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Abstract: In the traditional nonlinear optimization theory, the Karush-Kuhn-Tucker (KKT) optimality
conditions for constrained optimization problems with inequality constraints play an essential role.
The situation becomes challenging when the theory of traditional optimization is discussed under
uncertainty. Several researchers have discussed the interval approach to tackle nonlinear optimization
uncertainty and derived the optimality conditions. However, there are several realistic situations
in which the interval approach is not suitable. This study aims to introduce the Type-2 interval
approach to overcome the limitation of the classical interval approach. This study introduces Type-2
interval order relation and Type-2 interval-valued function concepts to derive generalized KKT
optimality conditions for constrained optimization problems under uncertain environments. Then,
the optimality conditions are discussed for the unconstrained Type-2 interval-valued optimization
problem and after that, using these conditions, generalized KKT conditions are derived. Finally,
the proposed approach is demonstrated by numerical examples.

Keywords: type-2 interval; type-2 interval order relations; type-2 interval-valued function; optimality;
generalized KKT conditions

1. Introduction

Because of the impreciseness and randomness of the parameters involved in the
different kinds of day-to-day real-life problems (especially decision-making problems),
solving the decision-making problems under uncertainty is more challenging for academi-
cians, system analysts, and engineers. Over the last few decades, researchers are trying
to cope with these problems by introducing several techniques. Generally, parameter’s
impreciseness is coped up by taking the imprecise parameter as either a random variable
following a proper distribution function or a fuzzy set (a set whose elements have different
membership/indicator values, unlike the ordinary sets). The elements of an ordinary
set have only two membership values, either 0 or 1. Thus, a fuzzy set is identified by a
membership function whereas the characteristic function or interval identifies the crisp
set. Based on the impreciseness of various parameters of an optimization problem, several
researchers categorized the optimization problem into the following four types:

â crisp optimization problem
â stochastic optimization problem
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â Ø fuzzy-valued optimization problem
â interval-valued optimization problem

A crisp optimization problem is an optimization problem in which the objective func-
tion and all the constraints are real valued functions and the associated decision variables
belong to a crisp set (a set in which each element has bi-valued membership, i.e., 0 or 1 be
the membership value of each element of the set). Simply to state, in a crisp optimization
problem, no parameter involved in the objective function and constrained are uncertain or
vague—each parameter is deterministic in nature. From this point of view, all traditional
optimization problems are crisp. In stochastic optimization, either the objective function or
constraints or both are considered as random variables following the proper distribution
function. In the area of stochastic optimization, researchers like Birge and Louveaux [1],
Vajda [2], Clempner [3], Xie et al. [4], and Akbari-Dibavar et al. [5] introduced several
practical techniques to solve stochastic multi-objective decision-making problems. On the
other side, in the fuzzy optimization problem, the type of objective function is fuzzy-valued,
and all the involved constraints are taken as either fuzzy-valued or crisp (real-valued).
Furthermore, Delgado et al. [6] proposed an advanced optimization technique of fuzzy
optimization. Rommelfanger and Slowiński [7] established the methodologies for solving
fuzzy linear programming with multiple objective functions. Panigrahi et al. [8] introduced
the fuzzy convexity of a function and derived the fuzzy optimization problem’s optimality
condition. Recently, Bao and Bai [9], Song and Wu [10], Nagoorgani and Sudha [11], and
others established interesting research works on fuzzy optimization. Alternatively, in
the interval optimization problem, the objective function is in the form of intervals. In
constrained interval optimization problems with an interval-valued objective, the con-
straints may be interval-valued or real-valued. In the area of interval optimization, several
researchers proposed their works on the theory of interval optimization. Among them,
some worth-mentioning works are mentioned here. Wu [12] established the Karush-Kuhn-
Tucker (KKT) conditions of a nonlinear interval-valued constrained optimization problem
with crisp-type constraints. He used the Ishibuchi and Tanaka’s [13] partial interval order
relations and the gH-differentiability (Stefanin and Bede [14]) to derive the optimality
conditions. On the other side, using interval arithmetic, Maqui-Huamán et al. [15] derived
the necessary optimality conditions of an interval optimization problem with inequality
constraints. Cartis et al. [16] used the scaled KKT conditions to determine the bounds of
complexity of a smooth constrained optimization problem. Bazargan and Mohebi [17]
proposed a new constraints qualification for convex optimization and Ghosh et al. [18]
applied the generalized Hukuhara and Frechet differences in the area of interval optimiza-
tion. However, to enrich the concept of interval optimization, Treanta [19–22] introduced
several concepts on the different branches of interval optimization field viz. constrained
interval-valued optimization, interval-valued variational control, and saddle-point opti-
mality problems. Rahman et al. [23,24] also established the extended Karush-Kuhn-Tucker
(KKT) conditions and saddle point optimality criteria for a constrained interval-valued
optimization problem.

However, in several real-life situations, expressing the imprecise parameters involved
in various real-life problems as intervals by selecting both the lower and the upper bound
can be quite difficult. As an example, the cost of various commodities is usually expressed
by the interval with deterministic bounds. However, sometimes when dealing with these
situations, one has to face two major unavoidable challenges for selecting the bounds. In the
first case, it is observed that some data on the commodity costs might exceed the bounds of
the interval. Furthermore, secondly, it can also be noticed that the data of the cost never
attain either of the bounds. If we do not overcome these challenges, the optimal solutions
to the related problems under such a situation either contain a significant error or deal with
considerable uncertainty, which is not an optimistic decision maker’s principle. To tackle
these challenges, recently, Rahman et al. [25,26] introduced an essential generalization of
the regular interval, called Type-2 interval. In the generalization of an interval, the certainty
of both of the bounds was replaced by some kind of flexibility. In the new generalized type
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of interval, each of its bound is lying in two different ordinary intervals—one for the upper
bound and another for the lower bound. Thus, according to Rahman et al. [26], a Type-2
interval can be defined mathematically in the form A = [aL, aU ], where aL ∈ [aL, aL] and
aU ∈ [aU , aU ]. This Type-2 interval is represented as A = [(aL, aL), (aU , aU)]. If the objective
function or constraints or both of a nonlinear optimization problem are Type-2 interval-
valued, then the corresponding optimization problem is called Type-2 interval-valued
optimization problem.

