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Abstract: In this paper, we consider a member of an integrable family of generalized Camassa–Holm
(GCH) equations. We make an analysis of the point Lie symmetries of these equations by using the
Lie method of infinitesimals. We derive nonclassical symmetries and we find new symmetries via the
nonclassical method, which cannot be obtained by Lie symmetry method. We employ the multiplier
method to construct conservation laws for this family of GCH equations. Using the conservation laws
of the underlying equation, double reduction is also constructed. Finally, we investigate traveling
waves of the GCH equations. We derive convergent series solutions both for the homoclinic and
heteroclinic orbits of the traveling-wave equations, which correspond to pulse and front solutions of
the original GCH equations, respectively.

Keywords: generalized Camassa–Holm equations; nonclassical symmetries; multiplier method;
conservation laws; double reduction; homoclinic and heteroclinic orbits; multi-infinite series solutions

1. Introduction

The Camassa–Holm (CH) equation, proposed in [1] as a model for the unidirectional
propagation of shallow water waves, has been extensively studied in the last two decades
both from analytical and numerical point of view due to its several important properties:
integrability by the inverse scattering transform [2], bi-Hamiltonian structure [3], exis-
tence of peakons and multi-peakons type solutions [1,4], well-posedness and breaking
waves [5,6], existence of global conservative solutions [7], infinite hierarchy of local higher
symmetries [8].

More recently, Novikov in [8] classified 27 generalized Camassa–Holm equations
belonging to the following class:

(1− D2
x)ut = F(u, ux, uxx, uxxx, . . . ). (1)

The obtained equations are homogeneous polynomial generalizations of the CH equa-
tion containing quadratic and cubic nonlinearities and they are all integrable. Some of
the equations considered in [8] have attracted much interest providing peakons and com-
pactons solutions [9] and smooth multisolitons solutions [10]. Also, blow-up phenomena
and local well-posedness [11] as far as the conservation laws [12] have been investigated
for some of the generalized Camassa–Holm equations presented in [8].

In this paper, we will consider the following equation belonging to the class of
Equation (1):

(1− D2
x)ut = (1 + cDx)(au2uxx + duu2

x − 2bu2ux), (2)

which explicitly reads as follows:

ut − utxx − acu2uxxx − 2 c(a + d)uuxuxx − (a− 2 bc)u2uxx

− dcux
3 − (d− 4 bc)uux

2 + 2 bu2ux = 0.
(3)
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It is a Camassa–Holm type equation with cubic nonlinearities. It is a generalization of
the Equation (34) in [8], in fact the two equations contain the same kind of terms, but
in Equation (2) all the parameter coefficients are different and not fixed; in particular,
Equation (2) reduces to the one-parameter Equation (34) in [8] with a = d and b = c = 1.

At first, we will study the symmetry property of Equation (2). Lie symmetries admitted
by nonlinear partial differential equations (PDEs) are led to find invariant solutions and to
reduce the number of independent variables of the PDE. In particular, a (1 + 1)-dimensional
PDE can be reduced to an ordinary differential equation (ODE). A new method, the so-
called nonclassical method of group-invariant solutions, proposed by Bluman and Cole
in [13], allows the deduction of new symmetries of a PDE. Here, we will obtain symmetry
reductions of Equation (2). Using the algorithm given in [13,14], based on the nonclassical
method, we will obtain new reductions of (2).

Then, we will derive some conservation laws of Equation (2). A great many authors
have used the conservation laws to study PDEs as they have a key role in the resolution of
problems in which some physical properties do not change along the time [15–18]. We will
use a general method to derive conservation laws given in [19–22]. Moreover, recalling
that for PDEs in two independent variables any symmetry-invariant conservation law
will reduce to a first integral for the ODE obtained by symmetry reduction, we will focus
on the conservation laws invariant under translations. We will apply the multireduction
method [23] to obtain first integrals and exact solutions.

Finally, we will investigate the existence of pulse and front solutions of Equation (2).
Using the same method in [9,24,25], we will derive this type of solutions as convergent
multi-infinite series solutions for the homoclinic and heteroclinic orbit of the traveling-wave
equation corresponding to Equation (2).

The plan of the paper is the following: in Section 2 we deduce Lie symmetries and
nonclassical symmetries of GCH equations, in Section 3 conservation laws have been
derived by using the direct method proposed in [20]. In Section 4 the conservation laws
invariant under translations are derived and a multireduction has been achieved yielding
some first integrals of the reduced ODEs. In Section 5, we will first analyze the dynamics of
the traveling-wave equation corresponding to Equation (2), obtaining suitable parameter
regimes for the existence of homoclinic orbits to saddle equilibrium and heteroclinic
orbits joining two saddle equilibria. Then, we will approximate these orbits (which are
respectively pulse and front solutions of Equation (2)) via multi-series solutions, ensuring
both continuity and convergence of the solutions.

