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Abstract: Nonnegative Matrix Factorization (NMF) has acquired a relevant role in the panorama
of knowledge extraction, thanks to the peculiarity that non-negativity applies to both bases and
weights, which allows meaningful interpretations and is consistent with the natural human part-
based learning process. Nevertheless, most NMF algorithms are iterative, so initialization methods
affect convergence behaviour, the quality of the final solution, and NMF performance in terms of
the residual of the cost function. Studies on the impact of NMF initialization techniques have been
conducted for text or image datasets, but very few considerations can be found in the literature when
biological datasets are studied, even though NMFs have largely demonstrated their usefulness in
better understanding biological mechanisms with omic datasets. This paper aims to present the
state-of-the-art on NMF initialization schemes along with some initial considerations on the impact
of initialization methods when microarrays (a simple instance of omic data) are evaluated with NMF
mechanisms. Using a series of measures to qualitatively examine the biological information extracted
by a given NMF scheme, it preliminary appears that some information (e.g., represented by genes)
can be extracted regardless of the initialization scheme used.

Keywords: omic data analysis, nonnegative matrix factorization; initialization algorithm; gene
extraction; qualitative analysis

1. Introduction

Low-rank matrix dimensionality reduction mechanisms represent a class of unsu-
pervised mathematical techniques dedicated to the principle of parsimony, capable of
revealing the low-dimensional structure embedded in the original data while preserving as
much information as possible. Relevant information stored in data is often non-negative,
and this positive sign is strictly related to a physical entity (examples include pixels in
images, the probability of a particular topic occurring in a linguistic document, the amount
of pollutants emitted by a factory, and so on). Taking into account this non-negativity
constraint could bring some advantages in terms of interpretability and visualization of big
data, while better preserving physical feasibility. In the biomedical field, the availability
of big omic data (genomics, transcriptomics, proteomics, etc.) has led to the emergence
of the application of specific numerical mechanisms capable of extracting valuable and
interpretable information about complex interactions between data to achieve a better
understanding of the underlying biological processes.

Omic data analysis represents a very active research area in the biomedical field and
recent advances in technologies have allowed the simultaneous measurement of long
sequential molecules, the expression levels of a large numbers of genes and proteins,
genetic variants, molecules, bio-markers, cells, tissue samples and individuals [1,2]. One
way to manage these data is to investigate their natural representation in terms of a data
matrix X ∈ Rn×m

+ , of which the nonnegative elements Xij measure some biological values
(expression counts, protein concentrations, gene expression level, etc.) in its i-th row and
an individual sample in its j-th column [3–5].
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Low rank reduction mechanisms can be fruitfully used to better understand complex
biological processes: in the early 2000s, they were first used in the analysis of microarray
data [6–9]; gradually, they emerged in the literature as useful mechanisms to explore high-
throughput omics data (i.e., uncovering their low-dimensional structure, such as groups of
similar genes, interpretable subspaces, critical dimensions) and identifying in them new
and known specific biological pathways [3,10–16].

A matrix factorization approximates a given pre-processed omic data matrix X to
a low-dimensional space of dimension r as the product of two matrices W ∈ Rn×r and
H ∈ Rr×m, i.e., X ≈ WH, where the first factor W describes the embedded structure
between features, and the second matrix H quantifies the structure between samples.
Generally speaking, each pair of a column in W and the corresponding row of H represents
an ideal source of biological, experimental and technical variation and their relative roles
in each sample (which is actually known as a “complex biological process” [3]). From a
mathematical point of view, each original sample (one column vector X(:, j) in X) is a linear
combination of new column features W(:, k), (k = 1, . . . , r) weighted with coefficients Hkj
so that