For the first time in the proposed work, the optimality conditions (both necessary
and sufficient) for Type-2 interval-valued constrained and unconstrained optimization
problems are derived. Initially, we have introduced the Type-2 interval mathematics and
order relation. After that, the theory of optimality conditions of Type-2 interval-valued
unconstrained optimization problem is discussed. Furthermore, in the successive sections,
we have elaborated a discussion on the constrained interval optimization problem. In the
case of the constrained interval optimization problem, the optimality conditions are derived
for three possible cases, viz. (i) Type-2 interval-valued objective and real-valued constraints,
(ii) Type-2 interval-valued objective and Type-1 interval-valued (usual interval) constraints,
and (iii) Type-2 interval-valued objective function and constraints. Finally, all the theoretical
results are illustrated with some numerical examples.

2. Preliminaries
2.1. Basic Concepts of Nonlinear Crisp Optimization

Let us suppose a constrained nonlinear crisp optimization problem of the follow-
ing form:

Minimize F(x)

subject to Gi(x) ≤ 0 for i = 1, 2, . . . , m,

x ∈ X.

Here F : X → R is the objective function, Gi : X → R , (i = 1, 2, . . . , m) are the in-
equality constraint functions, and X ⊆ Rn is a convex set. Assume that all functions are
continuously differentiable at a point x∗ ∈ X. If x∗ is a local optimum and it satisfies
regularity conditions (also called constraint qualification), then there exist constants λi,
(i = 1, 2, . . . , m), such that x∗must satisfy the following stationary, primal feasibility (a point
satisfies the primal feasibility means it satisfies all the constraints of the corresponding
constrained nonlinear optimization problem), complementary slackness (it is a condition
in an inequality constraint which is converted into equality constraints by multiplying
non-negative real number), and dual feasibility conditions (the non-negativity condition of
the multiplier used in the complementary slackness condition is called dual feasibility):

(1) Stationarity:

∇F(x∗) +
m

∑
i=1

λi∇Gi(x∗) = 0

(2) Primal feasibility:
Gi(x∗) ≤ 0 for i = 1, 2, . . . , m,

(3) Dual feasibility:
λi ≥ 0

for
i = 1, 2, . . . , m

(4) Complementary slackness:
λiGi(x∗) = 0

for
i = 1, 2, . . . , m
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The conditions (1) to (4) are called KKT-conditions, and λi, i = 1, 2, . . . , m are the
KKT-multipliers. Karush [27] first introduced these conditions in the year 1939, and later
these conditions were derived independently by Kuhn and Tucker [28] in the year 1951.

If the functions F and Gi are convex, then necessary KKT conditions are also sufficient
conditions for optimality.

2.2. Basic Concepts of Nonlinear Interval Optimization

Definition 1.

Let A = [aL, aU ] and B = [bL, bU ] ∈ I1(R)with ac =
aL+aU

2 , ar =
aU−aL

2 , bc =
bL+bU

2 , br =
bU−bL

2

Then

A ≤min B⇔
{

ac ≤ bc, if ac 6= bc
ar ≤ br, if ac = bc

The canonical form of an interval optimization problem is given as follows:

Optimize f (x) = [ fL(x), fU(x)] = 〈 fc(x), fr(x)〉
subject to the constraints
either gi(x) ≤ 0, i = 1, 2, . . . , m
or gi(x) = [gLi(x), gUi(x)] = 〈gci(x), gri(x)〉 ≤ [0, 0], i = 1, 2, 3, . . . , m
x ∈ X.

where
f : X ⊆ Rn → I1(R)
gi : X ⊆ Rn → R or I1(R), i = 1, 2, 3, . . . , m
fc =

fL+ fU
2 , fr =

fU− fL
2 , gci =

gLi+gUi
2 , gri =

gUi−gLi
2

Here all fc, fr, gci, gri : X → R are continuously differentiable, and the inequality sign
≤ in the alternative constraints is the symbol of interval order relation (Definition 1), not the
ordinary inequality sign. If x∗ is a local optimum and satisfies regularity conditions (also
called constraint qualification), then there exist constants λi, (i = 1, 2, . . . , m), such that:

Case-A: when gi : X ⊆ Rn → R , then x∗ satisfies the conditions

(i) ∇ fc(x∗) +
m

∑
i=1

λi∇gi(x∗) = 0 .

(ii) λigi(x∗) = 0 , i = 1, 2, . . . , m

(iii) gi(x∗) ≤ 0 , ∀i = 1, 2, . . . , m

(iv) λi ≥ 0 , i = 1, 2, . . . , m

Case-B: when gi : X ⊆ Rn → I1(R) , where first k number of constraints are with
non-constant centers and remaining m-k constraints are with constant centers.

Then x∗ satisfies the conditions:

(i) ∇ fc(x∗) +
k

∑
i=1

λi∇gci(x∗) +
m

∑
i=k+1

µi∇gri(x∗) = 0 .

(ii) λigci(x∗) = 0 , i = 1, 2, . . . , m

(iii) gci(x∗) ≤ 0 , ∀i = 1, 2, . . . , k
(iv) gri(x∗) = 0 , ∀i = k + 1, k + 2, . . . , m

(v) λi ≥ 0 , i = 1, 2, . . . , m
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2.3. Basic Concepts of Type-2 Interval

We are already familiar with the concept of a closed bounded interval or a simply
interval. In the interval, there are two fixed bounds: one is for the lower and another for
the upper end of the range. Any fluctuating parameters of real-life problems (costs of
different commodities, temperature of a day, normal pressure of a human body, etc.) are
represented by the intervals. However, sometimes, we face difficulties to select both the
bounds in the representation of interval forms of such fluctuating parameters due to the
uncertainty. To cope with the difficulties of selecting the bounds of an interval, Rahman
et al. [26] generalized the interval’s concept by taking the flexibilities of both interval
bounds instead of fixed bounds. In the new generalized type of interval, each of the bounds
is lying in two different ordinary intervals—one for the upper bound and another for the
lower bound. This new generalized type of interval is called Type-2 interval, whereas the
ordinary interval is called Type-1 interval. The formal definition of Type-2 interval is given
in Definition 1.

Definition 2. The Type-2 interval is denoted by A = [(aL, aL), (aU , aU)] and defined in the form
of Type-1 intervals given as

[(aL, aL), (aU , aU)] = {[aL, aU ] : aL ∈ [aL, aL] and aU ∈ [aU , aU ]}.

Comparison of Type-1 and Type-2 interval:
Let A = [(aL, aL), (aU , aU)] be a Type-2 interval. From the definition of the Type-2

interval, any element of A2 is of the form Type-1 interval A1 = [aL, aU ], aL ∈ [aL, aL]& aU ∈
[aU , aU ]. Thus, a Type-1 interval is a member of a Type-2 interval. From the definition, it is
observed that the elements (Type-1 intervals) of A2 with the largest and smallest widths
are [aL, aU ] and [aL, aU ], respectively.