2. Symmetry Analysis and Reductions
2.1. Lie Point Symmetries

At first, we apply the classical method to (3) considering the following one-parameter
Lie group of infinitesimal transformations in (x, t, u):

x∗ = x + εξ(x, t, u) + O(ε2),

t∗ = t + ετ(x, t, u) + O(ε2), (4)

u∗ = u + εη(x, t, u) + O(ε2), (5)

where ε is the group parameter which is generated by the vector field

X = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u. (6)

By Criterion of Invariance [22] we toned to leave invariant the solution space of Equation (3).
This condition is given by:

pr(3)X
(

ut − utxx − acu2uxxx − 2 c(a + d)uuxuxx − (a− 2 bc)u2uxx − dcux
3 (7)

−(d− 4 bc)uux
2 + 2 bu2ux

)
= 0 (8)
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when the equation is satisfied, where pr(3)X is the third-order prolongation of the vector
field (6) obtained by the following prolongation formulas

pr(3)X = X + ζx
∂

∂ux
+ ζt

∂
∂ut

+ ζxx
∂

∂uxx
+ ζtx

∂
∂utx

+ ζtxx
∂

∂utxx
+ ζxxx

∂
∂uxxx

,

with the coefficients

ζx = Dxη − utDxτ − uxDxξ,

ζt = Dtη − utDtτ − uxDtξ,

ζxx = Dx(ζx)− utxDxτ − uxxDxξ,

ζtx = Dx(ζt)− uttDxτ − utxDxξ, (9)

ζtxx = Dx(ζtx)− utxtDxτ − utxxDxξ,

ζxxx = Dx(ζxx)− uxxtDxτ − uxxxDxξ

where Dx and Dt are the total derivatives of x and t, respectively. The prolongation formula
yields the determining equation, this splits with respect to the differential consequences of
u and leads to an overdetermined system of 34 equations, generated with Maple, which
depends on the parameters a, b, c and d. From this system, if a, c 6= 0 we obtain ξ = ξ(x, t),
τ = τ(t) and η = f (x, t)u + g(x, t) and the function ξ, τ, f , g are related by the conditions

τtcau2 − ξxcau2 + 2cau( f u + g)− ξt = 0,(
fxtxu + fxxxacu3 + gxtx + gxxxacu2 + (−2bc + a)u3 fxx + u2(−2bc + a)gxx

−2 fxbu3 − 2gxbu2 − ftu− gt

)
acu2 = 0,

cau2(ξxx − 2 fx) = 0,

−
(
−2ξtxca− 3ξxxc2a2u2 + 5(a + 2/5d)ac2u2 fx

+2ac2u(a + d)gx + (−2bc + a)ξt + ac
(

u2(−2bc + a)ξx + ft

))
u2 = 0,

−τtcau2 + 3ξxcau2 − 2cau( f u + g)− fxxcau2 + ξt2(a + d)(gacu− ξt)cu = 0, (10)

cd(2gacu− ξt) = 0,

−2
(
−1/2ξxtxca− 1/2ξxxxc2a2u2 + 5/2(a + 2/5d)ac2u2 fxx + ac2u(a + d)gxx

−1/2u2ca(−2bc + a)ξxx + ftxca + u2ca(−6bc + a + d) fx − 4a(bc− d/4)cugx

+(1/2ca− b)ξt − 2ξxcau2b
)

u2 = 0,

−4
(
−1/2ac2u2(a + d)ξxx + ac2u2(a + 7/4d) fx + (−bc + d/4)ξt

+a(−(bc− d/4)uξx + 3/4gxcd + g(bc− d/4))cu)u = 0.

Solving system (11) we obtain the following result:

Theorem 1. The classification of point symmetries admitted by the Camassa–Holm equation with
four arbitrary constants (3) is given by the following cases:

(i) For a 6= 0, b 6= 0, c 6= 0 and d 6= 0 the admitted point symmetries are generated by:

X1 = ∂x,
space-translation.

X2 = ∂t,
time-translation.

X3 = −2t∂t + u∂u,
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(ii) If a = d, b = d
c , c = ±1, d, arbitrary we obtain an additional point symmetries admitted by

the Camassa–Holm Equation (3):

X4 = c exp(2cx)∂x + exp(2cx)u∂u,

To find the solutions of the PDE (3) which are not equivalent by the group action, we
must compute the one-dimensional optimal system [22], whose generators are:

µX1 + λX2, µX1 + X3, µX2 + X4.

From µX1 + λX2, by substituting into the invariant surface condition

η(t, x, u)− τ(t, x, u)ut − ξ(t, x, u)ux = 0. (11)

we obtain the similarity variable and the similarity solution

z = µx− λt, u(x, t) = U(z). (12)

Substituting (12) into (3) we obtain

−µ2
(

acµ U2 − λ
)

U′′′ − 2 µ2(cµ (a + d)U′ + 1/2 U(−2 bc + a)
)
U′′ (13)

+4 U′
(
−1/4 cdµ3(U′)2

+ µ2U(bc− d/4)U′ + 1/2 bµ U2 − λ/4
)

= 0.

Since Equation (3) has additional symmetries and the reductions corresponding to X1
and X2 have already been derived, we should find the similarity variables and similarity
solutions corresponding to the generators µX1 + X3 and µX2 + X4.

• µX1 + X3: We obtain the reduction

z = (1/2)µ ln(t) + x, u = U(z)√
exp((−2x+2z)/µ)

, (14)

where h(z) satisfies the equation(
1/2 U2ac + µ/4

)
U′′′ +

(
cU′(a + d)− 1/4 + (−bc + a/2)U2

)
U′′ (15)

+1/2 U3cd− 2 (bc− d/4)U
(
U′
)2

+
(
−U2b− µ/4

)
U′ + 1/4 U = 0.

• µX2 + X4: The reduction is,

z = −t + c/2 (ecx)2µ, u = U(z)
√

2√
c(ecx)2µ

. (16)

The reduced ODE is

2 dU2U′′′ + 8 U′′U′Ud + 2 (U′)3d + U′′′ = 0. (17)

2.2. Nonclassical Method

Here, we will employ the nonclassical method, whose main idea is to augment the
PDE (3) with the invariance surface condition (11) associated with the vector field (6). Once
required that (3) and (11) are both invariant under the transformation whose infinitesimal
generator is (6), we obtain an overdetermined nonlinear system of equations for the in-
finitesimals ξ(x, t, u), τ(x, t, u) and η(x, t, u). The determining equations obtained using the
nonclassical method are fewer in number than those obtained via the Lie method, therefore
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the set of solutions is generally larger than for the Lie symmetry method. However, the
associated vector fields do not form a vector space.