X(:, j) ≈
r

∑
k=1

W(:, k)Hkj, (1)

for j = 1, . . . , m and r < nm/(n + m).
Various matrix factorizations have proven their effectiveness in handling omic data;

the best known are: Singular Value Decomposition (SVD) [8,17], Principal Component
Analysis (PCA) and its sparse and probabilistic variants [14], Independent Component
Analysis (ICA) [18] and Nonnegative matrix factorizations (NMF) [3,19–23]. Each of these
techniques is based on different constraints that characterize the final properties of the
matrix factors, leading to different optimization problems and numerical algorithms that
must be used. PCA is based on a convex quadratic optimization problem with a unique
global minimum that leads to orthogonal matrix factors that determine the proportion of
explained variance in the omic data. ICA and NMF are based on nonconvex optimization
problems, so the numerical algorithms used to solve them provide solutions that depend
on the initialization mechanism in question. ICA factors derive from the minimization of
mutual information between data components. On the other hand, when dealing with
omic data, NMF algorithms minimize the generalized Kullback–Leibler divergence (KL)
under the non-negativity of the elements in W and H factors. This constraint produces an
approximation of the omic data matrix as a nonnegative linear combination of the columns
in W (commonly called metagenes), weighted by elements Hkj in H, and is compatible with
the intuitive notion of combining parts into a whole [24]. Note that each Hkj describes
the effect that the kth metagene has on the jth sample, so that a low value Hkj indicates
that the corresponding kth metagene has reduced importance in approximating the jth
sample. NMF allows to reveal interpretable latent factors (unlike PCA or ICA, which
also have negative entries without obvious biological significance) and to identify genes
belonging to multiple pathways or biological processes [20,22,23,25]. As these reasons lead
to a much more intuitive and interpretable representation, NMF is quite often preferred to
other techniques.

As previously observed, the NMF optimization problem

min
W,H≥0

KL(X; WH), (2)

where KL(X; WH) is the KL objective function

KL(X, WH) = ∑
ij
(Xij log(

Xij

(WH)ij
)− Xij + (WH)ij) (3)

has to be solved. However, this nonlinear objective function is nonconvex in both W
and H, so iterative numerical algorithms had to be used. These algorithms guarantee to
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converge to some local minima (more precisely, stationary points), but require initialization
mechanisms that can greatly affect their convergence rate and often the "biological" quality
of the obtained solution factors W and H.

Despite that several different initialization schemes for NMF have appeared in the
literature (we direct the reader to [26]for a recent review of theoretical and practical aspects
of NMF), very often, only studies on the performance of NMF algorithms with respect
to the residual of the cost function are presented. Qualitative behavior of NMF factors
with respect to the initialization mechanism has been studied when large text data or
images are processed. On the contrary, when NMF algorithms are used to analyze omic
data, random initialization is the most commonly used method, although this does not
guarantee good quality of the extracted matrix factors from a biological point of view.
A very preliminary study regarding the influence of some initialization techniques on a
particular NMF algorithm appeared in [27]. Here, it is suggested that there might be some
biological information strictly related to the microarray data under analysis that can be
extracted independently of the initialization scheme in question.

In this paper, we have proposed a revised taxonomy of initialization methods for NMF,
starting from the one presented in [28], highlighting which schemes are used in the analysis
of omic data by NMF algorithm, together with their main advantages and disadvantages.
Using a specific NMF algorithm and a selected subset of initialization schemes belonging to
different types, we also analyzed a pair of benchmark microarray data matrices, showing
that the relevance of the extracted information cannot be immediately understood as it is
the case for text or image data, indicating that the influence of initialization and its impact
on the extracted biological information are worth further investigation.

The remainder of the paper is organized as follows. In Section 2 we briefly highlight
the importance of initialization for feeding iterative NMF algorithms. In Section 3 we
illustrate the iterative algorithms for NMF, and we describe in detail the initialization
schemes that have appeared in the literature panorama to date. Section 4 deals with the
brief presentation of some results obtained when a selection of initialization schemes was
used to feed a specific NMF algorithm for the analysis of two microarray datasets: the
qualitative measurement showed how a core of information strictly related to the analyzed
dataset (i.e., some genes) can be extracted independently of the particular initialization
scheme used.

2. How Important are Initializations for NMF?

The task of nonnegative low-rank approximation of a given omic data matrix X can
be formulated as a constrained (under the condition of nonnegativity of the factor matrices)
optimization problem using the nonlinear KL-divergence (3). The lack of convexity of each
NMF objective function in W and H simultaneously means that no closed-form solution
exists and thus convergence to global optima of (2) is not necessarily achieved [29].