For example, let A2 = [(−2, 3), (6, 8)] . Then, the largest element of A2 is [−2, 8] and
the smallest one is [3, 6]. Another intermediate element is [1, 7] ∈ A2.

A generic Type-2 interval A2 = [(aL, aL), (aU , aU)] and a Type-1 interval A1 = [aL, aU ]
∈ A2 are shown graphically in Figure 1.
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Definition 3. Suppose A = [(aL, aL), (aU , aU)] , B =
[(

bL, bL

)
,
(

bU , bU

)]
are two Type-2

intervals. Now, A = B iff aL = bL, aL = bL, aU = bU , aU = bU .

Definition 4. Let A = [(aL, aL), (aU , aU)] , B =
[(

bL, bL

)
,
(

bU , bU

)]
be two Type-2 intervals.

Then, the fundamental arithmetic operations between A and B are defined as follows:

(i) Addition:

A + B = [(aL, aL), (aU , aU)] +
[(

bL, bL

)
,
(

bU , bU

)]
=
[(

aL + bL, aL + bL

)
,
(

aU + bU , aU + bU

)]
(ii) Subtraction:

A− B = [(aL, aL), (aU , aU)]−
[(

bL, bL

)
,
(

bU , bU

)]
=
[(

aL − bU , aL − bU

)
,
(

aU − bL, aU − bL

)]
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(iii) Scalar multiplication:

λ.A = λ.[(aL, aL), (aU , aU)] =

{
[(λaL, λaL), (λaU , λaU)] if λ ≥ 0,
[(λaU , λaU), (λaL, λaL)] if λ < 0.

(iv) Multiplication:

AB = [(minC, min D), (maxD, maxC ) ]

where C =
{

aLbL, aLbU , aUbU , aUbL

}
, D =

{
aLbL, aUbL, aUbU , aUbL

}
(v) Division:

A
B

= A.
(

1
B

)
provided 0 /∈ B.

3. Type-2 Interval Order Relation

In this section, the order relation of two Type-2 intervals is defined and, to justify its
validity, two numerical examples are considered.

Definition 5. Let A = [(aL, aL), (aU , aU)] be a Type-2 interval. Then, a set of score functions of
A which uniquely determines A is defined as

{
Ac

a, Ar
a, Ac

U , Ar
U
}

,
where

Ac
a =

aL + aL + aU + aU
4

, Ar
a =

aU − aU + aL − aL
4

, Ac
U =

aU + aU
2

, Ar
U =

aU − aU
2

Definition 6. Let A = [(aL, aL), (aU , aU)] , B =
[(

bL, bL

)
,
(

bU , bU

)]
be two Type-2 intervals

with corresponding sets of score functions
{

Ac
a, Ar

a, Ac
U , Ar

U
}

&
{

Bc
a, Br

a, Bc
U , Br

U
}

, respectively.
Then

A ≤2 B i f f


Ac

a ≤ Bc
a, if Ac

a 6= Bc
a

Ar
a ≤ Br

a, if Ac
a = Bc

a and Ar
a 6= Br

a
Ac

U ≤ Bc
U , if Ac

a = Bc
a , Ar

a = Br
a and Ac

U 6= Bc
U

Ar
U ≤ Br

U , if Ac
a = Bc

a , Ar
a = Br

a and Ac
U = Bc

U

Definition 7. Let A = [(aL, aL), (aU , aU)] , B =
[(

bL, bL

)
,
(

bU , bU

)]
be two Type-2 intervals.

Then A ≥2 B iff B ≤2 A.

Example 1. Compare the following pairs of Type-2 intervals by using Definition 6.

(i)
A = [(−4,−1), (2, 5)] , B = [(−6,−3), (−1, 3)].

(ii)
A = [(−2, 1), (4, 7)] , B = [(1, 2), (3, 4)]

Solution:

(i) Here,
{

Ac
a, Ar

a, Ac
U , Ar

U
}
=
{

1
2 , 3

2 , 7
2 , 3

2

}
&
{

Bc
a, Br

a, Bc
U , Br

U
}
=
{−7

4 , 7
4 , 1, 2

}
.

Since Ac
a =

1
2 > −7

4 = Bc
a, using Definition 6, we can say that A ≥2 B.

(ii) Here,
{

Ac
a, Ar

a, Ac
U , Ar

U
}
=
{

10
4 , 3

2 , 11
2 , 3

2

}
&
{

Bc
a, Br

a, Bc
U , Br

U
}
=
{

10
4 , 1

2 , 7
2 , 1

2

}
.

Since Ac
a =

10
4 = Bc

a &Ar
a =

3
2 > 1

2 = Br
a and using Definition 6, we can say that A ≥2 B.
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4. Optimality of Unconstrained Type-2 Interval-Valued Optimization Problem

Let T ⊆ Rn and F2 : T → I2(R) be a Type-2 interval-valued function given by
F2(x) =

[(
f

L
(x), f L(x)

)
,
(

f
U
(x), f U(x)

)]
, f

L
, f L, f

U
, f U : T → R. Now the set of score

functions of F2(x) is defined as
{

Fc
a , Fr

a , Fc
U , Fr

U
}

, where

Fc
a (x) =

f
L
(x)+ f L(x)+ f

U
(x)+ f U(x)

4 ,

Fr
a (x) =

f L(x)− f
L
(x)+ f U(x)− f

U
(x)

4 ,

Fc
U(x) =

f
U
(x)+ f U(x)

2 and Fr
U(x) =

f U(x)− f
U
(x)

2

Definition 8. The point x∗ ∈ T is called a local minimizer of the Type-2 interval-valued function
F2(x) if ∃ a δ > 0 such that F2(x∗) ≤2 F2(x), ∀x ∈ N(x∗, δ)∩ T, where N(x∗, δ) is an open ball
centered at x∗ with radius δ and ≤2 is the symbol of Type-2 interval order relation as defined in
Definition 6.

Definition 9. The point x∗ ∈ T is called a global minimizer of F2(x) if ∃ a δ > 0 such that
F2(x∗) ≤2 F2(x), ∀x ∈ T.

Definition 10. The point x∗ ∈ T is called a local maximizer of F2(x) if ∃ a δ > 0 such that
F2(x∗) ≥2 F2(x), ∀x ∈ N(x∗, δ) ∩ T.

