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Abstract: A complex multi-state redundant system with preventive maintenance subject to multiple
events is considered. The online unit can undergo several types of failure: both internal and those
provoked by external shocks. Multiple degradation levels are assumed as both internal and external.
Degradation levels are observed by random inspections and, if they are major, the unit goes to a
repair facility where preventive maintenance is carried out. This repair facility is composed of a single
repairperson governed by a multiple vacation policy. This policy is set up according to the operational
number of units. Two types of task can be performed by the repairperson, corrective repair and
preventive maintenance. The times embedded in the system are phase type distributed and the
model is built by using Markovian Arrival Processes with marked arrivals. Multiple performance
measures besides the transient and stationary distribution are worked out through matrix-analytic
methods. This methodology enables us to express the main results and the global development in
a matrix-algorithmic form. To optimize the model, costs and rewards are included. A numerical
example shows the versatility of the model.

Keywords: reliability; redundant systems; preventive maintenance; multiple vacations

1. Introduction

Redundant systems and preventive maintenance are of fundamental importance
in ensuring reliability, preventing system failures and reducing costs. These questions,
therefore, are of considerable research interest.

The occurrence of total, unexpected system failure can provoke severe damage and
major financial loss. To avoid such an outcome, various reliability-enhancing methods
can be applied, chief among which are redundancy and preventive maintenance. In this
respect, cold, hot and warm redundant standby and k-out-of-n systems have been proposed.
Among researchers who have addressed these questions, Levitin et al. [1] considered an
optimal standby element sequencing problem (SESP) for 1-out-of-N: G heterogeneous
warm-standby systems, while Zhai et al. [2] constructed a multi-value decision diagram
with which to analyse a demand-based warm standby system. In related papers, Cha
et al. [3] considered preventive maintenance for items operating in a random environment
subjected to a shock Poisson process, Levitin et al. [4] evaluated the probability of mission
success given an arbitrary redundancy level, and Osaki et al. [5] analysed the behaviour of
a two-unit standby redundant system.

Preventive maintenance enhances system reliability and performance, reduces costs,
for both repairable and non-repairable systems, and decreases the probability of sudden
equipment failure. Various maintenance systems were studied by [6,7] who developed a
new model for the hybrid preventive maintenance of systems with partially observable
degradation. Levitin et al. (2021) [8] modelled the (time-consuming) procedure of task
transfer, in an event transition-based reliability analysis of standby systems in which
preventive replacements are performed according to a predetermined schedule. The aim of
this approach is to optimise preventive replacement scheduling and hence to maximise
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reliability. In another approach to this situation, Yang et al. [9] discussed a preventive
maintenance policy for a single-unit system subject to failure by internal deterioration
and/or sudden shock, according to a non-homogeneous Poisson process whereby the
process of internal failure is partitioned into two stages.

Complex systems that have a finite number of performance levels and various failure
modes, each producing different effects on system performance, are termed multi-state
systems (MSS). This concept was first discussed by [10] and has since been developed
extensively. For example, Levitin et al. [11] described various MSS measures and considered
problems of MSS optimisation, and Lisnianski et al. [12] conducted a comprehensive
analysis of the question.

One of the main problems encountered with multi-state complex models is the exis-
tence of intractable expressions for their modelling and/or of difficulties in their interpreta-
tion. In this respect, matrix-analytic methods are a valuable means of analysing complex
systems, preserving the Markovian structure and obtaining manageable results. This ap-
proach is usually based on two elements—phase-type distributions (PHD) and Markovian
arrival processes (MAP)—which enable the results to be expressed and complex systems
modelled in an algorithmic, computational form. PHD were first introduced and detailed
by [13]. MAP is a counting process in which PH distributions play an important role. This
method was described by [14] and comprehensively reviewed by [15,16]. A special case
is that of the MAP with marked arrivals (MMAP), which enables us to count different
types of arrival. Moreover, the arrival probabilities of events, for the discrete case, can
be customised for different situations. MAP and MMAP theory were further developed
by [16].

Many multi-state reliability systems, over time, are subject to events such as repairable
or non-repairable failure, inspections or external shocks. These systems can be modelled
using appropriate Markov processes, i.e., PHD and MAP ([17,18]). In parallel, unitary
complex systems subject to multiple events have been discussed by [19,20]. Matrix algo-
rithmic methods have also been used to model multi-state complex redundant systems.
Ruiz-Castro (2020) [21] developed a k-out-of-n: G system, in which the units are subject to
repairable and/or non-repairable failure and receive random inspections. In this system,
the potential loss of units is included; thus, when a non-repairable failure occurs, the
unit is removed and the system continues to be operational. In the context of complex
models, a repair facility with a single repairperson is usually assumed. Thus, Ruiz-Castro
et al. [22,23] analyse redundant complex systems with a general number of repairpersons
and the potential loss of units, determining the optimum number of repairpersons in
each case.

In brief, redundancy and preventive maintenance are incorporated into complex
systems in order to enhance their reliability, and must also be included in the modelling
of such systems. In theory, a unit is repaired either immediately after failure if the system
is unitary or when the element in next in line in the repair facility queue. However, this
might not be the case in a real scenario. For example, a failed unit might not be repaired
immediately in a small or medium-sized firm that cannot afford to employ a full-time
repairperson. Furthermore, when there is no failed unit to be attended to in the repair
facility, what should a repairperson do? Instead of remaining idle during this period, the
repairperson may take a ‘vacation’ and/or use the time to do other work, thus optimising
resources and reducing costs. A repairperson is on vacation when absent from the repair
facility, whether or not it is empty. The economic implications of this situation should be
considered, taking into account that the vacation policy applied might impact both on
performance and also on economic rewards/costs. In studies of this question, two time
points are of particular importance: the start and end times of the vacation. Moreover, the
services provided may be exhaustive or non-exhaustive. In the first case, the repairperson
cannot be on vacation when the repair facility is not empty, but in the second, even if an
item has been sent to the repair facility, the repairperson may be on vacation. Another
possibility that must be considered is that of interruption, i.e., the repairperson may take
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a vacation while a unit is being repaired. The vacation end time determines when the
repairperson resumes work. Finally, depending on the maintenance system adopted, the
vacation may occupy a single period of time or multiple periods.

Vacation policies have been considered in queuing theory and in reliability analysis,
among other areas. Thus, Doshi [24] provided a wide-ranging analysis of vacation system
models and Ke et al. [25] examined the application of two vacation policies (one single
and the other multiple) in a repairable system. Zaiming et al. [26] developed a reliability
system with multiple, but finite, vacation periods and Wu et al. [27] analysed the reliability
of a two-unit cold standby system with a single repairperson, entitled to take a vacation.

Vacation periods have also been considered for systems governed by a Markov model.
In this respect, Shrivastava et al. [28] presented the case of an exhaustive vacation policy,
whereby the repairperson could only take a vacation when the repair facility was empty.
Under the Markovian modelling described by [29], the repairperson could take a vacation
if there were no failed units in need of repair, but had to return as soon as any unit failed. In
another approach, Zhang et al. [30] modelled a k-out-of-n system with a single repairperson,
assuming a phase-type distribution for the vacation time and an exponential distribution
for the lifetime of the units. In this system, the repairperson could take a vacation whenever
there was no failed component in the system. On return, the repairperson might or might
not encounter failed components waiting for repair. In the second case, the repairperson
would remain within the repair facility, idle, until a failed component arrived. Finally,
Ruiz-Castro et al. [31] modelled a multi-state complex system subject to multiple events
and where preventive maintenance was applied. In this case, the repairperson had various
duties and, moreover, was entitled to take a vacation.