Let us now apply the algorithm described in [14] to compute the determining equa-
tions. We can distinguish the two following cases:

• if τ 6= 0, we can set τ(x, t, u) = 1. We thus obtain a set of nine determining equations
for the infinitesimals ξ(x, t, u) and η(x, t, u). Once solved this system we obtain that
the nonclassical method applied to (3) yields to the Lie point symmetries.

• If τ = 0, we can set ξ = 1. We thus obtain an overdetermined nonlinear system of
equations for the infinitesimal η, which is solved by making ansätze. In this way the
following new infinitesimal generator is found:

ξ = 1, τ = 0, η = f (x, t),

where f is an arbitrary function. Therefore, this transformation reduces the PDE (3)
into an ODE. For example, for η = xψ2(t) + ψ1(t), where ψ1(t) and ψ2(t) satisfy

d2ψ2

d t2 − 6ψ2
2 = 0, (18)

d2ψ1

d t2 − 6ψ1ψ2 = 0, (19)

respectively, we obtain the nonclassical symmetry reduction

z = t, u = x2ψ2(t) + xψ1(t) + ψ0(t),

where ψ2(t) satisfies the Weierstrass elliptic function Equation (18) and ψ1(t) satisfies
the Lamé Equation (19) [14].

3. Conservation Laws

We now look for conservation laws for Equation (3), which will provide physical,
conserved quantities for all solutions u(x, t).

A local conservation law for Equation (3) is a continuity equation of the following form:

DtT + DxX = 0, (20)

which holds for all the solutions u(x, t) of Equation (3). In (20), the conserved density T
and the spatial flux X are functions of t, x, u and the derivatives of u. Moreover, Dt and
Dx are total derivatives and (T, X) is the conserved current. Let Θ be function of t, x, u
and x-derivatives of u. If T = DxΘ and X = −DtΘ hold for all solutions u(x, t), then the
continuity Equation (20) reduces to an identity. These types of conservation laws are called
locally trivial. Moreover, if two conservation laws differ by a locally trivial conservation
law, then they are considered to be locally equivalent. The local conservation laws can be
expressed in an equivalent form (an analogous of the evolutionary form for symmetries)
[22] given by a divergence identity as follows:

DtT̃ + DxX̃ =

(ut − utxx − (au2uxx − 2bu2ux + duu2
x)− c(au2uxx − 2bu2ux + duu2

x)x)Q
(21)

holding off the set of solutions of the generalized Camassa Equation (3), where
T̃ = T + DxΘ and X̃ = X− DtΘ are the conserved density and the spatial flux locally
equivalent to T and X, respectively and where:

Q = Eu(T̃) (22)

is a function of t, x, u and x-derivatives of u. The function Q is called a
multiplier [21,22,26]. In (22), Eu denotes the Euler operator with respect to u [22]. By
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the characteristic Equation (21) it follows that all non-trivial conservation laws for any
regular PDE system arise from multipliers up to local equivalence [19]. We will consider
the following low-order multipliers:

Q(t, x, u, ut, ux, uxx). (23)

The condition (21) splits with respects to the x-derivatives of u which do not appear in Q.

Proposition 1. The low-order multipliers (23) admitted by the Camassa–Holm Equation (3) with
a 6= 0, b 6= 0, c 6= 0 and d 6= 0 are given by
(i) a, b, c, d arbitrary:

Q1 = e
x
c ; (24)

(ii) c = ±1, a, b, d arbitrary:

Q2 = F(t)e
x
c ; (25)

(iii) a = d
2 , c 6= 0, d 6= 0, b, arbitrary

Q3a = 1, (26)

Q3b = e
x
c , (27)

Q3c = e−
4bx

d ; (28)

(iv) a = d
2 , d = ±4b, c, b, arbitrary

Q4a = 1, (29)

Q4b = e
x
c , (30)

Q4c = e−
4bx

d ; (31)

(v) a = d
2 , c = ±1, d, b, arbitrary

Q5a = 1, (32)

Q5b = e−
4bx

d , (33)

Q5c = F(t)e±x; (34)

(vi) a = d, b = d
c , c, d, arbitrary

Q6a = u, (35)

Q6b = e
x
c , (36)
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(vii) a = d, b = d
c , c = ±1, d, arbitrary

Q7a = u, (37)

Q7b = F(t)e±x : (38)

The above given multipliers yield all non-trivial conservation laws of low order, which
can be summarized as follows:
Case 1 a, b, c, d arbitrary

Q1 = e
x
c ,

φt = e
x
c (u + ux

c ),

φx = e
x
c (−utx − acu2uxx + 2bcu2ux − cduu2

x).

Case 2 c = ±1 a, b, d arbitrary

Q2 = F(t)e
x
c ,

φt = F(t)e
x
c ( uxx

c + u),

φx = F(t)e
x
c (−utx − acu2uxx + 2bcu2ux − cduu2

x)− e
x
c F′(t)

c u.

Case 3 a = d
2

Q3a = 1,

φt = u,

φx = −utx − cd
2 u2uxx − cduu2

x + (2bc− d
2 )u

2ux +
2b
3 u3,

Q3b = e
x
c ,

φt = e
x
c ( ux

c + u),

φx = −e
x
c (utx + cduu2

x + cau2uxx − 2bcu2ux),

Q3c = e−4 bx
d ,

φt = (−uxx + u)e−
4bx

d ,

φx = − 1
2 ud

(
ucuxx + uux + 2 cux

2
)

e−
4bx

d .