Definition 11. The point x∗ ∈ T is called a global maximizer of F2(x) if ∃ a δ > 0 such that
F2(x∗) ≥2 F2(x), ∀x ∈ T.

Theorem 1 (Necessary Optimality Conditions). Let T ⊆ Rn and F2 : T → I2(R) be a
Type-2 interval-valued function defined by F2(x) =

[(
f

L
(x), f L(x)

)
,
(

f
U
(x), f U(x)

)]
and

all the elements of the set of score functions
{

Fc
a , Fr

a , Fc
U , Fr

U
}

are supposed to be differentiable, i.e.,
∇Fc

a ,∇Fr
a ,∇Fc

U and ∇Fr
U exist.

Fc
a (x) =

f
L
(x)+ f L(x)+ f

U
(x)+ f U(x)

4 ,

Fr
a (x) =

f L(x)− f
L
(x)+ f U(x)− f

U
(x)

4 ,

Fc
U(x) =

f
U
(x)+ f U(x)

2 and Fr
U(x) =

f U(x)− f
U
(x)

2

Then, x∗ ∈ T be an optimizer of Type-2 interval-valued function F2(x), if

∇Fc
a (x∗) = 0 when Fc

a (x) 6= constant
∇Fr

a (x∗) = 0 when Fc
a (x) =constant and Fr

a (x) 6= constant
∇Fc

U(x∗)= 0 when both Fc
a (x) and Fr

a (x)are constant and Fc
U(x) 6= constant

∇Fr
U(x∗)= 0 when all Fc

a (x) , Fr
a (x) and Fc

U(x) are constant

Proof. Here, Theorem 1 is proved only for the minimization case. The maximization case
can be proved similarly. Suppose x∗ ∈ T is a local minimizer of F2(x). Now, the definition
of local minimizer implies that F2(x∗) ≤2 F2(x) ∀x ∈ T ∩ N(x∗, δ),

i.e.,

Fc
a (x∗) ≤ Fc

a (x) when Fc
a (x∗) 6= Fc

a (x)
Fr

a (x∗) ≤ Fr
a (x) when Fc

a (x∗) = Fc
a (x) and Fr

a (x∗) 6= Fr
a (x)

Fc
U(x∗) ≤ Fc

U(x) when Fc
a (x∗) = Fc

a (x) , Fr
a (x∗) = Fr

a (x) and Fc
U(x∗) 6= Fc

U(x)
Fr

U(x∗) ≤ Fr
U(x) when Fc

a (x∗) = Fc
a (x) , Fr

a (x∗) = Fr
a (x) and Fc

U(x∗) = Fc
U(x)
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The earlier mentioned relations mean that

Fc
a (x∗) ≤ Fc

a (x) when Fc
a (x)is non constant

Fr
a (x∗) ≤ Fr

a (x) when Fc
a (x) is constant and Fr

a (x) is non constant
Fc

U(x∗) ≤ Fc
U(x) when Fc

a (x) , Fr
a (x)are constant and Fc

U(x) is non-constant
Fr

U(x∗) ≤ Fr
U(x) when all Fc

a (x) , Fr
a (x)and Fc

U(x) are constants

Thus, x∗ ∈ T is a local minimizer for

Fc
c (x) whenFc

a (x)is non constant
Fc

U(x) when Fc
a (x) is constant and Fr

a (x) is non constant
Fr

U(x) when Fc
a (x) , Fr

a (x)are constant and Fc
U(x)is non− constant

Fr
c (x) when all Fc

a (x) , Fr
a (x)and Fc

U(x) are constants

Then, according to the necessary optimality conditions for crisp minimization problem
with real-valued objectives, Fc

a (x), Fr
a (x), Fc

U(x) and Fr
U(x), we get

∇Fc
a (x∗) = 0 when Fc

a (x) 6= constant
∇Fr

a (x∗) = 0 when Fc
a (x) =constant and Fr

a (x) 6= constant
∇Fc

U(x∗)= 0 when both Fc
a (x) and Fr

a (x)are constant and Fc
U(x) 6= constant

∇Fr
U(x∗)= 0 when all Fc

a (x) , Fr
a (x) and Fc

U(x) are constant

�

Definition 12. Let f : T ⊆ Rn → R be a twice differentiable crisp function. Then, the Hessian
matrix ∇2 f (x) of f is defined by the n × n matrix whose entries are the second-order partial

derivatives, i.e., ∇2 f (x) =
(

∂2 f
∂xi∂xj

)
n×n

.

Theorem 2 (Sufficient Conditions). Let F2 : T → I2(R) be given in the form F2(x) =[(
f

L
(x), f L(x)

)
,
(

f
U
(x), f U(x)

)]
.

Suppose x∗ ∈ T is such that each element of the set of score functions
{

Fc
a , Fr

a , Fc
U , Fr

U
}

of F2
is differentiable and satisfies the following conditions:

∇Fc
a (x∗) = 0 when Fc

a (x) 6= constant
∇Fr

a (x∗) = 0 when Fc
a (x) =constant and Fr

a (x) 6= constant
∇Fc

U(x∗)= 0 when both Fc
a (x) and Fr

a (x) are constant and Fc
U(x) 6= constant

∇Fr
U(x∗)= 0 when all Fc

a (x) , Fr
a (x) and Fc

U(x) are constant

(i) Then, x∗ ∈ T is a local minimizer of F2 if

∇2Fc
a (x∗) be positive definite when Fc

a (x) 6= constant
∇2Fr

a (x∗) be positive definite when Fc
a (x) =constant and Fr

a (x) 6= constant
∇2Fc

U(x∗) be positive definite when both Fc
a (x) and Fr

a (x) are constant and Fc
U(x) 6= constant

∇2Fr
U(x∗) be positive definite when all Fc

a (x) , Fr
a (x)and Fc

U(x) are constant

(ii) x∗ ∈ T is local maximizer of F2 if

∇2Fc
a (x∗) be negetive definite when Fc

a (x) 6= constant
∇2Fr

a (x∗) be negetive definite when Fc
a (x) =constant and Fr

a (x) 6= constant
∇2Fc

U(x∗) be negetive definite when both Fc
a (x) and Fr

a (x) are constant and Fc
U(x) 6= constant

∇2Fr
U(x∗) be negetive definite when all Fc

a (x) , Fr
a (x)and Fc

U(x) are constant
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Proof.