In the present study, we model a cold standby system with the potential loss of units.
The system evolves in discrete time; the online unit is multi-state and subject to internal
failure, repairable or otherwise, to external shocks with diverse consequences, and to
random inspection. When a non-repairable failure occurs, the faulty unit is removed and
the system continues working with one unit less. An external shock may provoke any
of the following consequences: degraded system performance, a repairable failure of the
online unit or its total (non-repairable) failure. Damage to the internal performance of the
online unit may be minor or major. During system inspection, the internal status of the
online unit is observed. If major damage is present, the faulty unit is sent to the repair
facility for preventive maintenance. According to the case presented, the repairperson
may perform corrective repair or preventive maintenance. The complexity of the system is
determined as follows. In modelling the system, the vacation policy employed in the repair
facility is determined by the number of operational units included. A general number
R of operational units is considered. If the repairperson returns from a vacation period
and there are fewer than R operational units, the repairperson must then remain in the
facility. Otherwise, a new vacation period begins. As the system is subject to a loss of
units, when there are fewer than R units in the system, the repairperson must remain in the
facility while this situation persists. The times embedded are PH distributed and a MMAP
is constructed to model the system. In modelling this system, the following measures are
calculated: availability, reliability and expected times (in both transient and stationary
regimes). Rewards and costs are incorporated, and a numerical optimisation is performed
to determine the optimum threshold R and to decide whether preventive maintenance is
profitable or not.

The rest of this paper is organised as follows. In Section 2, we describe the system to
be modelled, after which we present the corresponding MMAP in Section 3. In Section 4,
we detail the measures applied to the transient and stationary regimes, and calculate the
transient and stationary distributions. The latter is obtained both algorithmically and
computationally. The system costs, rewards and associated measures are then derived in
Section 5. Taking advantage of the favourable properties of PHD and MMAP, the study
findings are obtained in a matrix algorithmic form. Section 6 presents a numerical example,
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including an optimisation exercise. Finally, the main conclusions drawn are summarised in
Section 7.

2. Assumptions of the System: The State Space

A cold standby system composed of n units is initially assumed. One unit is online
and the others are waiting on standby without degrading. The online unit is multi-state,
where the internal performance is partitioned into major and minor states. It is subject to
multiple events. This can suffer internal failures, repairable or not, and external shocks.
Each external shock can provoke three different consequences: total failure (non-repairable),
modification in the internal behaviour or an internal repairable or non-repairable failure.
When a repairable failure occurs, the unit goes to the repair facility for corrective repair. The
corrective repair time distribution is PH. The repair facility is composed of one repairperson
who can take vacations. As it has been mentioned above, the internal performance of the
online unit is partitioned into major and minor states. A major state is a state from where
the online unit has a greater risk of suffering a failure. To avoid serious damage and major
financial losses random inspections are carried out. The inspector observes the online
unit and if this one is operational in major damage, the unit goes to the repair facility for
preventive maintenance. Preventive maintenance time is also PH distributed. When the
online unit undergoes a failure, one cold standby occupies the online place, if any. The new
online unit will start executing from the initial distribution of the internal performance,
because after repairing or preventive maintenance the unit is as good as new. The system
is also subject to loss of units. After a non-repairable failure the unit is removed and the
system continues working until there are no units in the system. If only one unit is in the
system and a non-repairable failure occurs, the system is restarted.

One repairperson can be in the repair facility who can develop two different tasks:
corrective repair and preventive maintenance. To optimise the system, the repairperson is
allowed to take vacations, for a random duration, according to certain criteria.

Initially, all units are operational and the repairperson is on vacation. After returning,
a new vacation begins if there are R or more operational units in the system. Equivalently,
if there are k− R + 1 = N or more failed units needing to be repaired, where k is the number
of units in the system, k = 1,..., n, the repairperson must remain in the repair facility.

After finishing a repair, the repairperson begins a new period of vacation if R units
are then operational. As the system can lose units, the repairperson must always remain in
the facility (or interrupt the vacation to return) when fewer than R units are in the system.

The following Section “The Assumptions” specifies the assumptions of the system.

The Assumptions

The system follows the following assumptions.
Assumption 1. The internal performance time is PH distributed with representation

(α, T), and with order m (number of internal stages). The internal failure probability de-
pends on the states. The column vectors T0

r and T0
nr contains the probabilities of repairable

and non-repairable failures, respectively.
Assumption 2. The internal performance of the online unit is multi-state where the n1

first units are minor and the rest are major according to damage.
Assumption 3. The external events occur according to a PH-renewal process where

the time between two consecutive shocks is a PH distribution with representation (γ, L),
with order t.

Assumption 4. An external shock can provoke a total non-repairable failure of the
online unit with a probability equal to ω0.

Assumption 5. After an external shock the internal performance state can undergo a
modification. This modification between any two internal states occurs according to the
transition probability matrix W. The column vectors W0

r and W0
nr contains the probabilities

of repairable and non-repairable failures respectively provoked by an external shock.
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Assumption 6. The time between two consecutive random inspections is PH dis-
tributed with representation (η, M), with order ε.

Assumption 7. The vacation time is distributed following a PH distribution with
representation (v, V), with order υ.

Assumption 8. The corrective repair time is PH distributed with representation
(β1, S1), with order z1.

Assumption 9. The preventive maintenance time is PH distributed with representation
(β2, S2), with order z2.

The behaviour of the system is shown in Figure 1, for inspection and repairable failure,
Figure 2 for non-repairable failure, and Figure 3 for the vacation policy.
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3. Modelling the System. The Markovian Arrival Process with Marked Arrivals

The system is governed by a Markov process vector in discrete time. In this section
the state space is described and, to model the proposed complex system, the behaviour of
the online unit and of the repair facility is developed separately.

3.1. The State-Space

The state-space is composed of macro-states and it is denoted by S =
{

Un, Un−1, . . . , U1},
where Uk contains the phases when there are k units in the system. In turn, these macro-
states are partitioned as follows

Uk =
{

Ek,v
0 , Ek,v

1 , . . . , Ek,v
N−1, Ek,v

N , Ek,v
N+1, . . . , Ek,v

k , Ek,nv
N , Ek,nv

N+1, . . . , , Ek,nv
k

}
; k ≥ R

Uk =
{

Ek,nv
0 , Ek,nv

1 , . . . , Ek,nv
k

}
; k ≥ R

where Ek,x
s contains the phases when there are k units in the system and s of them are in

the repair facility and the superscript x indicates if the repairperson in on vacation (v) or
not (nv). Initially the repairperson begins to operate the first time that he comes back from
vacation and the system has at least N = k − R + 1 units in the repair facility. He remains
working until N − 1 units are in the repair facility. At this moment the repairperson goes
on vacation. In any case, the order of the units in the repair facility has to be saved in
memory, and there are two types of repair, corrective and preventive maintenance. For this
reason, the macro-state Ek,x

s is composed of the first level of macro-states Ek,x
i1,...,is .

These macro-states contain the phases when there are k units in the system, with s
of them in the repair facility, and the type of repair is given by the ordered sequence i1,
. . . , is. The values of il are equal to 1 or 2 if the unit is in corrective repair or preventive
maintenance, respectively.

When the number of units in the system is R – 1 units, then the repairperson occupies
his place work immediately. The inspection time is restarted each time that one unit
occupies the online place.

• For k = 1, . . . , R − 1
Ek,nv

0 = {(k, 0; i, j, u); i = 1, . . . , m, j = 1, . . . , t, u = 1, . . . , ε}
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Ek,nv
s =

{
Ek,nv

i1,...,is ; il = 1, 2; l = 1, . . . , s
}

for s = 1, . . . , k where

Ek,nv
i1,...,is =

{
(k, s; i, j, u, r); i = 1, . . . , m, j = 1, . . . , t, u = 1, . . . , ε, r = 1, . . . , zi1

}
for s < k

Ek,nv
i1,...,ik

=
{
(k, k; j, r); j = 1, . . . , t, u = 1, . . . , ε, r = 1, . . . , zi1

}
• For k = N, . . . , n

Ek,v
0 = {(k, 0; i, j, u, v); i = 1, . . . , m, j = 1, . . . , t, u = 1, . . . , ε, v = 1, . . . , υ}

Ek,v
s =

{
Ek,v

i1,...,is ; il = 1, 2; l = 1, . . . , s
}

for s = 1, . . . , k where

Ek,v
i1,...,is = {(k, s; i, j, u, v); i = 1, . . . , m, j = 1, . . . , t, u = 1, . . . , ε, v = 1, . . . , υ} for s < k

Ek,v
i1,...,ik

= {(k, k; j, u, v); j = 1, . . . , t, u = 1, . . . , ε, v = 1, . . . , υ}
Ek,nv

s =
{

Ek,nv
i1,...,is ; il = 1, 2; l = 1, . . . , s

}
for s = N, . . . , k where

Ek,nv
i1,...,is =

{
(k, s; i, j, u, r); i = 1, . . . , m, j = 1, . . . , t, u = 1, . . . , ε, r = 1, . . . , zi1

}
for s < k

Ek,nv
i1,...,ik

=
{
(k, k; j, u, r); j = 1, . . . , t, u = 1, . . . , ε, r = 1, . . . , zi1

}
The phase (k, s; i, j, u, m, r) indicates that there are k units in the system, with s in the

repair facility; the internal performance of the online unit is in state i, the external shock
time is in state j, the cumulative damage caused by external shocks is given by u, m is the
current phase of the inspection time and r is the corrective repair/preventive maintenance
phase for the unit currently being attended to in the repair facility. If the repairperson is
taking a vacation, the phase is indicated by v.