Case 4 a = d
2 , d = −4b

Q4a = 1,

φt = u,

φx = −utx − cd
2 u2uxx − cduu2

x + (2bc− d
2 )u

2ux +
2
3 bu3,

Q4b = e
x
c ,

φt = e
x
c ( ux

c + u),

φx = e
x
c (−utx − cd

2 u2uxx + 2bcu2ux − cduu2
x,

Q4c = e−
4b
d x,

φt = e−
4b
d x(− 4bux

d + u),

φx = −e−
4b
d x(utx +

cd
2 u2uxx + cduu2

x +
d
2 u2ux.
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Case 5 a = d
2 , c = ±1, b, d arbitrary

Q5a = 1,

φt = u,

φx = −utx +
d
2 u2(uxx − ux) + duu2

x +
2
3 bu3,

Q4b = e−
4bx

d

φt = e−
4bx

d (− 4bux
d + u),

φx = − 1
2 e−

4bx
d (2utx + du2(ux − uxx)− 2duu2

x),

Q5c = F(t)e
x
c ,

φt = F(t)e
x
c ( ux

c + u),

φx = e
x
c (−F(t)utx − cd

2 F(t)du2uxx + 2bcF(t)u2ux − cdF(t)uu2
x −

F′(t)
c u).

Case 6 a = d b = d
c , c, d arbitrary

Q6a = u,

φt = 1
2 (u

2 + u2
x),

φx = −uutx − cdu3uxx − cd
2 u2u2

x + du3ux +
d
2c u4,

Q6b = e
x
c ,

φt = e
x
c (u + ux

c ),

φx = e
x
c (−utx − cdu2uxx − cduu2

x + 2du2ux).

Case 7 a = d b = d
c , c = ±1, d arbitrary

Q6a = u,

φt = 1
2 (u

2 + u2
x),

φx = −uutx − cdu3uxx − cd
2 u2u2

x + du3ux +
d
2c u4,

Q6b = e
x
c ,

φt = e
x
c (u + ux

c ),

φx = e
x
c (−utx − cdu2uxx − cduu2

x + 2du2ux).

4. Multireduction Method

Conservation laws that are symmetry invariant are of sure interest in applications. If a
differential equation admits a Noether symmetry, then a conservation law is associated with
this symmetry and a double reduction can be achieved. In particular, for PDEs depending
on two independent variables, any symmetry-invariant conservation law will reduce to
a first integral for the corresponding ODE obtained via symmetry reduction. In [27,28],
Sjöberg introduced a new method for non-variational PDEs, which can be performed
when a symmetry is associated with a conserved vector. In [29,30], the authors explored
a further connection between symmetries and conservation laws which are invariant (or,
more generally, homogeneous) under the action of a given set of symmetries. In [23], given
a PDE with n > 2 independent variables and a symmetry algebra of dimension at least
n > 1, an algorithmic method is described to find the symmetry-invariant conservation
laws that will reduce to first integrals for the ODE describing symmetry-invariant solutions.
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Given a PDE G(t, x, u, ut, ux, . . .) = 0, its invariance under the translation symmetry

X = ∂t + c∂x, (39)

yields to traveling-wave solutions, where ζ = x− ct and u = U being the invariants.

Proposition 2. The low-order multipliers (23) invariant under the translation symmetry (39)
admitted by the Camassa–Holm Equation (3) with a 6= 0, b 6= 0, c 6= 0 d 6= 0 are given by
(i) c = ±1 a, b, d arbitrary:

Q1 = e
x−pt

c ; (40)

(ii) a = d
2 , b,c d arbitrary:

Q2 = 1, (41)

(iii) a = d
2 , d = −4b, b c, arbitrary

Q3a = 1, (42)

Q3b = ex−pt (43)

(iii) a = d
2 , d = 4b, b c, arbitrary

Q3a = 1, (44)

Q3b = e−x+pt (45)

(v) a = d
2 , c = −1, b, d, arbitrary

Q4a = 1, (46)

Q4b = e−x+pt (47)

(vi) a = d
2 , c = 1, b, d, arbitrary

Q5a = 1, (48)

Q4b = ex−pt (49)

(vii) a = d
2 , d = 4bc, c = ±1 b, arbitrary

Q6a = 1, (50)

Q6b = ex−pt (51)

Q6c = e−x+pt (52)

(viii) a = d, b = d
c , c, d, arbitrary

Q7a = u, (53)

(ix) a = d, b = d, c = 1, d, arbitrary

Q8a = u, (54)

Q8b = ex−pt, (55)
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(x) a = d, b = d, c = −1, d, arbitrary

Q9a = u, (56)

Q9b = e−x+pt, (57)

These multipliers yield all non-trivial conservation laws of low order invariant under
the translation symmetry, summarized as follows:

Case 1 c = ±1, a, b, d arbitrary

Q1 = e
x−pt

c ,

φt = e
x−pt

c (u + ux
c ),

φx = e
x−pt

c (−utx − acu2uxx + 2bcu2ux − cduu2
x).