(i) To prove Theorem 2 (i), four cases may arise:

Case-I: when Fc
a (x) 6= constant with ∇Fc

a (x∗) = 0 and ∇2Fc
a (x∗) is positive defi-

nite at x∗ ∈ T. Then, from the sufficient optimality condition for real-valued function,
Fc

a we have
Fc

a (x∗) ≤ Fc
a (x) , ∀x ∈ T ∩ N(x∗, δ1)

where N(x∗, δ1) is an open ball whose center is at x∗ with radius δ1.
Case-II: when Fc

a (x) = constant and Fr
a (x) 6= constant with

∇Fr
a (x∗) = 0 and ∇2Fr

a (x∗) is positive definite at x∗ ∈ T.

Then Fr
a (x∗) ≤ Fr

a (x) , ∀x ∈ T ∩ N(x∗, δ2)

where δ2 is the radius of the open ball N(x∗, δ2)with centre at x∗.

Similarly,
Case-III: when Fc

a (x), Fr
a (x) = constant and Fc

U(x) 6= constant
with ∇Fc

U(x∗) = 0 and ∇2Fc
U(x∗) is positive definite at x∗ ∈ T.

Then Fc
U(x∗) ≤ Fc

U(x) , ∀x ∈ T ∩ N(x∗, δ3)

where δ3 is the radius of open ball with centre at x∗.

Case-IV:
when Fc

a (x), Fr
a (x), Fc

U(x) are constants and Fr
U(x) 6= constant with

∇Fr
U(x∗) = 0 and ∇2Fr

U(x∗) is positive definite at x∗ ∈ T.
Then

Fr
U(x∗) ≤ Fr

U(x) , ∀x ∈ T ∩ N(x∗, δ4)

where δ4 is the radius of open ball with centre at x∗.Let us take

δ= min{δ1, δ2, δ3, δ4}.

Now, combining all the cases (I–IV), we get

∀x ∈ T ∩ N(x∗, δ),
Fc

a (x∗) ≤ Fc
a (x) when Fc

a (x) 6= constant
Fr

a (x∗) ≤ Fr
a (x) when Fc

a (x) =constant and Fr
a (x) 6= constant

Fc
U(x∗) ≤ Fc

U(x) when both Fc
a (x) and Fr

a (x) are constant and Fc
U(x) 6= constant

Fr
U(x∗) ≤ Fr

U(x) when all Fc
a (x) , Fr

a (x) and Fc
U(x) are constant

So, by the definition of order relation, we get

F2(x∗) ≤2 F2(x), ∀x ∈ T ∩ N(x∗, δ).

Therefore, x∗ ∈ T is the local minimizer of F2.

(ii) Similarly, the proof of the maximization case can be obtained. �

Example 2. Let us consider the following function for optimization.

F2(x1, x2) =
[(
−6
(

x2
1 + x2

2

)
− 2,

(
x2

1 + x2
2

))
,
((

x2
1 + x2

2

)
+ 3, 6

(
x2

1 + x2
2

)
+ 6
)]

. (1)

Solution:
Here we have:

Fc
a (x1, x2) =

7
2
= constant. and Fr

a (x1, x2) = 3
(

x2
1 + x2

2

)
+

5
4
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Therefore, for maximization or minimization of F2, it is sufficient to minimize Fr
a .

Clearly, (0, 0) is the minimizer of Fr
a , and hence it is the minimizer of F2(x1, x2). Therefore,

the minimum value of F2(x1, x2) at (0, 0) is F2(0, 0) = [(−2, 0), (3, 6)].

Example 3. Let us consider the following function for optimization:

F2(x1, x2) =
[(
−3x2

1x2
2 − 1,−x2

1x2
2

)
,
(

2
(

x2
1 + x2

2

)
+ 1, 2

(
x2

1 + x2
2

)
+ 4
)]

(2)

Solution: Here

Fc
a (x1, x2) = x2

1 + x2
2 − x2

1x2
2 + 1 6= constant.

Therefore, the necessary conditions for optimality of Fc
a (x1, x2) are given by

∂Fc
a (x1, x2)

∂x1
= 2x1 − 2x1x2

2 = 0 (3)

∂Fc
a (x1, x2)

∂x2
= 2x2 − 2x2

1x2 = 0 (4)

which implies
x1 = 0,±1 ; x2 = 0,±1.

Hence the critical points of Fc
a (x1, x2) are (0, 0), (1, 1), (1,−1), (−1, 1) and (−1,−1).

Now,

∇2Fc
a (x1, x2) =

(
2− 2x2

2 −4x1x2
−4x1x2 2− 2x2

2

)
Clearly, ∇2Fc

a (0, 0) is the positive definite matrix. Thus,(0, 0) is the local minimizer of
F2(x1, x2) and the minimum value of F2(x1, x2) is F2(0, 0) = [(−1, 0), (1, 4)].

At (±1,±1), no definite conclusion has been made because, at these points, the strict
definiteness of the Hessian matrix cannot be decided.

Definition 13. Let F2(x) be a Type-2 interval-valued function defined on X ⊆ Rn with X
being convex. Then, F2(x) is said to be convex on X if F2(λx1 + (1− λ)x2) ≤2 λF2(x1) +
(1− λ)F2(x2) for each λ ∈ (0, 1) and ∀x1, x2 ∈ X.

Proposition 1. Let X ⊆ Rn be convex and F2 be a Type-2 interval-valued function given by
F2(x) =

[(
f

L
(x), f L(x)

)
,
(

f
U
(x), f U(x)

)]
. If Fc

a (x), Fr
a (x), Fc

U(x) and Fr
U(x) are convex,

then F2(x) is convex.

5. Optimality Conditions of Constrained Type-2 Interval-Valued
Optimization Problem

Let the general form of a nonlinearly constrained Type-2 interval-valued optimization
problem be of the form:

(MP) Minimize F2(x) =
[(

f
L
(x), f L(x)

)
,
(

f
U
(x), f U(x)

)]
subject to Gi(x) ≤ or ≤min or ≤2 Bi, i = 1, 2, . . . , m.

where
F2 : S ⊆ Rn → I2(R), Gi : S→ R or I1(R) or I2(R)

The definition of the order relation ≤2 is given in Definition 6.
The definition of interval order relation≤min was proposed by Bhunia and Samanta [29],

defined in Definition 1.
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The set of score functions of F2(x) is
{

Fc
a , Fr

a , Fc
U , Fr

U
}

, where

Fc
a (x) =

f
L
(x)+ f L(x)+ f

U
(x)+ f U(x)

4 , Fr
a (x) =

f L(x)− f
L
(x)+ f U(x)− f

U
(x)

4 ,

Fc
U(x) =

f
U
(x)+ f U(x)

2 and Fr
U(x) =

f U(x)− f
U
(x)

2

and let
S =

{
x ∈ Rn : Gi(x) ≤ or ≤min or ≤2 Bi, i = 1, 2, . . . , m

}
Definition 14. The point x∗ ∈ S is called a minimizer of the problem (MP) if F2(x∗) ≤2 F2(x) ∀x ∈
S ∩ N(x∗, δ) , where N(x∗, δ) is an open ball centered at x∗ and radius δ.