The order of these macro-states is as follows:

oEk,nv
0

= m · t · ε; s < k, oEk,nv
s

= m · t · ε · (z1 + z2)2s−1; s = k, oEk,nv
k

= t · (z1 + z2)2k−1

oEk,v
0

= m · t · ε; s < k, oEk,v
s

= m · t · ε · 2s; s = k, oEk,v
k

= t · 2k−1

3.2. Modelling the Online Unit

The online unit can undergo different types of event at any time. These are noted and
defined as:

A: Internal repairable failure
B: Major revision
C: Non-repairable failure
O: No events
Two of them are described below, and the rest are given in Appendix A.
The elements of auxiliary matrices U1 and U2 are defined as

U1(i, j) =
{

1 ; i = j; i = 1, . . . , n1
0 ; otherwise

; U2(i, j) =
{

1 ; i = j; i = n1 + 1, . . . , n
0 ; otherwise

Throughout this work the symbol ⊗ denotes the Kronecker product and, given a
matrix A, we denote this as A0 to the column vector A0 = e − Ae, e being a column vector
of units with appropriate order.

3.3. No Events at a Certain Time (O)

We assume that the online unit is operational and at this time it continues working.
This occurs because of different situations:

• The internal performance continues in the same phase or changes to another, equally
operational state. There is no external shock (T⊗ L), and no inspection takes place
(M). The matrix that governs this transition for the online unit is given by T⊗ L⊗M.
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• The online undergoes an external shock but total failure does not occur (L0γ
(
1−ω0)).

This external shock might modify the internal performance but does not produce internal
failure (TW). No inspection takes place (M). The matrix is

(
TW⊗ L0γ

(
1−ω0))⊗M.

• An inspection takes place and the time preceding the next one begins (M0η). The
inspector observes that the online unit does not need preventive maintenance and no
external shock occurs (U1T⊗ L). The matrix is U1T⊗ L⊗M0η.

• An inspection takes place and the time preceding the next one begins (M0η). One ex-
ternal shock also takes place without total failure (L0γ

(
1−ω0)). This shock provokes

a change in the internal performance without failure and the inspection observes
minor damage (U1TW). This matrix is

(
U1TW⊗ L0γ

(
1−ω0))⊗M0η.

Therefore, the matrix that governs this transition for the online unit is given by

HO =
(

T⊗ L + TW⊗ L0γ
(

1−ω0
))
⊗M+

(
U1T⊗ L + U1TW⊗ L0γ

(
1−ω0

))
⊗M0η

3.4. Non-Repairable Failure (C)

The online unit is assumed to be operational and at the next time point a non-repairable
failure occurs, because:

• An internal non-repairable failure occurs with no external shock, T0
nrα⊗ L.

• An external shock occurs, but does not provoke total failure. This shock provokes a
non-repairable internal failure or, irrespective of the shock, the online unit may experi-
ence a non-repairable internal failure. The matrix is

(
T0

nr + TW0
nr

)
α⊗ L0γ

(
1−ω0).

• An external shock provokes total failure. In this case the internal behaviour is irrele-
vant. The matrix is eα⊗ L0γω0.

This transition is independent of the inspection time. After the online unit experiences
a non-repairable failure, the online place is occupied by a substitute, identical unit. Then,
the matrix is given by

HC =
[
T0

nrα⊗ L +
(

T0
nr + TW0

nr

)
α⊗ L0γ

(
1−ω0

)
+ eα⊗ L0γω0

]
⊗ eη.

If only one unit is operational and online (i.e., all others are under repair), this unit
experiences a non-repairable failure and no repair occurs, no immediate substitution can
be made and therefore the system does not restart. The matrix is given by

H′C =
[
T0

nr ⊗ L +
(

T0
nr + TW0

nr

)
⊗ L0γ

(
1−ω0

)
+ e⊗ L0γω0

]
⊗ e

3.5. The Markovian Arrival Process with Marked Arrivals (MMAP)

The behaviour of the system is governed by a MMAP. The representation of this
MMAP is given from the types of event shown below:

A: Internal repairable failure (default without D)
B: Major revision (default without D)
C: Non-repairable failure (default without D)
D: The repairperson resumes to work (default without A, B, C)
AD: Internal repairable failure and the repairperson resumes work
BD: Major revision and the repairperson resumes work
CD: Non-repairable failure and the repairperson resumes work
NS: New system
O: No events
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The representation of the MMAP is
(
DO, DA, DB, DC, DD, DAD, DBD, DCD, DNS).

The transition probability matrix associated to the embedded Markov chain from the
MMAP is given by D = ∑

Y
DY.

Two matrices DY are described in the next section. The rest are given in Appendix B.

The Matrices DA and DB

The matrices DA and DB govern the transition when a repairable failure or a major
inspection takes place, respectively. These matrices are composed of matrix blocks that
contain the transitions between macro-states Uk. This is a diagonal matrix block given
that the number of units in the system does not change in this transition. The matrix DY

k
contains the transition probabilities when there are k units in the system and the event Y
occurs for Y = A or B and k = 1, . . . , n. Then,
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These blocks are composed of further blocks.

• If the number of units is less than R−1, the repairperson is always in his workplace.
Then, for k = 1, . . . , R−1

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 30 
 

 

( ) ( )0 0 0 0 0 0 01C nr nr nr = ⊗ + + ⊗ −ω + ⊗ ω ⊗ H T α L T TW α L γ eα L γ eη . 

If only one unit is operational and online (i.e., all others are under repair), this unit 
experiences a non-repairable failure and no repair occurs, no immediate substitution can 
be made and therefore the system does not restart. The matrix is given by 

( ) ( )0 0 0 0 0 0 0' 1C nr nr nr = ⊗ + + ⊗ −ω + ⊗ ω ⊗ H T L T TW L γ e L γ e  

3.5. The Markovian Arrival Process with Marked Arrivals (MMAP) 
The behaviour of the system is governed by a MMAP. The representation of this 

MMAP is given from the types of event shown below: 
A: Internal repairable failure (default without D) 
B: Major revision (default without D) 
C: Non-repairable failure (default without D) 
D: The repairperson resumes to work (default without A, B, C) 
AD: Internal repairable failure and the repairperson resumes work 
BD: Major revision and the repairperson resumes work 
CD: Non-repairable failure and the repairperson resumes work 
NS: New system 
O: No events 
The representation of the MMAP is ( ), , , , , , , ,O A B C D AD BD CD NSD D D D D D D D D . 
The transition probability matrix associated to the embedded Markov chain from the 

MMAP is given by Y

Y
=D D . 

Two matrices DY are described in the next section. The rest are given in Appendix B. 

The matrices DA and DB 
The matrices DA and DB govern the transition when a repairable failure or a major 

inspection takes place, respectively. These matrices are composed of matrix blocks that 
contain the transitions between macro-states Uk. This is a diagonal matrix block given that 
the number of units in the system does not change in this transition. The matrix Y

kD  con-
tains the transition probabilities when there are k units in the system and the event Y oc-
curs for Y = A or B and k = 1,…, n. Then, 

1

2

1

Y
n

Y
n

Y Y
n

Y

−

−

 
 
 
 =
 
 
 
 

D
D

D D

D


  for Y = A, B. 