Numerical methods for solving (2) include: multiplicative update rules (MU) [9,24,30,31],
which are characterized by good theoretical convergence properties [32], alternating non-
negative least squares [33–35], and projected gradient descent methods [36]. The iterative
nature of each of these numerical methods requires the use of an initialization of W or both
W and H to matrices (of appropriate size) with only nonnegative elements.

However, the choice of initial values affects not only the convergence property of the
algorithm but, in particular, the quality of the solution to which it converges. An illustrative
example of the influence of initialization on the “quality” of the final factors is the Swimmer
dataset presented in [37]. This image dataset consists of 256 black and white images, each
representing some stick figures (with a fixed torso of 12 pixels) and four moving parts (four
limbs of 6 pixels) positioned in four different ways. An extraction of this dataset is shown
in Figure 1.
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Figure 1. Sample images from the Swimmer database. Each panel depicts a stick figure with a fixed
torso and four limbs articulated in different ways (positions) [37].

This dataset highlights the importance of good initial values when solving the NMF
task correlated with these images. As discussed in [38], when applying, for example, multi-
plicative updating rules and the projected gradient algorithm with a random initialization,
the final NMF factors fail to properly extract the latent parts (torso and limbs) embedded
in the figures, thus mixing the ghostly appearance of the torso with some of the other parts.
Due to nonconvexity, iterative algorithms are not guaranteed to converge to the global
optimum, and they are equally dependent on initialization. For a simple image dataset
satisfying the separability rule theorized in [37], random initialization has been shown
to lead to solutions that are not fully satisfactory in terms of interpretability and NMF
part-based decomposition [24]. Other types of structured initialization algorithms might
give better results in some cases [38].

Nevertheless, comparisons between the results obtained when using different ini-
tialization methods have been under-researched. Some initialization schemes have been
qualitatively compared to demonstrate the best clustering performance for different face
and text datasets [39], others improved face component separation [40], or better separation
performance in the audio source separation task [41].

However, when NMFs are used to analyze microarrays or more general omic data,
the problem of choosing an appropriate initialization becomes more complicated because
the data have special meanings, and very often, only random initialization mechanisms are
chosen. In [42], an integrative approach for disease subtype classification based on NMF
was proposed. Here, the most appropriate final NMF factors were chosen as those that pro-
duce the smallest value of the objective function among numerous local minima obtained
by multiple random initializations of W and H. In particular, a random initialization of
W was obtained from a uniform distribution or using the SVD-based initialization algo-
rithm [43]. However, final comparisons were made only in terms of the performance of the
objective function. In [44], the proposed hierarchical alternating least squares algorithm for
solving NMF tasks was initialized with respect to single cell datasets using either a random
method and a selection of r columns randomly sampled from the corresponding input
data. Comparisons accounting for the variations due to these two different initializations
showed that they performed similarly, although the qualitative representations of the final
solutions revealed some differences between them. In [45], clustering of multiple types of
genomic data was approached via an nNMF algorithm that initialized the factors Ws with
(i) a uniformly randomly generated matrix and (ii) a nonnegative matrix decomposition
technique with respect to each piece of data. However, no comparisons were reported on
the final results with respect to the different initializations. Some comparisons of the impact
of three specific initialization methods on the solutions obtained by the multiplicative NMF
update algorithm applied to problem (2) appeared in [27] and refer to two benchmark can-
cer datasets. This preliminary study suggests the existence of latent biological information
that can be extracted by NMF algorithms regardless of the initialization mechanisms used,
but these observations need further investigation.
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As the preceding discussion suggests, there are a number of research questions and
shortcomings in the existing literature that need to be addressed. In particular, to our
knowledge, the question “Do initialization mechanisms affect the final results of NMF for
omic data analysis?” still remains open. To pave the way for in-depth research in this
context, we present a complete taxonomy of initialization schemes for NMF algorithms,
highlighting their mathematical aspects, advantages and possible weaknesses.