Optimality conditions:
Now, based on the nature of all constraints, Gi(x), three cases may arise:
Case-1: when F2(x) is a Type-2 interval-valued function and all Gi(x) (i = 1, 2, 3, . . . , m)

are crisp functions (real-valued) having continuous partial derivatives up to the second
order. In this case, the nonlinear Type-2 interval-valued constrained optimization problem
along with inequality constraints can be expressed as follows:

(MP1) Minimize F2(x) =
[(

f
L
(x), f L(x)

)
,
(

f
U
(x), f U(x)

)]
subject to Gi(x) ≤ Bi, i = 1, 2, . . . , m.

Here each element of the set of score functions of F2(x) is continuously differentiable,
i.e., Fc

c , Fr
c , Fc

r , Fr
r and Gi : Rn → R are continuously differentiable functions.

Necessary conditions:

Theorem 3. Suppose x∗ is a local minimizer of the constrained optimization problem (MP1)
in which all the basic Type-2 interval-valued constraint qualifications hold. Then, there exist
multipliers λi, i = 1, 2, 3, . . . , m subject to the following conditions:

∇Fc
a (x∗) +

m

∑
i=1

λi∇Gi(x∗) = 0 . (5)

λiGi(x∗) = 0 , i = 1, 2, 3, . . . , m (6)

Gi(x∗) ≤ 0 , ∀i = 1, 2, 3, . . . , m (7)

λi ≥ 0 , i = 1, 2, 3, . . . , m (8)

Proof. First of all, we have introduced the non-negative slack variable y2
i in the given

inequality constraints (MP1), and we get the equality constraints Hi(x) = Gi(x) + y2
i = 0,

i = 1, 2, 3, . . . , m.
Now, the corresponding Lagrange function of (MP1) is as follows:

L2(x, λi, yi)=
[(

lL(x, λi, yi), lL(x, λi, yi)
)

,
(

lU(x, λi, yi), lU(x, λi, yi)
)]

= F2(x) +
m
∑

i=1
λi
(
Gi(x) + y2

i
)

=


(

f
L
(x) +

m
∑

i=1
λi
(
Gi(x) + y2

i
)
, f L(x) +

m
∑

i=1
λi
(
Gi(x) + y2

i
))

,(
f

U
(x) +

m
∑

i=1
λi
(
Gi(x) + y2

i
)
, f U(x) +

m
∑

i=1
λi
(
Gi(x) + y2

i
))


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Here Lc
a(x, λi, yi) = Fc

a (x)+
m
∑

i=1
λi
(
Gi(x) + y2

i
)
6= const., λ = (λ1, λ2, . . . , λm)

T are the

Lagrange multipliers. Now from the necessary conditions of the Type-2 interval-valued
unconstrained optimization problem, we get

∇Lc
a(x, λi, yi) = 0 , sin ce Lc

a(x, λi, yi) 6= constant.

That is

∂Lc
a

∂xk
=

∂Fc
a

∂xk
+

m

∑
i=1

λi
∂Gi
∂xk

= 0, k = 1, 2, . . . , n and x = (x1, x2, . . . , xn) (9)

∂Lc
a

∂yi
= 2λiyi = 0 , i = 1, 2, . . . , m (10)

∂Lc
a

∂λi
= Gi(x) + y2

i = 0, i = 1, 2, . . . , m (11)

From Equation (9), we have(
∂Fc

a
∂x1

, ∂Fc
a

∂x2
, . . . , ∂Fc

a
∂xn

)
+

m
∑

i=1
λi

(
∂Gi
∂x1

, ∂Gi
∂x2

, . . . , ∂Gi
∂xn

)
= 0

i.e., ∇Fc
a (x) +

m
∑

i=1
λi∇Gi(x) = 0

Gi(x) + y2
i = 0 implies Gi(x) ≤ 0 as y2

i be the slack variables, i = 1, 2, 3, . . . , m
From Equation (11), we obtain

2λiyi = 0 ⇒ eitherλi = 0 or yi = 0

If yi = 0 and λi > 0, then ∂Lc
a

∂λi
= 0 gives Gi(x) = 0.

This implies, either λi = 0 or Gi(x) = 0, i.e., λiGi(x) = 0 and λi ≥ 0. i = 1, 2, 3, . . . , m,
Hence, we have obtained the required necessary conditions.
�

Note 1. These conditions are similar to the KKT conditions of the nonlinear crisp optimization
problem derived by Karush [27], Kuhn and Tucker [28]. Thus, these conditions can be called
generalized KKT conditions.

Sufficient condition:

Theorem 4. Let (x∗, λ1, λ2, . . . , λm) satisfy the conditions (5)–(8), and all the elements of the set
of score functions of F2(x) i.e., Fc

a , Fr
a , Fc

U , Fr
U and all Gi are the differentiable and convex functions

with Fc
a as non-constant function. Then x∗ is the global minimizer of the problem (MP1).

Proof. Since Fc
a , Fr

a , Fc
U , Fr

U and Gi : Rn → R being continuously differentiable convex func-
tions with Fc

a (x) 6= constant and (x∗, λ1, λ2, . . . , λm) satisfying the necessary conditions
(5)–(8), then from the sufficient optimality conditions of the crisp function Fc

a (x), it can be
concluded that x∗ is a global minimizer of Fc

a (x).
That is, Fc

a (x∗) < Fc
a (x) , as Fc

a (x) 6= constant.
This implies, F2(x∗) ≤2 F2(x ) , ∀x ∈ S ⊆ Rn.
Thus, x∗ is a global minimizer of F2(x).
Case-2: when all Gi(x) (i = 1, 2, 3, . . . , m) are interval-valued weakly differentiable

functions, then the problem (MP) can be rewritten as:

(MP2) Minimize F2(x) =
[(

f
L
(x), f L(x)

)
,
(

f
U
(x), f U(x)

)]
subject to Gi(x) =

[
Gi(x), Gi(x)

]
≤min [0, 0], i = 1, 2, 3, . . . , m.