These blocks are composed of further blocks. 
• If the number of units is less than R−1, the repairperson is always in his workplace. 

Then, for k = 1,…, R−1 

, , , , ,
0 1 2 1

, , ,
0 01

, , , , ,
1 11 12

, , , , ,
1 1, 1 1,

,

                    k nv k nv k nv k nv k nv
k k

k nv Y k nv

k nv Y k nv Y k nv
Y
k

k vn Y k nv Y k nv
k k k k k
k nv
k

E E E E E

E
E

E
E

−

− − − −

 
 
 =
 
 
 
 
 

0 D
D DD

D D
0

  
. 

The block DY,k,nv
i,j contains the transition, when there are k units in the system, from

i units in the repair facility to j (a type event Y occurs) and the repairperson is in his
workplace. For instance, the cases DA,k,nv

01 and DB,k,nv
01 (transition Ek,nv

0 → Ek,nv
1 for type A

and B respectively) are analyzed.
In both cases, there are k units in the system and none of these is in the repair facility

(all operational). The online unit goes to the repair facility if it undergoes an internal
repairable failure (HA) or a major inspection (HB). In both cases a new unit will occupy
the online place if the number of units in the system is greater than one. If the event is a
repairable failure, then the unit will begin the repair given that the repairperson is not on
vacation (β1). If the event is a major inspection, the initial distribution for the preventive
maintenance would be β2.

• If the number of units is greater or equal than R, the repairperson can be on vaca-
tion or not. If the repairperson returns and there are less than R operational units
then he remains at his workplace. Given that these events A and B occur when a
repairable or major inspection occurs (without returning to work) then, for k = R,
. . . , n (N = k− R + 1, the limit of the number of units in the repair facility for the
repairperson to remain):
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This matrix is partitioned into two great matrix blocks depending on the transition
between macro states; continues on vacation and continues in the repair facility.

The block DY,k,v
i,j contains the transition, when there are k units in the system, from i

units in the repair facility to j (type Y) and the repairperson continues on vacation. For
instance, the cases DA,k,v

01 and DB,k,v
01 correspond to the transition Ek,v

0 → Ek,v
1 for type A

and B, respectively.
These matrices are for k = 1, . . . , n and R > 1
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The rest of matrices for this matrix block are as follows.

DA,k,nv
1,1 =

(
HA ⊗ S0

1 ⊗β1 0
HA ⊗ S0

2 ⊗β1 0

)
; DB,k,nv

1,1 =

(
0 HB ⊗ S0

1 ⊗β2
0 HB ⊗ S0

2 ⊗β2

)
For r = 2, . . . , k−1

DA,k,nv
r,r =


I2r−2 ⊗

(
HA ⊗ S0

1 ⊗β1, 0
)

0

0 I2r−2 ⊗
(

HA ⊗ S0
1 ⊗β2, 0

)
I2r−2 ⊗

(
HA ⊗ S0

2 ⊗β1, 0
)

0

0 I2r−2 ⊗
(

HA ⊗ S0
2 ⊗β2, 0

)



DB,k,nv
r,r =


I2r−2 ⊗

(
0, HB ⊗ S0

1 ⊗β1

)
0

0 I2r−2 ⊗
(

0, HB ⊗ S0
1 ⊗β2

)
I2r−2 ⊗

(
0, HB ⊗ S0

2 ⊗β1

)
0

0 I2r−2 ⊗
(

0, HB ⊗ S0
2 ⊗β2

)


For r = max{1, k − R + 1}, . . . , k − 1

DA,k,nv
r,r+1 =

 I2r−1 ⊗
((

I{r<k−1}HA + I{r=k−1}H
′
A

)
⊗ S1, 0

)
0

0 I2r−1 ⊗
((

I{r<k−1}HA + I{r=k−1}H
′
A

)
⊗ S2, 0

) 
DB,k,nv

r,r+1 =

 I2r−1 ⊗
(

0,
(

I{r<k−1}HB + I{r=k−1}H
′
B

)
⊗ S1

)
0

0 I2r−1 ⊗
(

0,
(

I{r<k−1}HA + I{r=k−1}H
′
A

)
⊗ S2

) 
For r = 1, . . . , k−1 and k ≥ R
DA,k,v

0,1 =
(

HA ⊗
(

V + I{k≥R+1}V
0ν
)

, 0
)

; DB,k,v
0,1 =

(
0, HB ⊗

(
V + I{k≥R+1}V

0ν
))

DA,k,v
r,r+1 = I2r ⊗
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.
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4. Measures

Multiple interesting measures in transient and stationary regime can be worked out
and are described in this section.

4.1. The Transient and the Stationary Distribution

The transient distribution is determined by the initial distribution and the transition
probability matrix of the vector Markov process given in Section 3.3.

Initially the online unit is new and the inspection time begins. Then, the initial
distribution of the Markov process is φ = [α ⊗ γst ⊗ η, 0] where γst is the stationary
distribution of the phase-type renewal process with transition probability matrix L + L0γ.

Therefore, γst = [1, 0]
[
e
∣∣∣(L + L0γ− I

)∗ ]−1
.

The probability of occupying the macro-state Ek,a
s at time ν is worked out by matrix

blocks as pν
Ek,a

s
= (φDν)Ik,a

s
where Ik,a

s indicates the range for the corresponding states.

Evidently, pν is the transient distribution at time ν.
To calculate the stationary distribution in a matrix-algorithmic form, we have par-

titioned the matrix D for the transitions between the macro-states Uj into the following
blocks,

D =


Dn,n Dn,n−1 0 . . . 0 0

0 Dn−1,n−1 Dn−1,n−2 . . . 0 0
...

...
. . . . . .

...
...

0 0 . . . . . . D22 D21
D1n 0 . . . . . . . . . D11


where

Dii = DO
i + DA

i + DB
i + DD

i + DAD
i + DBD

i ; i = 1, . . . , n
Di,i−1 = DC

i + DCD
i ; i = 2, . . . , n

D1,n = DNS
1 .

The stationary distribution π verifies the balance equations πD = π and the normal-
ization equation πe = 1. This vector is partitioned into the macro-states Uj, j units in the
system, then, π = {πn,πn−1, . . . ,π1} for the macro-states Un, . . . , U1, respectively.

The solution of this matrix system is πj = π1Rj; j = 2, . . . , n, being Rj = Rj+1Gj+1,j =

G1nGn,n−1 · · ·Gj+1,j; j = 2, . . . , n−1, Rn = G1,n and Gij = Dij
(
I−Djj

)−1 for (i, j) ∈
{(1, n), (n, n− 1), (n− 1, n− 2), . . . , (3, 2)}

The transition probability vector for the macro-state U1 can be worked out from the
normalization condition and one balanced equation as

π1 = (1, 0)

(
e +

n

∑
j=2

Rje

∣∣∣∣∣(I−D11 −R2D21)
∗
)−1

,

where * is the corresponding matrix without the first column.
From the stationary distribution and considering the macro-states, multiple propor-

tional time measures can be defined:

• Proportional time that the system has k units: πUk .
• Proportional time that the repairperson is in the workplace:
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• Proportional time that the repairperson is on vacation:
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4.2. Availability and Mean Times

It is interesting to calculate the availability of the system, the mean time in each macro-
state and the mean operational time. This has been summed up in Table 1 in both regimes,
transient and stationary.

Table 1. Availability and mean times in transient and stationary regime.

Transient Regime
(up to Time ν) Stationary Regime

Availability A(ν) = 1 −
n
∑

k=R

(
pν

Ek,v
k
· e + pν

Ek,nv
k
· e
)

−
R−1
∑

k=1
pν

Ek,nv
k
· e

A = 1 −
n
∑

k=R

(
π

Ek,v
k
· e + π

Ek,nv
k
· e
)

−
R−1
∑

k=1
π

Ek,nv
k
· e

Mean time in Ek,v
s ; Ek,nv

s ψk,s(ν) =
ν

∑
m=0

(
pm

Ek,v
s
· e + pm

Ek,nv
s
· e
)

ψk,s = π
Ek,v

s
· e + π

Ek,nv
s
· e

Mean time in Ek
ψk(ν) =

k
∑

s=0
ψk,s(ν) ψk =

k
∑

s=0
ψk,s

Mean operational time µop(ν) =
K
∑

k=1

k−1
∑

s=0
ψk,s(ν) µop =

K
∑

k=1

k−1
∑

s=0
ψk,s

4.3. Time up to First Time That the System Is Replaced

A system composed of n units is replaced by a new and identical one when all units
undergo a non-repairable failure. The time up to this event is phase-type distributed with
representation (φ, D′) where D′ = DO + DA + DB + DC + DD + DAD + DBD + DCD.