3. NMF Iterative Algorithms and a Complete Taxonomy of Initialization Mechanisms

In this section, we present iterative algorithms for NMF of alternating least squares
type. These include the majorize–minimize (MM) algorithms, coordinate descent and
gradient descent methods, expectation–maximization algorithms, and cone projection
approaches [46,47]. We focus on the general constrained nonlinear optimization NMF
problem, which is a more comprehensive version of (2) defined as follows:

min
W,H≥0

Dβ(X; WH) (4)

where the cost function is the general β-divergence,

Dβ(X; WH) =
n

∑
i=1

m

∑
j=1

dβ(Xij; (WH)ij);

with dβ is commonly defined for each x, y as

dβ(x; y) =


1

β(β+1) (xβ + (β− 1)yβ − βxyβ−1) β ∈ R− {0, 1};
x log( x

y )− x + y β = 1;
x
y − log x

y − 1 β = 0.

Different values of the parameter β allow to take into consideration the Euclidean
distance, the Kullback–Leibler divergence (3) and the Itakura–Saito divergence as special
cases (β = 2, 1, 0, respectively).

Alternating least squares type algorithms sequentially update H given W and then W
given H, as

- Set k = 0 and W equals to any nonnegative W0;
- With fixed Wk, update Hk+1 = arg minH≥0 Dβ(X; Wk Hk);
- With fixed Hk+1, update Wk+1 = arg minW≥0 Dβ(X; Wk Hk+1);
- Iterate until a stopping criteria is satisfied.

These two steps are essentially identical because of the symmetry of the factorization.
Indeed, from X ≈WH we have X> ≈ H>W>, where we reverse the roles of W and H and
make no assumptions on the data dimensions n and m. Writing the derivative of the cost
function ∇Dβ(X; WH) with respect to H (resp. W) as the difference of two nonnegative
functions (see [48] for details), the update rules of alternating least squares algorithms can
be written as functions of the ratio of the nonnegative terms.

For example, the updating rules for Frobenius and KL-divergence (3) for factors H
and W can be expressed in the following matrix forms:

H ← H. ∗ (W>X)
(W>WH)

,

W ←W. ∗ (XH>)
(WHH>)

(5)
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and
W ←W. ∗ (X./(WH))H>

1n∗
(

m
∑

j=1
H:j

)>

H ← H. ∗ W>(X./(WH))(
n
∑

i=1
Wi:

)>
∗1m

(6)

where .∗ denotes the Hadamard product, the ratio is referred to element-wise division and
1m is a m dimensional vector of ones.

As mentioned earlier, algorithms for computing NMF must be initialized with an
initial left factor W (or both factors W and H) to begin with.

We propose to classify the initialization mechanisms for iterative NMF algorithms
(which have appeared in the literature panorama so far) into three classes, indicating the
main idea on which the initialization is based. In particular, we can identify: (i) random-
based schemes, (ii) structured initializations, (iii) evolutionary and nature-based mecha-
nisms. Figure 2 illustrates the three main classes and their subclasses.

Figure 2. Proposed taxonomy of initialization schemes for NMF appeared up to date in literature
panorama. Abbreviations can be found in the relative section.

3.1. Random Based Initializations

The simplest way to choose the initial factors W and H is to construct them as matrices
(of dimensions n× r and r×m, respectively) with random numbers. Random initializa-
tions were used early in [30], while a discussion of their goodness in terms of algorithm
performance and other variants of randomization methods can be found in [49]. Random-
based initializations generally construct dense factors, require low computational cost and
processing time for their computations, and are the benchmark mechanisms used in the
majority of NMF studies, especially when analyzing omic data. However, the quality and
reproducibility of the NMF result are rarely questioned. To ensure robust and reproducible
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results, users should run NMF with random initialization a sufficient number of times
and finally select the best result based on some quantitative and qualitative criteria [43].
Different mechanisms of random matrix generation are:

• Uniform random: the elements in the matrix W (and in H) are chosen as uniformly
distributed numbers in the interval [0, 1] or in the same range as the entries of the
target matrix.

• Gaussian random: the elements in the matrix W (and in H) are chosen as max {g, 0},
where the number g ∈ R is a Gaussian values.

• Random Xcol: the factor matrix W is obtained by averaging over r randomly selected
columns of the data matrix X. This scheme is very inexpensive and has the advantage
of yielding a sparser factor when the data matrix is already sparse. When dealing with
omic data, selected columns of X can be considered as a kind of a priori information
that can influence the following update process.

• Random-C initialization: this mechanism is based on a double random selection of
columns in the data matrix X as follows:

- Identify p of the longest (in the 2-norm sense) columns of X;
- Randomly choose q columns from the previous p longest;
- Construct each column of W as the average of these q columns.