Mathematics 2021, 9, 908 13 of 22

Without loss of generality, it is assumed that the first k constraints Gi(x) have non-
constant centers, i = 1, 2, 3, . . . , k, k ≤ m, and the remaining (m− k) components of Gi(x)
have constant centers, i = k + 1, . . . , m.

Then, by using Bhunia and Samanta’s [29] interval order relation, the constraints of
the problem (MP2) can be rewritten as:

Gi(x) =
[
Gi(x), Gi(x)

]
≤min [0, 0],

⇒ Gc
i (x) < 0, i = 1, 2, . . . , k, k ≤ m.

and Gr
j (x) = 0, j = k + 1, k + 2, k + 3, . . . , m.

Here, Gc
i (x) and Gr

i (x) are the center and the radius of Gi(x), respectively. Thus, (MP2)
can be rewritten as:

(MP3) Minimize F2(x) =
[(

f
L
(x), f L(x)

)
,
(

f
U
(x), f U(x)

)]
subject to (i) Gc

i (x) ≤ 0, i = 1, 2, 3, . . . , k , k ≤ m
(ii) Gr

i (x) = 0, j = k + 1, . . . , m.

Now, using Case-1, the KKT conditions of the problem (MP2), i.e., of the (MP3) are
derived as follows:

∇Fc
a (x) +

k

∑
i=1

λiGc
i (x) +

m

∑
j=k+1

µjGr
j (x) = 0, k ≤ m. (12)

λiGi(x) = 0 , i = 1, 2, 3, . . . , k (13)

Gr
j (x) = 0, j = k + 1, k + 2, k + 2, . . . , m (14)

Gc
i (x) ≤ 0, i = 1, 2, 3, . . . k (15)

λi ≥ 0, i = 1, 2, 3, . . . , k. (16)

Case-3: let all Gi(x) (i = 1, 2, 3, . . . , m) be Type-2 interval-valued and weakly contin-
uously differentiable functions. In this case, the problem is reformulated in the follow-
ing way:

(MP4) Minimize F2(x) =
[(

f
L
(x), f L(x)

)
,
(

f
U
(x), f U(x)

)]
subject to Gi(x) =

[(
g

iL
(x), giL(x)

)
,
(

g
iU
(x), giU(x)

)]
≤2 [(0, 0), (0, 0)], i = 1, 2, . . . , m.

Then, using the definition of Type-2 interval order relation, the problem (MP4) can be
reformulated as:

(MP5) Minimize F2(x) =
[(

f
L
(x), f L(x)

)
,
(

f
U
(x), f U(x)

)]
subject to Gi

c
a(x) < 0 , i = 1, 2, . . . , m1

Gj
r
a(x) = 0, j = 1, 2, . . . , m2

Gk
c
U(x) < 0, k = 1, 2, . . . , m3

Gl
r
U(x) = 0, l = 1, 2, . . . , m4 and m1 + m2 + m3 + m4 = m

where
{

Gi
c
a, Gi

r
a, Gi

c
U , Gi

r
U
}

are the set of score functions of Gi.
Now, using Case-1, the generalized conditions of (MP5) are derived as follows:

∇Fc
a (x) +

m1

∑
i=1

λ1
i Gi

c
a(x) +

m2

∑
j=1

λ2
j Gj

r
a(x) +

m3

∑
k=1

λ3
kGj

c
U(x) +

m4

∑
l=1

λ4
l Gl

r
U(x) = 0 (17)

λiGi
c
a(x) = 0 , i = 1, 2, . . . , m1 (18)

λ3
j Gj

r
a(x) = 0, j = 1, 2, . . . , m3 (19)
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Gi
c
a(x) < 0, i = 1, 2, . . . m1 (20)

Gj
r
a = 0 , j = 1, 2, . . . , m2 (21)

Gk
c
U < 0, k = 1, 2, . . . , m3 (22)

Gl
r
U = 0, l = 1, 2, . . . , m4 (23)

λ1
i , λ3

k ≥ 0, i = 1, 2, . . . m1, k = 1, 2, . . . , m3 (24)

�

Example 4. Let us consider the Type-2 interval-valued minimization problem:

Minimize F2(x) =
[(

x2 + x, x2 + x + 1
)
,
(

x2 + 3, x2 + 4
)]

subject to x− 2 ≤ 0, −x ≤ 0
(25)

Solution: Suppose g1(x) = x− 2, g2(x) = −x.
Here, Fc

a (x) = 2x2+x+4
2 6= constant .

Clearly, Fc
a , g1, g2 are continuously differentiable and convex functions. Then, the

generalized KKT conditions of (25) are

2x∗ +
1
2
+ λ1 − λ2 = 0 (26)

λ1(x∗ − 2) = −λ2x∗ = 0 (27)

x∗ − 2 ≤ 0, −x∗ ≤ 0 (28)

λ1 ≥ 0, λ2 ≥ 0 (29)

Clearly, x∗ = 0, λ1 = 0, λ2 = 1
2 satisfy the conditions (26)–(29). Therefore,x∗ = 0 is a

global minimizer of (25).

Example 5. Let us consider a minimization problem for Case-2 as follows:

Minimize f (x) =
[(

x2, x2 + 2x
)
,
(

x2 + 4, x2 + 2x + 4
)]

subject to [−x− 2, 2x + 1] ≤min [0, 0]
[−x,−x] ≤min [0, 0]

(30)

Solution: Let g1(x) = [−x− 3, 2x + 2], g2(x) = [−x,−x].

Here Fc
a (x) = x2 + x + 2 6= constant, gc

1(x) =
x− 1

2
6= constant, gc

2(x) = −x 6= constant.

Clearly, all Fc
c , gc

1, gc
2 are convex and continuously differentiable. Thus, the generalized

KKT conditions for (30) are

∇Fc
a (x) + λ1∇gc

1(x) + λ2∇gc
2(x) = 0 i.e., (2x + 1) +

λ1

2
+ λ2(−1) = 0 (31)

λ1gc
1(x) = λ2gc

2(x) = 0 i.e., λ1

(
x− 1

2

)
= λ2(−x) (32)

gc
1(x) ≤ 0, gc

2(x) ≤ 0 i.e.,
x− 1

2
≤ 0, −x ≤ 0 (33)

λ1 ≥ 0, λ2 ≥ 0 (34)

Obviously, x = 0, λ1 = 0, λ2 = 1 satisfy the conditions (31)–(34). Thus, x = 0 is a
global minimizer of (30).
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Example 6. Consider a problem:

Minimize F2(x1, x2) = [(x1 − 2, x1 + x2), (x1 + x2 + 1, x1 + 2x2 + 1)]
subject to

[(
−4
(
x2

1 + x2
2
)
− 4,−2

(
x2

1 + x2
2
)
− 2
)
,
(

x2
1 + x2

2, x2
1 + x2

2 + 10
)]
≤2 [(0, 0), (0, 0)]

(35)

Solution: Let g(x1, x2) =
[(
−4
(
x2

1 + x2
2
)
− 4,−2

(
x2

1 + x2
2
)
− 2
)
,
(
x2

1 + x2
2, x2

1 + x2
2 + 2

)]
,

and gc
a(x1, x2) = −x2

1 − x2
2 + 1 6= constant.