4.4. Expected Number of Events

The expected number of events up to time ν is determined using the Markovian
Arrival Process with Marked arrivals developed in Section 3.3. If the event considered is
denoted by Y then the corresponding expected number of events is given by

ΛY(ν) =
ν

∑
u=1

pu−1DYe,

For Y = A, B, C, D, AD, BD, CD, NS. This value in stationary regime is ΛY = πDYe.
Another mean number of events can be calculated as follows.

4.5. Mean Number of Repairable Failures

A repairable failure can occur when the repairperson resumes work or not at the same

time. Then, the mean number up to time ν is Λrep(ν) =
ν

∑
u=1

pu−1(DA + DAD)e and in

stationary regime it is Λrep = π
(
DA + DAD)e.

4.6. Mean Number of Major Inspections

Analogously to the repairable case, a major inspection can occur when the repairperson
occupies the workplace or not at the same time. Then, it is in transient regime Λmi(ν) =
ν

∑
u=1

pu−1(DB + DBD)e and in the stationary case it is Λmi = π
(
DB + DBD)e.
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4.7. Mean Number of Non-Repairable Failures (No Provoking System Failure)

The mean number of non-repairable failures up to time ν is

Λnr(ν) =
ν

∑
u=1

pu−1
(

DC + DCD
)

e.

This value in the stationary case is Λnr = π
(
DC + DCD)e.

4.8. Mean Number of Times That the Repairperson Resumes to Work

The mean number that the repairperson resumes and remains in his workplace up to
a certain time is given by

Λrejoined(ν) =
ν

∑
u=1

pu−1
(

DD + DAD + DBD + DCD
)

e

In the stationary case this is Λrejoined = π
(
DD + DAD + DBD + DCD)e.

4.9. Mean Number of Times That the Repairperson Resumes and Begins a New Period of Vacation

The mean number that the repairperson resumes and begins a new period of vacation
up to a certain time is given by

Λr−b(ν) =
ν

∑
u=1

pu−1Qe.

where Q is a matrix described in Appendix C. In the stationary case it is Λr−b = πQe.

4.10. Mean Number of New Systems

When the system is composed of only one unit and a non-repairable failure occurs,
the system is restarted with n new units. The mean number of new systems up to time ν is

ΛNS(ν) =
ν

∑
u=1

pu−1DNSe.

This measure in stationary case is ΛNS = πDNSe.

5. Rewards and Costs

To analyze the effectiveness of the model from an economic point of view, costs and
rewards have been taken into account. A net profit vector associated to the state-space is
built. Previously, multiple values are introduced:

B: Gross profit per unit of time if the system is operational.
c0: expected cost per unit of time depending on the operational phase while the system

is operational.
cr1: expected corrective repair cost per unit of time depending on the repair phase.
cr2: expected preventive maintenance cost per unit of time for a unit that was
observed with major damage depending on the preventive maintenance phase.
H: repairperson cost per unit of time while the repairperson in idle.
C: loss per unit of time while the system is not operational
G: fixed cost associated to each return of the repairperson (independently of if he
stays or not).
fcr: fixed cost each time that the online unit undergoes a repairable failure from the
online unit.
fmi: fixed cost each time that the online unit undergoes a major inspection.
fnu: cost for a new unit (n·fnu cost of a new system).
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5.1. Net Profit Vector

When the system occupies a determined state, a net profit value is produced. Costs
and rewards from the online unit and the cost provoked by the repairperson have been
taken into account to build the net profit vector.

5.1.1. Online Unit

If only the online unit is considered when the system visits the macro-state Ek,nv
s , a net

reward for the phases of this macro-state is worked out. The profit net vector for the online
unit if the repairperson is in his workplace (Ek,nv

s ) is for k = 1, . . . , n,

nrk,nv
s =


Bemtε − c0 ⊗ etε ; s = 0
Bemtε2s−1(z1+z2)

− c0 ⊗ etε2s−1(z1+z2)
; s = 1, . . . , k− 1

−C · et2s−1(z1+z2)
; s = k.

This can be expressed for any number of units in the repair facility as the following

column vector nrk,nv
Total =

(
nrk,nv

0
′
; . . . ; nrk,nv

k
′)′

.
If the number of units in the repair facility is N or more, then the repairperson remains

at his workplace without vacation. In this case we define nrk,nv
f romN =

(
nrk,nv

N
′
; . . . ; nrk,nv

k
′)′

.
For cased when the repairperson is on vacation, the profit net vector for the online

unit for the macro-state Ek,v
s is

nrk,v
s =


Bemtευ − c0 ⊗ etευ ; s = 0
Bemtευ2s − c0 ⊗ etευ2s ; s = 1, . . . , k− 1
−C · etυ2s ; s = k.

For any number of units in the repair facility the column vector nrk,v
Total =

(
nrk,v

0
′
; . . . ; nrk,v

k
′)′

is defined.
Then, if the total state space is considered then the net reward, according to the state

visited, for the online unit is

nr =
(

nrn,v
Total

′; nrn,nv
f romN

′; nrn−1,v
Total

′
; nrn−1,nv

f romN
′
; . . . ; nrN,v

Total
′
; nrN,nv

f romN
′
; nrN−1,nv

Total
′
; nrN−1,nv

Total
′
; . . . ; nr1,nv

Total
′)′

5.1.2. Repair Facility

If only the repair facility is considered, when the system visits the macro-states Ek,nv
s ,

a cost vector for the phases of the corresponding macro-state, for k = 1, . . . , n is

nck,nv
s =


H · emtε ; s = 0

e
t(mε)

I{s<k} ⊗
(

e2s−1 ⊗ cr1
e2s−1 ⊗ cr2

)
; s = 1, . . . , k.

For any number of units in the repair facility, the following column vectors are defined,

nck,nv
Total =

(
nck,nv

0
′
; . . . ; nck,nv

k
′)′

, nck,nv
f romN =

(
nck,nv

N
′
; . . . ; nck,nv

k
′)′

For any k and s while the repairperson is on vacation the cost of the repair facility is
zero, then the following column vector is defined for this case as nck,v

s = 0
(mε)

I{s<k} tυ2s . For

any number of units in the repair facility it is defined as nck,v
Total =

(
nck,v

0
′
; . . . ; nck,v

k
′)′

.
Then, the cost vector associated to the state space due to repair is given by

nc =
(

ncn,v ′; ncn,nv
f romN

′; ncn−1,v ′; ncn−1,nv
f romN

′
; . . . ; ncN,v ′; ncN,nv

f romN
′
; ncN−1,nv

Total
′
; ncN−1,nv

Total
′
; . . . ; nc1,nv

Total
′)′
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Therefore, the net profit vector corresponding to the online unit and the repair facility
for the global state space is given by

c = nr− nc =


cn

cn−1

...
c1

,

where
ck =

(
nrk,nv

Total
′
− nck,nv

Total
′)′

for k = 1, . . . , R − 1,

ck =
(

nrk,v ′ − nck,v ′; nck,nv
f romN

′
− nck,nv

f romN
′)′

for k = R, . . . , n.

5.2. Expected Net Profits and Total Net Profit

Net reward measures are worked out, in transient and stationary regimes, to analyze
the effectiveness of the system from an economic point of view.

5.2.1. Expected Net Profit from the Online Unit Up to Time ν

The expected net profit up to time ν by considering only the online unit is

Φν
w =

ν

∑
m=0

pm · nr.

In stationary regime this is given by Φw_s = π · nr.