Case 2 a = d
2 , b, c d arbitrary

Q2 = 1

φt = u,

φx = −utx − acu2uxx + (2bc− a)u2ux − cduu2
x +

2b
3 u3

Case 3 a = d
2 , d = −4b

Q3a = 1,

φt = u,

φx = −utx − acu2uxx − cduu2
x + (2bc− a)u2ux +

2b
3 u3

Q3b = ex−pt (58)

φt = ex−pt(u + ux)

φx = ex−pt(−utx + 2bcu2uxx + 4bcuu2
x + 2bu2ux + pu)

Case 4 a = d
2 , d = 4b

Q4a = 1,

φt = u,

φx = −utx − acu2uxx − cduu2
x + (2bc− a)u2ux +

2b
3 u3 (59)

Q4b = e−x+pt

φt = e−x+pt(u− ux)

φx = −e−x+pt(utx + 2bcu2uxx + cduu2
x + 2bu2ux − pu)

Case 5 a = d
2 , c = −1, b, d arbitrary

Q5a = 1,

φt = u,

φx = −utx +
d
2 u2(uxx − ux)− 2bu2ux + duu2

x +
2
3 bu3. (60)

Q5b = ept−x

φt = ept−x(u− ux)

φx = ept−x(−utx +
d
2 u2uxx − 2bu2ux + duu2

x + pu)
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Case 6 a = d
2 , c = 1, b, d arbitrary

Q6a = 1,

φt = u,

φx = −utx +
d
2 u2(uxx − ux)− 2bu2ux + duu2

x +
2
3 bu3. (61)

Q6b = ex−pt

φt = ex − x− pt(u + ux)

φx = ex−pt(−utx − d
2 u2uxx + 2bu2ux − duu2

x + pu)

Case 7 a = d
2 b = d

4c , c = ±1

Q7a = 1,

φt = u,

φx = −utx − acu2uxx − cduu2
x + (2bc− a)u2ux +

2b
3 u3. (62)

Q7b = e−x+pt

φt = e−x+pt(u− ux)

φx = e−x+pt(−utx − cd
2 u2(uxx + ux)− cduu2

x + pu

Case 8 a = d b = d
c , c d arbitrary

Q8 = u,

φt = 1
2 (u

2 + u2
x), (63)

φx = −uutx − cdu3uxx − cd
2 u2u2

x + du3ux +
d
2c u4.

Case 9 a = d b = d
c , c = ±1 d arbitrary

Q9a = u,

φt = 1
2 (u

2 + u2
x), (64)

φx = −uutx − cdu3uxx − cd
2 u2u2

x + du3ux +
d
2c u4.

Q9b = ex−pt,

φt = ex−pt(u + cux), (65)

φx = ex−pt(−utx + c(−au2uxx − duu2
x + 2bu2ux) + pu).

Substitution of the traveling-wave expression

u(t, x) = U(x− ct) (66)

into Equation (3) yields a nonlinear third-order ODE

(−acU2 + p)U′′′ − (2(c(a + d)U′) + (1/2)U(−2bc + a)))UU′′

+4U′(−(1/4)cdU′2 + U(bc− (1/4)d)U′ + (1/2)bU2 − (1/4)p) = 0
(67)

To find the first integrals of the traveling-wave ODE (67)) the symmetry reduction
of all conservation laws, invariant under the traveling-wave symmetry (39) of the PDE,
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should be done. The reduced conservation law is a first integral of the traveling-wave ODE
(67)).

In the following we will apply the reduction method [23] so that a first integral will be
obtained. Moreover, we will find two functionally independent first integrals and the ODE
will be reduced to first order. Finally, in a particular case of the generalized Camassa–Holm
Equation (3), the reduction will yield an additional first integral and an exact solution will
be found.

1. By using the Case 1 conservation law we get the first integral.

ez(UdU′2 + (−2bU2 + p)U′ + U′′aU2 −U′′p) = C1 (68)

2. By using the Case 2 conservation law we get the first integral.

(acU2 − p)U′′ + cdUU′2 + (a− 2bc)U2U′ − 2b
3 U3 + pU = C1 (69)

3. By using the two conservation laws of Case 3 we get the two first integrals.

− 4bcUU′2 − 2b(c + 1)U2U′ − 2
3 bU3 − 2bcU2U′′ + pU − pU′′ = C1 (70)

ez(−4bcUU′2 − 2bU2 + pU′ − 2bcU2U′′ − pU′′) = C2 (71)

By combining these two first integrals we get the reduced first order ODE

U′ +
2bezU3 − 3pezU + 3ezC1 − 3C2

3ez(2bcU2 + p)
(72)

4. By using the two conservation laws of Case 4 we get the two first integrals.

− 2bU2U′′ + pU − pU′′ − 4bUU′2 + 4bU2U′ − 2
3 bU3 = C1 (73)

ez(−4bUU′2 + (6bU2 + p)U′ − 8
3 bU3 − 2bU2U′′ − pU′′) = C2 (74)

By combining these two first integrals we get the reduced first order ODE

U′ +
2bezU3 + pezU − ezC1 + C2

ez(2bU2 + p)
(75)

5. By using the two conservation laws of Case 5 we get the two first integrals.

− dUU′2 + (2b + d
2 )U

2U′ − 2b
3 U3 − d

2 U2U′′ + pU − pU′′ = C1 (76)

e−z(−dUU′2 + (2bU2 − p)U′ − d
2 U2U′′ − pU′′ = C2 (77)

By combining these two first integrals we get the reduced first order ODE

U′ − 2(2be−zU3 − 3pe−zU + 3C1e−z − 3C2)

3e−z(dU2 + 2p)
(78)

6. By using the two conservation laws of Case 6, we get the two first integrals.

dUU′2 + (−2b + d
2 )U

2U′ − 2b
3 U3 + d

2 U2U′′ + pU − pU′′ = C1 (79)

e−z(−dUU′2 + (2bU2 − p)U′ − d
2 U2U′′ − pU′′ = C2 (80)
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By combining these two first integrals we get the reduced first order ODE