This scheme is inspired by the C-matrix of the CUR decomposition and produces the
densest W, in which column vectors are closed with the centroids of the data matrix
(see spherical-k means initialization) [49].

• CUR-based initialization: the factor matrix W is constructed as a submatrix (with a
small number of actual columns) of the data matrix X. In this way, values are obtained
that are more interpretable from a biological point of view (and usually to the same
extent as the original data) [50,51]. CUR-based mechanisms differ in the “statistical”
way of selecting columns (or rows, if we refer to the initialization of the factor H)
from the matrix X. This selection is based on computing an “importance score” for
each column (row) of X and randomly selecting r of these columns (rows) using this
score as the probability distribution for importance sampling. The scoring values
of a column X:j in X can be calculated as: normalized statistical leverage score [50],
spectral angular distance, or symmetrized KL-divergence [52].

• Co-occurrence initialization: firstly the data co-occurrence matrix (i.e., XX>) is formed
and then r of its columns are selected by the algorithm proposed in [53] to form the
factor W. The data co-occurrence matrix contains information about hidden relation-
ships between columns and rows in the data matrix X, but the computational costs
required for this make this initialization mechanism expensive and often impractical
for use in the context of biomedical data analysis where large datasets are considered.

3.2. Structured Initialization

Schemes belonging to the structured initialization class are based on the idea of apply-
ing low-rank factorizations, well-known clustering mechanisms on the data matrix X to
generate initial factors for NMF, or very specific data-driven schemes such as semantic har-
monic initialization when audio data are involved ([54–56]). These specifically structured
initializations for NMF were mainly designed to improve their performance either in terms
of computational complexity or for preserving the particular data structure.

Initialization schemes based on low-rank decomposition algorithms do not require a
randomization step, so they can also be classified in the subclass of “deterministic” struc-
tured initialization methods. They include schemes using the Singular Value Decomposi-
tion and the Nonnegative Double Singular Value Decomposition (NNDSVD) [43,57,58] and
its variants [59], rank-1 decomposition [39,60] [61], nonnegative PCA [62,63], nonnegative
ICA [64], Vertex Component Analysis [65–67], Successive Projection Algorithm [68].

On the other hand, schemes based on clustering algorithms reduce to the minimum
use of random numbers (only some hyperparameters need to be randomly set up before
the clustering data matrix [69]) avoiding the application of multi-start random initial-
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izations [70]. The subclass of “clustering based” initializations includes: k-means [71]
and its variant [72], spherical k-means methods [73,74], fuzzy C-Means clustering [40,75],
Hierarchical Clustering [76] and Subtracting Clustering [28]. Table 1 summarises these
mechanisms, their related references and if they have or have not been used when microar-
rays and generally omic data are involved.

Table 1. Structured Initialization schemes for NMF algorithms with their main references and an
indication if they have been applied in the context of microarrays or omic data analysis.

Method Main References Omic Data

Deterministic low-rank

NNDSVD [43,57,58] yes
NNDSVD variant [59] no
nonnegative PCA [62,63,71,75] no

rank-1 [39] no
nonnegative ICA [41,64,77] yes

Vertex Component Anal. [65–67] no
Successive Projection Alg. [68] no

Clustering-based

k-means [72] no
k-means variant [57,71] yes

spherical k-means [73,74] no
fuzzy C-Means [40,75,78,79] no

Hierarchical Clustering [76] no
Subtracting Clustering [28] no

In the following, we take a closer look at the structured initializations for NMF, some
of which are used for microarrays or omic data in general.

3.2.1. Non-Negative Double Singular Value Decomposition

NNDSVD described in [43] is based on two processes of SVD, and it constructs both
factors W and H in NMF as the positive parts of rank-1 matrices obtained by the left and
right singular vectors of the SVD decomposition of X.