5.2.2. Expected Cost from Corrective Repair and Preventive Maintenance

The expected cost because of corrective repair and preventive maintenance up to time
ν is calculated. This is respectively

Φν
cr =

ν

∑
m=0

pm ·mccr and Φν
pm =

ν

∑
m=0

pm ·mcpm

where mccr is the vector nc with cr2 = 0z2 and mcpm is the vector nc with cr1 = 0z1 , being
0a a column vector of 0s with order a.

If the stationary regime is considered, then

Φcr_s = π ·mccr and Φpm_s = π ·mcpm

5.2.3. Total Net Profit

If costs, fixed costs and profits are considered, the total net profit up to time ν is

Φν = Φν
w −Φν

cr −Φν
pm −

(
1 + ΛNS(ν)

)
· n · f nu−Λrep(ν) · f cr−Λmi(ν) · f mi−Λr−b(ν) · G

In the stationary case this is

Φ = Φw −Φcr −Φpm −
(

1 + ΛNS
)
· n · f nu−Λrep · f cr−Λmi · f mi−Λr−b · G.

6. A Numerical Example

The system modelled in this paper can be applied to real-world engineering problems.
It would be interesting to examine whether or not preventive maintenance is profitable
and to determine the optimum distribution for vacation time and hence the corresponding
value of R.
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6.1. The System

We assume a standby system composed of four units initially as described in this
work. Each unit is composed of four performance internal states where the first two are
considered minor damage and the last two as major damage. The transition probability
matrix for wearing out time is given by

T =


0.96 0.03 0 0

0 0.97 0.01 0
0 0 0.85 0.06
0 0 0 0.6

.,

Beginning in the initial state (α = (1, 0, 0, 0)). From each state, only a transition to
failure or to next performance level state can occur. The transition probability to repairable
and non-repairable failure depending on the performance state are given by the column

vectors T0
r =


0.008
0.016
0.072
0.32

 and T0
nr =


0.002
0.004
0.018
0.080

 respectively.

The online unit is subject to external shocks. The time between two consecutive
external shocks follows a phase-type distribution with representation (γ, L) being γ = (1, 0)

and L =

(
0.9 0.05
0 0.5

)
.

The mean time between two consecutive accidental external failures is equal to 11
units of time.

Each time that the system suffers an external shock the internal performance can be
modified by producing a repairable or non-repairable failure. The matrix that governs the
changes into the operational states is

W =


0.2 0.1 0.3 0.1
0 0.1 0.3 0.1
0 0 0.3 0.1
0 0 0 0.1



and the change to a repairable and non-repairable is W0
r =


0.3
0.4
0.5
0.6

 and W0
nr =


0

0.1
0.1
0.3


respectively.

When an external shock occurs, a total failure can also be produced with a probability
equal to ω0 = 0.2.

Inspections occur randomly where the inter-inspection time is phase-type distributed
with representation (η, M) being

η = (1, 0), M =

(
0.85 0.1
0.45 0.4

)
.

When a unit undergoes a repairable failure or inspection observes major damage, this
goes to the repair facility. Therefore, two types of tasks can be developed by the repairper-
son, corrective repair and preventive maintenance. Both are phase-type distributed with
representation for the corrective repair time,
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β1 = (1, 0, 0) and S1 =

 0.2 0.4 0.3
0.2 0.2 0.5
0.3 0.2 0.3


and for the preventive maintenance time,

β2 = (1, 0, 0) and S2 =

 0.2 0.3 0.1
0.1 0.1 0.4
0.2 0.2 0.2

.

The mean corrective repair time is 7.3810 units of time and for the preventive mainte-
nance case this is equal to 2.5 units of time.

6.2. Costs and Rewards

Different costs and rewards have been considered as described in Section 5. We
assume a gross profit while the system is operational, equal to B = 60. This is also the loss
per unit of time while the system is not operational, C = 60. The online unit has a cost while
it is operational depending on the operational phase. This vector is c0 = (5, 12, 30, 40)′.
The repairperson can be on vacation or in his workplace. Each time that the repairperson
returns on his vacation a cost equal to G = 20 is produced. While the repairperson is idle, a
cost equal to H = 15 is produced.

The online unit can undergo a repairable failure. In this case, the unit goes to the
repair facility for corrective repair. A fixed cost is considered for each failure equal to fcr =
10. Once in corrective repair, a cost depending on the state is given by cr1 = (18,18,18)′.

When inspection observes major damage, the unit also goes to the repair facility for
preventive maintenance. A fixed cost is produced, fmi = 5. Once in the repair facility
the cost will depend on the preventive maintenance state. This is given by the vector
cr2 = (15.5, 15.5, 15.5)′. Finally, when all units undergo a non-repairable failure the system
is re-started. It has a cost per unit equal to fnu = 100.

6.3. Optimization Analysis

The repairperson can take a vacation, for a random duration, and inspections may take
place at random intervals. This circumstance raises two interesting questions. Firstly, if a
distribution class is assumed for the duration of the vacation, from an economic standpoint
what is the optimum distribution and the optimum value of R (i.e., the limit value of the
number of operational units needed to require the repairperson to remain in the facility
on returning from vacation) from an economic standpoint? Secondly, is it profitable to
perform preventive maintenance?

To answer these questions, we consider two classes of distributions, the geometric
distribution and the Erlang distribution, from which optimum values for R and the other
parameters can be determined.

6.3.1. The Geometric Distribution Case

We assume that the vacation time of the repairperson is distributed geometrically with
parameter p. Then, the p.m.f. is P{X = n} = pn−1(1− p); n = 0, 1, 2, . . .

The stationary net profit depending on p for the system with and without preventive
maintenance is shown in Figure 4. This has been worked out from Section 5.2. We can see
that, when the geometric distribution is considered, the optimum value is reached for the
preventive maintenance case with p = 0.8 and R = 3. In this case, and in the stationary case,
the net profit per unit of time would be equal to 22.0571.
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6.3.2. The Generalized Erlang Distribution Case

Analogously to the geometric case, we assume now that the vacation time is dis-
tributed as a Generalized Erlang distribution with parameter shape equal to 2. This
distribution can be expressed as a phase-type with representation (v, V) being

v = (1, 0); V =

(
p1 1− p1
0 p2

)
.

Figures 5 and 6 show the stationary net profit depending on the parameters p1 and p2
and R for the case without preventive maintenance and with preventive maintenance, re-
spectively.
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We can see that, when the generalized Erlang distribution is considered for the vaca-
tion time, the optimum value is reached for the preventive maintenance case with p1 = p2 =
0.67 and R = 3. In this case, a stationary case, the net profit per unit of time would be equal
to 22.4364.

6.4. The Optimum System with the Generalized Erlang Distribution

In section above we have worked out the optimum system. It is given when the
generalized Erlang distribution is considered with parameters (2, 0.67, 0.67) and R = 3. In
this section the performance measures of this system are analysed.

Firstly, the time up to first time that the system is replaced (all units undergo a non-
repairable failure), described in Section 4.3, has been analysed. The reliability function is
plotted in Figure 7. Two cases are shown, with and without inspection.
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From the corresponding phase-type distribution, the mean time up to a new system
has been calculated in both cases. Thus, the mean time up to replacing the system for the
case without inspection is 167.7631 u.t., and with inspection 172.5269 u.t.

Multiple measures have been achieved for this system with and without inspection.
These measures are described in Section 4. Table 2 shows the stationary distribution for
macro-states Uk, k units in the system. They can be interpreted as the proportional time
that the system is in these macro-states.

Table 2. Proportional time in macro-state Uk.

πU1 πU2 πU3 πU4

Without inspection 0.3043 0.2411 0.2306 0.2240
With inspection 0.3057 0.2410 0.2299 0.2234

Performance measures are developed for the optimum system with and without
inspection following Section 4. Table 3 shows the results.

Table 3. Performance measures for the optimum system (without inspection between parentheses).

Υnv Υv Υw Υi Λrep Λmi ΛNS Φ A

0.6806
(0.6826)

0.3194
(0.3174)

0.3139
(0.3187)

0.3667
(0.3639)

0.0409
(0.0432) 0.0049 0.0058

(0.0059)
22.4364
(21.2077)

0.8772
(0.8752)

The proportional time that the repairperson is on vacation is 0.3194. This fact is
of interest for the total cost. Therefore, the repairperson is in his workplace for 0.6806
proportion of time and working for 0.3139 proportion of time. Then, the 46.12% of the time
that the repairperson is in his workplace, he is working. The remaining time he is idle.