24dpUU′2+(3d2U4−48pbU2+12p2)U′−4bdU5−8p(b− 3d
4 )U3

3d2U4−12p2

+−6d(C2ez+C1)U2+12p2U−12p(−C2ez+C1)
3d2U4−12p2 = 0

(81)

7. By using the three conservation laws of Case 7 we get the three first integrals.
4bUU′2 − 2b

3 U3 + 2bU2U′′ + pU − pU′′ = C1 (82)

ez(4bUU′2 − 2bU2U′ + 2bU2U′′ + pU′ − pU′′ = C2 (83)

2e−z((bU2 − p
2 U′′ + U′(bU2 + 2UU′)b− p

2 ) = C3 (84)

By combining these three first integrals we get the solution

2bezU3 − 3pezU + 3C1ez − 3C2 = 0 (85)

8. By using the Case 8 conservation laws we get the first integral.
2cU(acU2 − p) + (ac2U2 + cp)U′2 + 2acU3U′ + aU4 − pcU2 + 2cC1) (86)

9. By using the Case 9 conservation laws we get the first integrals.

( a
2 U2 + p

2 )U
′2 + (a− 2d)U3U′ − d

2 U4 + aU3U′′ + p
2 U2 − pUU′′ = C1 (87)

ez(aU2 − p)U′′ + aUU′2 − 2dU‘2U′ + pU′) = C2 (88)

By combining these two first integrals we get the reduced first order ODE

−aU2U′2 + 2aU3U′ − dU4 + pU′2 − 2pUU′ + pU2 − 2C1 + 2C2e−zU = 0 (89)

5. Analytic Solutions for Heteroclinic and Homoclinic Orbits of the
Traveling-Wave Equation

To obtain regular pulse and front solutions of the GCH Equation (2), in this section
we will employ the so-called method of undetermined coefficients [9,24,25] to compute
multi-infinite series solutions for the possible homoclinic and heteroclinic orbits of its
corresponding traveling-wave equation.

Let φ(x, t) = φ(z), where z = x− vt and v > 0 is the wave speed. Once substituted
φ(z) into Equation (3), we obtain:

−vφ
′ − vφ

′′′ − acφ2φ
′′′ − 2c(a + d)φφ

′
φ
′′ − (a− 2bc)φ2φ

′′

− dcφ
′′′ − (d− 4bc)φφ

′2 + 2bφ2φ
′
= 0.

(90)

Choosing d = 2a and integrating Equation (90) once with respect to z, we get the following
second-order ODE:

− φ
′′
(v + acφ2)− 2acφφ

′2 − (a− 2bc)φ2φ
′ − vφ +

2
3

bφ3 + g = 0, (91)

where g is the constant of integration. The ODE (91) can be equivalently written as the
following first order ODE system:

dφ

dz
= y,

dy
dz

=
−2acφy2 + (2bc− a)φ2y− vφ + 2

3 bφ3 + g
v + acφ2 .

(92)
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Let us assume that v and ac have the same sign, so that the system (92) is not singular. The
ODE system (92) admits the equilibria of the form (φ∗, 0), where φ∗ are the roots of the
following cubic equation:

2
3

bφ3 − vφ + g = 0. (93)

Depending on the choice of the parameters b, v and g, Equation (93) can admit one or three
real solutions, whose expressions are mostly cumbersome and are not reported here. In
particular, when g = 0 the following two cases can arise:

(i) if v and b have opposite sign, the system (92) admits only the trivial equilibrium
O ≡ (0, 0);

(ii) if v and b have the same sign, the system (92) admits the trivial equilibrium O and the
equilibria E± ≡ (φ∗±, 0), with:

φ∗± = ±
√

3v
2b

. (94)

The Jacobian matrix associated with the system (92) computed at the generic equilibrium
(φ∗, 0) reads:

J∗ =

 0 1
2bφ∗2 − v
v + acφ∗2

(2bc− a)φ∗2

v + acφ∗2

, (95)

and the correspondent characteristic equation is:

λ2 +
(a− 2bc)φ∗2

v + acφ∗2
λ +

v− 2bφ∗2

v + acφ∗2
= 0. (96)

We look for system parameters conditions corresponding to the existence of saddle equilib-
ria, in such a way that homoclinic orbits to these points or heteroclinic connections between
them are supported. In the case g = 0 it can be straightforwardly checked that O is a center
point and that both the equilibria E±, when they exist (i.e., in the case ii)) are saddle points.
The system could then support both homoclinic and heteroclinic orbit.

In Figure 1a the system parameters are chosen such that the heteroclinic orbit joining
the equilibria E± forms.

Since the expressions of the solutions of the polynomial Equation (93) are complicated
in terms of the parameters a, b, c, g and v, the complete linear instability analysis in the
general case g 6= 0 is almost involved. Here we report that in the particular case a = 2bc,
the generic equilibrium (φ∗, 0) can be a center (when (v− 2bφ∗2)/(v + acφ∗2) > 0) or a
saddle (when (v− 2bφ∗2)/(v + acφ∗2) < 0) and homoclinic/heteroclinic orbits could exist.
Notice that if a = 2bc Equation (91) is reversible under the standard reversibility of classical
mechanical systems:

z→ −z, (φ, φ′, φ
′′
)→ (φ,−φ′, φ

′′
). (97)

Our numerical exploration has shown that homoclinic orbits to one of the equilibria (φ∗, 0)
exist when condition (97) holds, see Figure 1b.

