15)
fa(x)  |f(x2)] 8.54(0) 3.80(—128) 1.09(+45177) 3.09(—139) 1.19(—154)
|f(x3)] 256(0) 1.70(—1048) 1.32(+5173) 8.08(—1140) 1.10(—1268)
|f (x1)] 1.39(0) 1.96(—6) 3.49(-5) 1.18(-7) 8.00(—8)
fa(x) |f(xz)] 4.01(-1) 8.96(—54) 7.00(—40) 1.70(—61) 2.58(—64)
If(x3)] 1.12(-1) 1.67(—432) 1.83(—317) 3.29(—492) 3.04(—516)
|f(x1)] 3.30(—1) 7.23(—39) 2.01(—45) 9.95(—42) 1.23(—41)
fa(x) |f(x2)]  1.09(-1) 2.22(—343) 4.91(—93) 9.49(—370) 2.38(—367)
|f(x3)| 3.58(—2) 1.76(—2779) 496(—394) 6.49(—2994) 4.76(—2973)
Table 3. Result of 7, p and 7.
NM M M mNH1 mNH2
/] 2.13(+1) 2.79(-1) 1.12(-1) 4.63(—2) 1.46(-1)
f1(x) Y 0.9851 8.0000 8.0000 8.0000 8.0000
T 640.0 484.0 235.0 281.0 266.0
i 247(41) 1.13(+2) 6.21(+11) 2.51(+1) 1.04(0)
fa(x) [y 0.8999 8.0000 1.0008 8.0000 8.0000
T 547.0 281.0 235.0 172.0 172.0
Ui 6.3(0) 1.17(-1) 1.04(+1) 1.26(0) 2.27(—1)
f3(x) [y 1.1281 8.0001 8.0005 8.0000 8.0001
T 453.0 188.0 109.0 125.0 140.0
n 2.46(+1) 3.43(-5) 1.19(+473) 6.92(-5) 1.49(—4)
fa(x) Y 1.0111 8.0000 6.3212 8.0000 8.0000
T 125.0 47.0 312.0 47.0 47.0

4. Basins of Attraction

In this section, we demonstrate the basins of attraction [28] to verify the stability of
the proposed schemes. We present the basin of the attraction in the form of a rectangular
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image with dimensions [—2,2] x [—2,2] in 400 x 400 grids. We run this analysis with a
maximum of 100 iterations per point with the stopping convergence criterium set at 10~3.
We note that a coloured region represents a convergence point, while the black region
signifies a divergence point. For this purpose, we consider the test functions as given by
Zafar et al. [23], Kumar et al. [29] and Alharbey et al. [30] (cf. Table 4). Figures 1-4 shows
the images for the basins of attraction of each method. Figure 3, in particular, show that
all the methods are convergent at all points for the function g3. Overall, all the proposed
methods have a stable scheme for finding the roots of nonlinear equations.

Table 4. Test functions for basins of attraction.

Function Roots Multiplicity
91(z) = z* + 423 — 2422 + 162 + 16 {—7.4641,—0.535898, 2,2} 2
3 o {—0.5 — 0.866025i, —0.5 — 0.866025i, 2
2(2) = (2 =-1) —0.5 + 0.866025i, —0.5 -+ 0.866025i, 1,1}
g3(z) = 23 — 5.2222 + 9.0825z — 5.2675 {1.72,1.75,1.75) 2
{—2,—2,—1.41421, —1.41421, 2
$a(z) = (= — 62" +8)? 1.41421,1.41421,2,2}

Figure 1. Basins of attraction of mNH1, mNH2, JM and ZM methods respectively for g1 (z

Figure 2. Basins of attraction of mNH1, mNH2, JM and ZM methods respectively for g»(z

’ ", ¥ L
g b
4 | o g

Figure 3. Basins of attraction of mNH1, mNH2, J]M and ZM methods respectlvely for g3(z

Figure 4. Basins of attraction of mNH1, mNH2, JM and ZM methods repectively for g4(z
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5. Conclusions

In this work, we have presented two optimal Newton-Householder methods for
finding multiple roots with unknown multiplicity of nonlinear equations. Convergence
analysis was given to show that our methods are of eighth order. Such types of methods are
desirable since, in practice, both the root and its multiplicity are unknown. In addition, our
methods achieve a high order of convergence with four function evaluations per iteration.
The effectiveness of the proposed methods has been demonstrated in terms of the CPU
time speed, absolute error, and order of convergence. Furthermore, the schemes have been
shown to be stable via the basins of attraction through several test functions. We conclude
that our scheme can compete with other recent methods in finding multiple roots with
unknown multiplicity of nonlinear equations. In our future work, we shall apply the
CESTAC (Controle et Estimation Stochastique des Arrondis de Calculs) method [31] to
obtain a new termination criterion instead of the traditional absolute error.
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