Let X = ∑k
i=1 σiuiv>i be the SVD representation of the data matrix X, with rank k

and σi,ui, vi as the nonzero singular values and the left and right singular vectors of X,
respectively. Then, for every r < k, the optimal rank-r approximation of X is given by

X ≈
r

∑
i=1

σiCi,

where Ci = uiv>i are the rank-1 matrix formed by the first i = 1, . . . , r singular vectors.
Each matrix Ci can be written as the sum of two nonnegative components Ci = C+

i − C−i ,
being the positive and the negative section of Ci, respectively. Approximating each Ci by
C+

i , by its nonnegativeness from Perron–Frobenius theory, its maximum left and right
singular vectors will also be nonnegative. The dominant singular triplets can be used as
initial vectors and rows to W and H.

The main phases of this algorithm are described in the following [43]:

- Compute the largest r singular triplets of X (first SVD process);
- Initialize the first column and row vectors in W and H as the nonnegative dominant

singular vectors of X weighted by
√

σi;
- Compute the positive section of each Ci;
- Compute the largest r singular triplets of C+

i (second SVD process);
- Initialize the j-th columns and rows in W and H, for j = 2, . . . , r as the singular

dominant vectors of each C+
i , weighted by the

√
σi(C+

i ) and normalized.

NNDSVD is composed of two processes of SVD and this justifies its name. There are
some variants of it, namely NNDSVDA and NNDSVDAR, which involve a replacement
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of the zero value on the result (W, H) by the average of all elements in the matrix X
and by a very small random value, respectively. This initialization scheme is included
in the main tools for NMF analysis of biological data [80,81], moreover, its deterministic
properties make NNDSVD the most commonly used initialization scheme together with
random approaches.

3.2.2. Nonnegative ICA Initialization

Independent component analysis is a mechanism used to extract a set of statistically
independent source variables from a collection of mixed signals without having information
about the data source signals or the combination process. It has been used as a knowledge
extraction mechanism in various biological and omic data analysis tasks. A modified
nonnegative version of ICA (nnICA) was proposed in [64] to feed NMF algorithms, and
such initialization has been shown to be effective in speeding up the learning process and
obtaining desired solutions.

The main phases of this algorithm are:

- Compute the ICA on the observed data matrix X;
- Initialized the factor W as the absolute of the independent components source matrix

obtained from ICA.

3.2.3. k-Means Initialization

Another structured initialization sometimes used in biological contexts is the (spher-
ical) k-means clustering [74]. In this scheme, the columns of W are initialized with the
centroids {cj}j of the best k (spherical) clusters of data, i.e., the center points of k disjoint
subsets {Πj}k

j=1 of the columns of X that are closest with respect to a distance function
(generally the Euclidean norm when spherical-k means clustering is required).

The main phases of this algorithm are described below, adopting the notation intro-
duced in [74].

- Initialize k centroids {c(0)}k
j=1 randomly choosing some columns in X and set t = 0

(this is the initial iteration) ;

- Compute d(t)ij =
c(0)j X>∗i

‖c(0)j ‖‖X∗i‖
, j = 1, . . . , k and i = 1, . . . , m;

- Define the new partition of clusters Π(t+1)
j = {X:i|argmaxl(d

(t)
il )} ;

- Recompute each centroid as: c(t+1)
j=1 =

∑
X:i∈Π(t+1)

j
X:i

‖∑
X:i∈Π(t+1)

j
X:i‖

;

- Initialize the columns of the factor W as the final cluster centroid vectors.

This initialization scheme expects the initial matrix H to be chosen randomly or as the
matrix in which the elements are the absolute values of the elements in W>X. A variant
allows to compute the elements of the factor H as the membership degrees of each data
point using the (spherical) k-means clustering [71].

3.3. Evolutionary and Natural Based Initialization

Schemes based on stochastic global search and evolutionary optimization methods
have recently appeared in the literature panorama as feeding schemes for NMF algorithms,
but they have not been used in the analysis of omic data.

Under this class, we can enumerate a number of different population-based algo-
rithms: Genetic Algorithms, Particle Swarm Optimization, Fish School Search, Differential
Evolution and Fireworks Algorithm [82,83], which have been proposed as new initializa-
tion variants for NMF multiplicative algorithms. All these population-based methods
sequentially initialize individual rows of W or individual columns of H to minimize the
NMF objective function before factorization. These methods were compared experimen-
tally, and some of them showed a reduction in the number of NMF iterations required to
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achieve a given accuracy. They also allow parallel/distributed computation by splitting
the initialization into several partially independent subtasks.