First, we consider the case g = 0 and we assume to choose a parameter set such that
there exist the saddle equilibria E± ≡ (φ∗±, 0) and a heteroclinic orbit joining them arises,
as in Figure 1a. Let us now proceed to construct the heteroclinic orbit looking for a solution
of the following form:

φ(z) =


φ+(z) z > 0
0 z = 0
φ−(z) z < 0

(98)

where:

φ+(z) = φ∗+ +
∞

∑
k= 1

akekαz, φ−(z) = φ∗− +
∞

∑
k= 1

bkekβz, (99)
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and φ∗± are given in (94), α < 0 and β > 0 are undetermined constants and ak, bk, with k ≥ 1,
are arbitrary coefficients. Once substituted the series (121) for φ+(z) into Equation (91), for
each term one has the following expressions:

φ
′′

=
∞

∑
k= 1

ak(kα)2ekαz, (100)

φ2φ
′′

=
∞

∑
k= 3

k−1

∑
j= 2

j−1

∑
l= 1

alaj−lak−j(k− j)2α2ekαz + 2φ∗+
∞

∑
k= 2

k−1

∑
j= 1

ak−jaj(k− j)2α2ekαz (101)

+ φ∗2+
∞

∑
k= 1

ak(kα)2ekαz,

φφ
′2 =

∞

∑
k= 3

k−1

∑
j= 2

j−1

∑
l= 1

alaj−lak−j(j− l)lα2ekαz + φ∗+
∞

∑
k= 2

k−1

∑
j= 1

ak−jaj(k− j)jα2ekαz, (102)

φ2φ′ =
∞

∑
k= 3

k−1

∑
j= 2

j−1

∑
l= 1

alaj−lak−j(k− j)αekαz + 2φ∗+
∞

∑
k= 2

k−1

∑
j= 1

ak−jaj(k− j)αekαz (103)

+ φ∗+
∞

∑
k= 1

ak(kα)ekαz,

φ3 = φ∗3+ +
∞

∑
k= 3

k−1

∑
j= 2

j−1

∑
l= 1

alaj−lak−jekαz + 3φ∗+
∞

∑
k= 2

k−1

∑
j= 1

ak−jajekαz + 3φ∗2+
∞

∑
k= 1

akekαz. (104)

(a)

0 1 2

-1

-0.5

0

0.5

1

(b)

Figure 1. (a) Case g = 0: heteroclinic orbit joining the two saddle points E+ ≡ (φ∗, 0) and E− ≡

(−φ∗, 0) with φ∗ =

√
3v
2b
≈ 2.2361. The trivial equilibrium O is a center. The parameters are chosen

as a = 0.12, b = 0.3, c = 0.2, v = 1 and g = 0. (b) Case g 6= 0: homoclinic orbit to the saddle
equilibrium (1.9236, 0). The equilibrium (0.5297, 0) is a center. The system also admits another saddle
point (−2.4534, 0). The parameters are chosen as a = 0.12, b = 0.3, c = 0.2, v = 1 and g = 0.5.

Substituting the Expressions (100)–(104) into Equation (91) and taking into account
that φ∗+ satisfies Equation (93), we collect the coefficients of ekαz for each k, obtaining a
sequence of equations for the coefficients ak. The equation at k = 1 reads:

F(α)a1 = 0, (105)

where:
F(α) = −(v + acφ∗2+ )α2 + (2bc− a)φ∗+α + 2v. (106)
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Imposing a1 6= 0, Equation (105) is satisfied when F(α) = 0. It is easy to show that F(α)
admits two real and opposite solutions (corresponding to the fact that E+ is a saddle):

α = α1 < 0 or α = α2 > 0. (107)

Since we look for a series solution φ+(z) convergent for z > 0, we choose α = α1 in (123).
For k = 2 we obtain the following equation:

F(2α1)a2 = 2φ∗+(b− 2acα2
1 − (a− 2bc)α1)a2

1, (108)

where F(2α1) = (−(v + acφ∗2+ )(2α1)
2 + (2bc− a)φ∗+(2α1) + 2v). Thus, a2 can be explicitly

obtained in terms of the systems coefficients and a1, which is still unknown at this level:

a2 =
2φ∗+(b− 2acα2

1 − (a− 2bc)α1)

F(2α1)
a2

1, (109)

The equation for k = 3 results:

F(3α1)a3 = 2φ∗+(9ac− 2b + 2(a− 2bc)α1)a1a2 +

(
5acα2

1 −
2
3

b + (a− 2bc)α1

)
a3

1, (110)

where F(3α1) = (−(v + acφ∗2+ )(3α1)
2 + (2bc − a)φ∗+(3α1) + 2v). Once substituted the

expression (109) for a2 in (110), the coefficient a3 is obtained in terms of a1 as follows:

a3 = ϕ3a3
1, (111)

with:

ϕ3 =
4φ∗2

F(2α1)
(9ac− 2b2(a− 2bc)α1)(b− 2acα2

1) + 5acα2
1 −

2
3

b + (a− 2bc)α1. (112)

Following the same procedure as above, at each k the coefficient ak can be computed in
terms of a1:

ak = ϕkak
1, (113)

where the functions ϕk depend on α1 and the parameters a, b, c, g and v. The series solution
φ+(z) approximating the heteroclinic orbit (98) for z > 0 has thus the following expression:

φ+(z) = φ∗+ + a1eα1z +
∞

∑
k=2

ϕkak
1ekα1z. (114)

The computation is almost the same to compute the series φ−(z), which results:

φ−(z) = φ∗− + b1eα2z +
∞

∑
k=2

ψkbk
1ekα2z, (115)

where the functions ψk depend on α2 and the parameters a, b, c, g and v.
By imposing the continuity condition at z = 0 leads to solve the following conditions

for the unknown a1 and b1:

φ∗+ + a1 +
∞

∑
k=2

ϕkak
1 = 0 (116)

φ∗− + b1 +
∞

∑
k=2

ψkbk
1 = 0 (117)
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To better approximate the coefficient a1 we solve the following polynomial equation for a1:

φ∗+ + a1 +
M

∑
k=2

ϕkak
1 = 0, (118)

where M is suitably chosen. The Equation (118) could admit more than one solution,
therefore the solution in (98) could not be unique. We therefore choose the solution a1 of
(118) such that the series coefficients ak converge as k increases. We follow the same line to
obtain b1.