Regarding the mean number of events per unit of time we can observe that this is
0.0409 for repairable failures, 0.0049 for major inspection and 0.0058 for new systems. Thus,
for each 10,000 units of time 58 new systems are expected to be re-started. The availability
is also worked out. For 87.72% of the time the system is operational, a 0.23% increase than
the without inspection case. Really this is low but the difference between both net profits is
important, 5.79% maximum for the case with preventive maintenance.

7. Conclusions

Matrix analysis methods can be used to model a complex discrete cold standby system
subject to multiple events. This method facilitates the algorithmic and computational
development of multi-state complex systems. In the case in question, the online unit
within the system is subject to wear and external shocks and may undergo periodic or
random inspection. The repair facility is composed of a single repairperson, who may take
a vacation (absence) from the repair facility. This repairperson may perform corrective
repair and/or preventive maintenance.

The system described is not the standard one in which units are replaced when they
undergo a non-repairable failure. In the present study, the analysis takes account of the loss
of units following the occurrence of a non-repairable failure. When such a failure occurs,
the system continues working with one less unit. This outcome often occurs in practice,
and is reflected in the study method presented.

The (indeterminate) number of units within the repair facility and the vacation policy
applied determine the behaviour of the repairperson. The vacation time begins when the
number of operational units exceeds a given value, and the repairperson will remain in
place, without taking a vacation, if the number of operational units in the system is below
a pre-determined value.
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The system is modelled in an algorithmic and computational form by means of a
Markovian Arrival Process with marked arrivals. Matrix-analytic methods are used to
obtain the stationary distributions, and multiple measures are derived using a matrix.
These measures are related to system performance and financial results.

The method presented in this paper enables us to analyse optimization problems in
multi-state complex systems. A numerical example of such an optimization is presented.
The results obtained show whether preventive maintenance is profitable and reveal the
optimum number of operational units, hence determining the appropriate policy for the
repairperson’s vacation times.
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Appendix A. Transition Probability Matrix Blocks for the Online Unit Depending on
Type of Event

HO =
(
T⊗ L + TW⊗ L0γ

(
1−ω0))⊗M +

(
U1T⊗ L + U1TW⊗ L0γ

(
1−ω0))⊗M0η

HA = T0
rα⊗ L⊗ eη+

(
T0

r + TW0
r

)
α⊗ L0γ

(
1−ω0)⊗ eη

H′A = T0
r ⊗ L⊗ e +

(
T0

r + TW0
r

)
⊗ L0γ

(
1−ω0)⊗ e.

HB =
[
U2
(
e− T0)α⊗ L + U2T

(
e−W0

)
α⊗ L0γ

(
1−ω0)]⊗M0η

H′B =
[
U2
(
e− T0)⊗ L + U2T

(
e−W0

)
⊗ L0γ

(
1−ω0)]⊗M0

HC =
[
T0

nrα⊗ L +
(

T0
nr + TW0

nr

)
α⊗ L0γ

(
1−ω0)+ eα⊗ L0γω0

]
⊗ eη.

H′C =
[
T0

nr ⊗ L +
(

T0
nr + TW0

nr

)
⊗ L0γ

(
1−ω0)+ e⊗ L0γω0

]
⊗ e

Appendix B

Appendix B.1. Matrices for the Markovian Arrival Process Depending on the Type of Event

The matrices DA and DB are developed in the text. The rest are given below.

Appendix B.2. The Matrix DO

The matrix DO contains the transitions when a none-event occurs. This matrix is
composed of blocks according to the transitions between the macro-states Uk for k = 1,
. . . ,n. It is given by

DO =


DO

n
DO

n−1
DO

n−2
. . .

DO
1

.

Therefore, for the different macro-states, this is given by:

• For k = 1, . . . , R−1
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Appendix B.3. The Matrix DD 

The matrix DD contains the transitions when the repairperson resumes work without 
any other event. The structure of this matrix is 

• For k = R, . . . , n
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Appendix B.3. The Matrix DD 

The matrix DD contains the transitions when the repairperson resumes work without 
any other event. The structure of this matrix is 

with
θ = α⊗

(
L + L0γ

)
⊗ η,

DO,k,v
N,N−1 =

 I2N−1 ⊗
(

I{k=N}θ+ I{k 6=N}HO

)
⊗ S0

1 ⊗ υ

I2N−1 ⊗
(

I{k=N}θ+ I{k 6=N}HO

)
⊗ S0

2 ⊗ υ


DO,k,v

r,r = I2r ⊗
(

I{r<k}HO + I{r=k}
(
L + L0γ

))
⊗
(

V + I{r<N}V
0υ
)

, r = 0, . . . , k

DO,k,nv
00 = HO

For r =1, . . . , k

DO,k,nv
r,r =

 I2r−1 ⊗
(

I{r<k}HO + I{r=k}
(
L + L0γ

))
⊗ S1 0

0 I2r−1 ⊗
(

I{r<k}HO + I{r=k}
(
L + L0γ

))
⊗ S2


DO,k,nv

10 =

 (
I{k>1}HO + I{k=1}θ

)
⊗ S0

1(
I{k>1}HO + I{k=1}θ

)
⊗ S0

2


For r = 2, . . . , k

DO,k,nv
r,r−1 =


I2r−2 ⊗

(
I{r<k}HO + I{r=k}θ

)
⊗ S0

1 ⊗β1 0

0 I2r−2 ⊗
(

I{r<k}HO + I{r=k}θ
)
⊗ S0

1 ⊗β2

I2r−2 ⊗
(

I{r<k}HO + I{r=k}θ
)
⊗ S0

2 ⊗β1 0

0 I2r−2 ⊗
(

I{r<k}HO + I{r=k}θ
)
⊗ S0

2 ⊗β2


Appendix B.3. The Matrix DD

The matrix DD contains the transitions when the repairperson resumes work without
any other event. The structure of this matrix is
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Appendix B.4. The Matrix DAD and DBD 

The matrices DAD and DBD contain the transitions when the repairperson resumes 
work and at same time a repairable failure or major inspection occur. In this case, for Y = 
AD, BD we have 
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• For k = R, …, n 

• For k = R, . . . , n
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Appendix B.4. The Matrix DAD and DBD 

The matrices DAD and DBD contain the transitions when the repairperson resumes 
work and at same time a repairable failure or major inspection occur. In this case, for Y = 
AD, BD we have 
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• For k = R, …, n 

For r = N, . . . , k

DD,k,nv
r,r =

 I2r−1 ⊗
(

I{r=k}
(
L + L0γ

)
+ I{r<k}HO

)
⊗V0 ⊗β1 0

0 I2r−1 ⊗
(

I{r=k}
(
L + L0γ

)
+ I{r<k}HO

)
⊗V0 ⊗β2


Appendix B.4. The Matrix DAD and DBD

The matrices DAD and DBD contain the transitions when the repairperson resumes
work and at same time a repairable failure or major inspection occur. In this case, for Y =
AD, BD we have

DY =



DY
n

DY
n−1

. . .
DY

R
0

. . .
0


.
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Appendix B.5. The Matrix DC 
The matrix DC contains the transitions when only a non-repairable failure occurs. In 

this case the matrix is 
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Appendix B.5. The Matrix DC

The matrix DC contains the transitions when only a non-repairable failure occurs. In
this case the matrix is

DC =



0 DC
n

0 DC
n−1

0
. . .
. . . DC

2
0 0

.

• For k = 2, . . . , R−1 and k 6= R ≥ 3

DC
k =

Ek,nv
0

Ek,nv
1
...