Another Genetic Algorithm approach was proposed in [84] to estimate the factor W
by first generating a population of individuals (representing potential solutions for NMF
optimization, i.e., estimates of the matrix W), then selecting individuals according to the
value of a specific fitness function and reproducing them by applying a specific genetic
operator. This process leads to the evolution of individuals within the population that
better solve the optimization problem.

Nevertheless, these approaches suffer from difficulties in their applicability due to the
large number of hyperparameters that need to be fixed and tuned a priori [69].

4. How Many Initializations Influence NMF Results for Omic Data Analysis?

The preceding literature review illustrates the existence of various initializations that
can be used to feed iterative NMF processes and the fact that their impact on the NMF final
has been largely considered only in terms of the performances (convergence rates and/or
final relative error of the objective function) of the specific algorithm adopted. Some
initialization schemes were qualitatively compared to demonstrate the best clustering
performance for multiple face and text datasets [39], others improved the separation of face
components [40], while initialization based on ICA proved better separation performance
in the audio source separation task [41]. In the context of omic data analysis, only some
random initializations and NNDSVD are used, but no comparisons have been made on how
such a scheme affects the final results from a biological point of view. It should be noted that
any initializations can implicitly encode prior knowledge into the NMF that may focus the
resulting factors to reflect valid biological information embedded in the data [3]. Because
there is a lack of information in the literature about comparing initialization methods and
how these can be interpreted concerning the influence of biological results achieved by
NMF, we decide to focus on this aspect by testing some techniques on real datasets. We
start a preliminary study to inspect how some seeding approaches can affect the results in
omic data analysis, hoping to put the basis of new theoretical and experimental studies in
this direction.

Here, we briefly illustrate a preliminary study of ours using three different types
of initializations with the KL-based MM algorithm to study two benchmark microarray
datasets: MCF7 and Golub data derived from breast cancer cells and leukemia microarray
studies, respectively. Table 2 contains information about these data.

Table 2. Description of datasets analyzed by the NMF KL-based algorithm fed by a subset of
initialization schemes. The MCF7 data matrix consists of 10,331 genes extracted by a cell cycle
microarray from breast cancer cells and 434 compounds linked to arachidonic acid. The data
matrix was pre-processed, as described in [25]. The Golub data matrix consists of 5000 genes and
38 tumor samples: 27 patients with acute lymphoblastic leukemia and 11 patients with acute myeloid
leukemia [9,85].

Dataset no. Rows no. Columns Type References
(Genes) (Compounds/Patients)

MCF7 10,331 434 breast cancer [25]
Golub 5000 38 leukemia [9,85]

We performed some numerical experiments (in R project environment [81] on an I-7
Core machine with a memory capacity of 12 GB RAM) using the KL-based update rules
initialized with: random initialization with randomly generated elements in the interval
[0, 1], nnICA and NNDVSD. According to previous studies, the hyperparameter rank value
was set to r = 4 and a stopping value of 3000 iterations (at most) was considered. Different
executions were performed for initialization with randomness (10 random and 10 nnICA
initializations have been saved).



Mathematics 2021, 9, 1006 11 of 17

We focused our attention on the columns of the basis matrices obtained for each
dataset and initialization, relying on the assumption that all the knowledge extracted
from the process is hidden into these latent factors. The obtained Wdataset ∈ R10331×84

matrices (concatenating all the basis from experiments for both MCF7 and Golub datasets)
were compared in terms of information embedded, exploiting cosine similarity criterion.
Particularly, the matrix cosWdataset ∈ R84×84, defined as:

(cosWdataset)ij =
Wdataset(:, i)>Wdataset(:, j)

‖Wdataset(:, i)‖2‖Wdataset(:, j)‖2
. (7)

for i, j = 1, . . . , 84 collects the cosine values among columns of the basis matrix Wdataset, for
both MCF7 and Golub datasets.

To demonstrate metagenes strictly related from a geometrical point of view (according
to the cosine similarity), we filter values in the cosine similarity matrices, considering only
pairs of metagenes with similarity values in the range [0.8, 1]. Figures 3 and 4 show a
pseudo-binary version of the heatmaps for cosWMCF7 and cosWGolub, respectively.