Let us consider the parameter set in Figure 1a. In this case, the equation is reversible
and the solution φ−(z) results:

φ−(z) = −φ∗+ − a1eα2z −
∞

∑
k=2

ϕkak
1ekα2z, (119)

therefore, we must solve just the continuity condition (118) for a1. In Figure 2 it is shown
the traveling front obtained as the series solution (98) which approximates the heteroclinic
orbit given in Figure 1a. For this parameter set there exists a unique solution a1 = −3.9083
of Equation (118) such that the series coefficients ak converge.

(a) (b)
0 10 20 30 40

-4

-2

0

2

(c)

Figure 2. The parameters are chosen as in Figure 1a. (a) The series solution in (98) for the heteroclinic
orbit in Figure 1a. The solution is drawn as a function of x for different values of t, showing the
traveling-wave nature of the obtained front solution. (b) The chosen value a1 = −3.9083, solution of
the continuity Equation (118) truncated at M = 40, leads to convergent series coefficients ak. (c) The
series coefficient bk = −ak of the solution φ−(z) is then also convergent.

To approximate a homoclinic orbit, as obtained in Figure 1b for g 6= 0, we look for a
series solution defined as follows:

φ(z) =


φ+(z) z > 0
0 z = 0
φ−(z) z < 0

(120)

where:

φ+(z) = φ∗ +
∞

∑
k= 1

akekαz, φ−(z) = φ∗ +
∞

∑
k= 1

bkekβz, (121)

and φ∗ is solution of (93), α < 0 and β > 0 are undetermined constants and ak, bk, with
k ≥ 1, are arbitrary coefficients. Repeating the same calculations as above to compute at
first φ+(z), we obtain for k = 1 the following equation:

F(α)a1 = (−(v + acφ∗2)α2 + (2bc− a)φ∗α + 2bφ∗2 − v)a1 = 0. (122)
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By imposing a1 6= 0 and if the parameter set is chosen such that φ∗ is a saddle (e.g., in the
case a = 2bc it should be v < 2bφ∗2) we obtain that Equation (122) is satisfied when:

α = α1 < 0 or α = α2 > 0, (123)

where α1 and α2 are the real and opposite roots of F(α). Choosing α = α1 and iterating
the procedure at each k, the series coefficients ak have the same expression as in (113).
Therefore:

φ+(z) = φ∗ + a1eα1z +
∞

∑
k=2

ϕkak
1ekα1z. (124)

By imposing the continuity of the solution (120) at z = 0, we obtain the same equation
as in (116), which should be truncated as in (118) to find a1 such that the series solution
converges. Analogously, the series φ−(z) will have the expression as in (115) and suitably
truncating the continuity Equation (117), the coefficient b1 will be obtained.

Choosing the system parameters as in Figure 1b, the equation is reversible and the
series φ−(z) results:

φ−(z) = φ∗ + a1eα2z +
∞

∑
k=2

ϕkak
1ekα2z, (125)

with α2 > 0 given in (123). Therefore, just the continuity condition (116) should be
imposed and a1 will be chosen as the solution of (118) for a suitable M such that the series
solution converges.

In Figure 3 it is shown the traveling pulse obtained as the series solution (120) which
approximates the homoclinic orbit given in Figure 1b. For this parameter set there exists a
unique solution a1 = −3.4558 of Equation (118) such that the series coefficients ak converge.

(a)
0 10 20 30 40

-4

-2

0

2

(b)

Figure 3. The parameters are chosen as in Figure 1b. (a) The series solution in (120) for the homoclinic
orbit in Figure 1b. The solution is drawn as a function of x for different values of t, showing the
traveling-wave nature of the obtained front solution. (b) The chosen value a1 = −3.4558, solution
of the continuity Equation (118) truncated at M = 40, leads to convergent series coefficients ak. The
series coefficient bk = ak are not reported.

6. Conclusions

In this paper, we have studied a GCH equation with variable coefficients. We have
obtained the Lie-group classification for Equation (3). We have derived the optimal system
of 1-dimensional subalgebras of the invariant equation and we have obtained reductions
to ODE’s. By applying the nonclassical method, we have derived new reductions for
Equation (3).

By using a general method to derive conservation laws we have derived low-order
conservation laws for Equation (3). Moreover, we have focused on the conservation law
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invariant under translations, and we have derived first integrals of the reduced ODEs as
well as exact solutions.

Finally, we have studied the traveling-wave equation by addressing their homoclinic
and heteroclinic orbits. Once performed the linear instability analysis, we have pinpointed
these orbits and they have been approximated via analytic solutions computed as conver-
gent and continuous multi-infinite series.

Since the GCH equations support a very rich dynamics, we plan to investigate it
further. In particular, the existence of regular and embedded solitary wave solution will be
addresses using variational methods, as in [24,31]. Moreover, analytic solutions using the
invariant Painlevé analysis and the generalized Hirota techniques could be investigated
[32].
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