Ek,vn
k−1

Ek,nv
k



Ek−1,nv
0 Ek−1,nv

1 . . . Ek−1,nv
k−2 Ek−1,nv

k−1
DC,k,nv

00
DC,k,nv

10 DC,k,nv
11
. . . . . .

DC,k,nv
k−1,k−2 DC,k,nv

k−1,k−1
0


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• For k = R ≥ 2
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Appendix B.6. The Matrix DCD 
The matrix DCD contains the transitions when a non-repairable failure occurs and the 

repairperson resumes his work. In this case the matrix is 

• For k = R+1, . . . , n with R ≤ n−1
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Appendix B.6. The Matrix DCD 
The matrix DCD contains the transitions when a non-repairable failure occurs and the 

repairperson resumes his work. In this case the matrix is 

For r = 0, . . . , k−1, DC,k,v
r,r = I2r ⊗

(
I{r=k−1}H

′
C + I{r<k−1}HC

)
⊗
(

V + I{r<N−1}V
0υ
)

,

DC,k,nv
00 = HC;

For r = 1, . . . , k−1;

DC,k,nv
r,r =

 I2r−1 ⊗
(

I{r=k−1}H
′
C + I{r<k−1}HC

)
⊗ S1 0

0 I2r−1 ⊗
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I{r=k−1}H
′
C + I{r<k−1}HC

)
⊗ S2


DC,k,nv

10 =

(
HC ⊗ S0

1
HC ⊗ S0

2

)

For r = 2, . . . , k−1, DC,k,nv
r,r−1 =


I2r−2 ⊗HC ⊗ S0

1 ⊗β1 0
0 I2r−2 ⊗HC ⊗ S0

1 ⊗β2
I2r−2 ⊗HC ⊗ S0

2 ⊗β1 0
0 I2r−2 ⊗HC ⊗ S0

2 ⊗β2


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Appendix B.6. The Matrix DCD

The matrix DCD contains the transitions when a non-repairable failure occurs and the
repairperson resumes his work. In this case the matrix is

DCD =



0 DCD
n

. . . . . .
0 DCD

R
0 0

. . . . . .
0 0

0


• For k = R
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• The matrix blocks for the case k = R+1, …, n are 
For r = N−1, …, k−1 
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1

1
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r
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D
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The matrix blocks for the case k = R are DCD,k,nv
00 = HC ⊗ e

For r = 1, . . . , k−1

DCD,k,nv
r,r =

 I2r−1 ⊗
(

I{r=k−1}H
′
C + I{r<k−1}HC

)
⊗ e⊗β1 0

0 I2r−1 ⊗
(

I{r=k−1}H
′
C + I{r<k−1}HC

)
⊗ e⊗β2


• For k = R+1, . . . , n and R ≤ n−1
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• The matrix blocks for the case k = R+1, . . . , n are
For r = N−1, . . . , k−1

DCD,k,nv
r,r =

 I2r−1 ⊗
(

I{r<k−1}HC + I{r=k−1}H
′
C

)
⊗V0 ⊗β1 0

0 I2r−1 ⊗
(

I{r<k−1}HC + I{r=k−1}H
′
C

)
⊗V0 ⊗β2


Appendix B.7. The Matrix DNS

The matrix DNS contains the transitions when a failure provokes the system to be
restarted. Obviously, in this case the system is composed of only one unit. When this one is
broken, a new system with n units re-starts. When this occurs, the vacation time begins
again. The structure of the matrix is
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Appendix C 
To calculate the expected times that the repairperson returns to the workplace, inde-

pendently of whether he remains or begins another period of vacation, the following ma-
trix Q is defined. This matrix is built analogously to the matrix D, but any return is con-
sidered. Therefore, the matrix Q is the addition of the following matrices 

O A B C D AD BD CD NS
r b r b r b r b r b− − − − −= + + + + + + + +Q D D D D D D D D D .  

The matrices , , ,D AD BD CDD D D D  are described in Appendix B. The other matrices 
have the same structure for the corresponding event given in Appendix B. These matrices 
are of zeros, excepting the following blocks. 
• For r = 0, …, k−R and k ≥ R 

, , 0
, 2r
O k v
r r O= ⊗ ⊗ υD I H V  

• For r = 1,…, k−R−1 and k ≥ R+2 
( ), , 0

0,1 ,A k v
A= ⊗D H V ν 0 ; ( ), , 0

0,1 ,B k v
B= ⊗D 0 H V ν  

( ), , 0
, 1 2

,r
A k v
r r A+ = ⊗ ⊗D I H V ν 0  

( ), , 0
, 1 2

,r
B k v
r r B+ = ⊗ ⊗D I 0 H V ν . 

• For r = 0, …, k−R−1 and k ≥ R+1 
, , 0
, 2r
C k v
r r C= ⊗ ⊗ υD I H V  

• If R = 1,  
,1, 0

00
NS v

C= ⊗D H V v  
  

• If R = 1
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Appendix C 
To calculate the expected times that the repairperson returns to the workplace, inde-

pendently of whether he remains or begins another period of vacation, the following ma-
trix Q is defined. This matrix is built analogously to the matrix D, but any return is con-
sidered. Therefore, the matrix Q is the addition of the following matrices 

O A B C D AD BD CD NS
r b r b r b r b r b− − − − −= + + + + + + + +Q D D D D D D D D D .  

The matrices , , ,D AD BD CDD D D D  are described in Appendix B. The other matrices 
have the same structure for the corresponding event given in Appendix B. These matrices 
are of zeros, excepting the following blocks. 
• For r = 0, …, k−R and k ≥ R 

, , 0
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O k v
r r O= ⊗ ⊗ υD I H V  
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• If R > 1
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To calculate the expected times that the repairperson returns to the workplace, inde-

pendently of whether he remains or begins another period of vacation, the following ma-
trix Q is defined. This matrix is built analogously to the matrix D, but any return is con-
sidered. Therefore, the matrix Q is the addition of the following matrices 

O A B C D AD BD CD NS
r b r b r b r b r b− − − − −= + + + + + + + +Q D D D D D D D D D .  

The matrices , , ,D AD BD CDD D D D  are described in Appendix B. The other matrices 
have the same structure for the corresponding event given in Appendix B. These matrices 
are of zeros, excepting the following blocks. 
• For r = 0, …, k−R and k ≥ R 

, , 0
, 2r
O k v
r r O= ⊗ ⊗ υD I H V  

• For r = 1,…, k−R−1 and k ≥ R+2 
( ), , 0

0,1 ,A k v
A= ⊗D H V ν 0 ; ( ), , 0

0,1 ,B k v
B= ⊗D 0 H V ν  

( ), , 0
, 1 2

,r
A k v
r r A+ = ⊗ ⊗D I H V ν 0  

( ), , 0
, 1 2

,r
B k v
r r B+ = ⊗ ⊗D I 0 H V ν . 

• For r = 0, …, k−R−1 and k ≥ R+1 
, , 0
, 2r
C k v
r r C= ⊗ ⊗ υD I H V  

• If R = 1,  
,1, 0

00
NS v

C= ⊗D H V v  
  

with DNS,1,v
00 = HC ⊗ v.

Appendix C

To calculate the expected times that the repairperson returns to the workplace, in-
dependently of whether he remains or begins another period of vacation, the following
matrix Q is defined. This matrix is built analogously to the matrix D, but any return is
considered. Therefore, the matrix Q is the addition of the following matrices

Q = DO
r−b + DA

r−b + DB
r−b + DC

r−b + DD + DAD + DBD + DCD + DNS
r−b.

The matrices DD, DAD, DBD, DCD are described in Appendix B. The other matrices
have the same structure for the corresponding event given in Appendix B. These matrices
are of zeros, excepting the following blocks.

• For r = 0, . . . , k−R and k ≥ R
DO,k,v

r,r = I2r ⊗HO ⊗V0υ
• For r = 1, . . . , k−R−1 and k ≥ R+2

DA,k,v
0,1 =

(
HA ⊗V0ν, 0

)
; DB,k,v

0,1 =
(
0, HB ⊗V0ν

)
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DA,k,v
r,r+1 = I2r ⊗

(
HA ⊗V0ν, 0

)
DB,k,v

r,r+1 = I2r ⊗
(
0, HB ⊗V0ν

)
.

• For r = 0, . . . , k−R−1 and k ≥ R+1
DC,k,v

r,r = I2r ⊗HC ⊗V0υ

• If R = 1,
DNS,1,v

00 = HC ⊗V0v
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