Figure 3. Heatmap of the filtered pseudo-binary cosine similarity matrix derived from cosWMCF7:
only metagenes with maximum similarity values are reported, while others and diagonal elements
are set to 0.

Figure 4. Heatmap of the filtered pseudo-binary cosine similarity matrix derived from cosWGolub:
only metagenes with maximum similarity values are reported, while others elements and diagonal
entries are set to 0.
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Despite the large number of relevant metagenes that have appeared, some of them
(85.24% and 86.43% from the MCF7 and Golub datasets, respectively) are repeated. Among
the latter, those with higher and lower frequency seem to be qualitatively coherent among
themselves, and, moreover, they share a common behavior pattern. On the other hand,
Table 3 gives the number of metagenes that occur only once in each initialization scheme
for the two datasets MCF7 and Golub.

Table 3. Number of metagenes with a high similarity degree for the MCF7 and Golub datasets.

Initialization
Dataset Random nnICA NDVSD

MCF7
18 15 10
24 25 10
2 4 0

Golub
19 30 10
10 25 10
1 3 0

Similarities and common behavior were investigated by also performing PCA on
the Wdataset matrices for both datasets. Table 4 gives the percentage of variance explained
by four principal components. As can be observed for both datasets, the information
contained in the data seems to be mainly collected in the first components. High geometric
relationships for all extracted metagenes and a high percentage of variance explained in the
first components of PCA strongly suggest that metagene groups seem to be quantitatively
related. In addition, the similar behavior in the cosine-filtered heatmap and relatively
repeated metagenes suggests their qualitative similarity and that metagenes extracted with
different initializations share common latent knowledge.

Table 4. Percentage of variance explained for the two microarray datasets.

Percentage of
Variance PC1 PC2 PC3 PC4

MCF7 79.8372 10.5284 4.4372 2.4361
Golub 63.2523 14.9335 12.4118 9.4001

The experimental results in this section are focused on analyzing the information
embedded into the column of the basis matrices achieved by several runs of different
seeding methodologies. Quantitative and qualitative comparisons have been made on
these results to provide evidence and form a geometrical, statistical and visual point of
view (with cosine similarities, PCA and explained variances, counting frequencies and
heatmap representations) that some shared knowledge is present between the different
runs. Furthermore, as explained at the beginning of this section, this is a preliminary study,
which needs to be further investigated and extended. We hope that this will provide the
basis for future direction and collaboration between the mathematical and biological world.

5. Conclusive Remarks

Various matrix factorizations prove to be effective tools for the analysis of omic data.
Among them, Nonnegative Matrix Factorization is able to reveal interpretable latent factors
and identify genes belonging to multiple pathways or biological processes. However,
the algorithms for calculating NMF need to be initialized. The current literature has
not yet considered the question of the possible influence of the particular initialization
methods on the final results of NMF for omic data analysis. In order to pave the way for a
deeper investigation of this aspect, in this paper, we have completely reviewed the NMF
initialization schemes appearing in the literature, pointed out their main characteristics and
when they have been used for omic data. Moreover, we briefly illustrated some preliminary
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results obtained when three selected initialization schemes were used to feed the KL-based
algorithm when two benchmark cancer datasets were considered. The experimental results
obtained in this biological context seem to indicate that interpretable information strictly
related to the data matrix under analysis can be extracted regardless of the particular
initialization scheme used in the iterative NMF algorithm. The results presented in this
work are from a preliminary study and part of a future project that aims to provide the
basis for a deep collaboration between the theoretical-numerical mathematical aspect of
these techniques and the biomedical world. Even if, from a mathematical point of view, the
alternate algorithmic nature of NMF achieves local minimum, this is quite often sufficient
in data analysis applications to extract useful knowledge from real datasets. For these
reasons, future analysis in this direction should be devoted to different aspects: to the
comparison of particular objective functions adopted in the minimization process and to
construct a biological dataset with some a priori knowledge to better interpret the results.
It is of the authors opinion that this could help researchers connect how the particular
minimization process adopted is hiddenly related to the extracted biological information
embedded in the data. Further analysis is needed, and a massive controlled experimental
session with multiple datasets and some a priori biological knowledge of them are required
to finally assess the actual influence of initialization produced on the final information
extracted by NMF from omic data.
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