Clearly, Fc
a , gc

a are differentiable and convex functions.
Now, the generalized KKT conditions for the problem (35) are as follows:

(1, 1) + λ(−2x1,−2x2) = (0, 0) (36)

λ
(
−x2

1 − x2
2 + 1

)
= 0 (37)

− x2
1 − x2

2 + 1 ≤ 0 (38)

λ ≥ 0 (39)

From (36)–(39), we have x1 = 1, x2 = 0, λ = 1
2 . Thus, (1, 0) is a global minimizer

of (35).

6. An Application to an Inventory Control Problem

This section presents an application of the Type-2 interval and optimality conditions
of Type-2 interval optimization problem in inventory management.

6.1. Motivation of Type-2 Interval in Inventory Control

In every business sector, it is observed that the cost, demand, order quantity, etc., of a
commodity is highly fluctuating from time to time due to uncertainty. These can be ranged
in between two fixed bounds and hence can be presented in the form of intervals. Suppose
we want to analyze the optimal policy of inventory problems by taking the interval-valued
hypothetical data of the inventory parameters (viz. demand, purchase cost, selling price,
etc. of a commodity) of the previous few years in a single setting. For example, the
hypothetical data of the price and demand of food grains of the previous five years are
considered and presented in Table 1.

Table 1. Data of Demand and Purchase cost of 5 years.

Year Demand (D) Units Purchase Cost (C)/Unit

1 (00,150) (20,25)
2 (110,17) (22,27)
3 (95,140) (17,23)
4 (105,145) (18,24)
5 (102,150) (20,26)

Table 1 shows that the bounds of both demand and purchase cost fluctuated from
year to year. So, we cannot present all these demand and purchase costs in a single setting
by keeping fixed bounds and less uncertainty. This is a drawback of the classical interval
approach. Thus, to perform the case study on these data of demand and purchase cost in a
single setting, the flexibility of both bounds is considered. The data of Table 1 can easily be
represented in a single setup by using the Type-2 interval approach. Let D2 and C2 be the
Type-2 interval-valued demand and purchase cost of the food grain, respectively. Then the
data of Table 1 are presented as follows:

D2 = [(95, 110), (140, 170)] and C2 = [(17, 22), (23, 27)].
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Therefore, using the Type-2 interval representation, an imprecise inventory model’s
optimal policy in such a situation can be studied. So, the motivation of Type-2 interval in
the area of inventory control is discussed in the next section.

6.2. Classical Production Inventory Model with Type-2 Inventory Parameters

In this subsection, the classical economic production quantity model (EPQ) is extended
under Type-2 interval uncertainty. The proposed imprecise model is formulated under
some fundamental notation and assumptions given in Sections 6.2.1 and 6.2.2.

6.2.1. Assumptions

(i) The demand is Type-2 interval-valued.
(ii) Inventory time horizon is infinite, and the system deals with a single product.
(iii) Shortages are not allowed, and the lead time is zero.
(iv) The Production rate is Type-2 interval-valued and greater than the demand rate.
(v) The setup cost and carrying cost are also Type-2 interval-valued.

6.2.2. Model Formulation

Let us assume that the inventory level at a time t = tp is I =
[(

IL, IL
)
,
(

IU , IU
)]

which will be consumed by the customers’ demand
[(

dL, dL

)
,
(

dU , dU

)]
with the time.

The imprecise production model in the Type-2 interval environment is shown in Figure 2.
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From Figure 2, we get

p
L
tp = IL + dLtp, pLtp = IL + dLtp, p

U
tp = IU + dUtp, pUtp = IU + dUtp,

i.e., IL = p
L
tp − dLtp, IL = pLtp − dLtp, IU = p

U
tp − dUtp, IU = pUtp − dUtp

(40)

As the whole quantity produced during the time tp,

Q2 = P2tp (41)

Again, as the total lot-size becomes zero at the end of cycle due to the demand, then

Q2 = D2T (42)
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Then, from Equations (41) and (42), we get

P2tp = D2T, i.e., p
L
tp = dLT, pLtp = dLT, p

U
tp = dUT, pUtp = dUT (43)

Thus,

tp =

(
dL + dL + dU + dU

)
T(

p
L
+ pL + p

U
+ pU

)
Hence, from (40) we get,

IL =

(
p

L
−dL

)
(dL+dL+dU+dU)T(

p
L
+pL+p

U
+pU

) , IL =
(pL−dL)(dL+dL+dU+dU)T(

p
L
+pL+p

U
+pU

) ,

IU =

(
p

U
−dU

)
(dL+dL+dU+dU)T(

p
L
+pL+p

U
+pU

) , IU =
(pU−dU)(dL+dL+dU+dU)T(

p
L
+pL+p

U
+pU

)
Now, the inventory costs corresponding to the model are

(i) Setup cost

S =
[(

SL, SL
)
,
(
SU , SU

)]
(ii) Carrying cost

Now, the bounds of Type-2 interval-valued inventory carrying cost for the cycle can
be calculated as follows:

ChL = hL × area of the triangle OA1B = hL ILT
2 =

hL

(
p

L
−dL

)
kT2

2

ChL = hL × area of the triangle OA2B = hL ILT
2 =

hL(pL−dL)kT2

2

ChU = hL × area of the triangle OA3B = hU IU T
2 =

hU

(
p

U
−dU

)
kT2

2

and

ChU = hL × area of the triangle OA4B =
hU IUT

2
=

hU

(
pU − dU

)
kT2

2
where

k =

(
dL + dL + dU + dU

)
(

p
L
+ pL + p

U
+ pU

)
Therefore, the Type-2 interval-valued carrying cost is given by

CH2 =
[(

ChL, ChL
)
,
(
ChU , ChU

)]
=

[(
hL

(
p

L
−dL

)
kT2

2 ,
hL(pL−dL)kT2

2

)
,

(
hU

(
p

U
−dU

)
kT2

2 ,
hU(pU−dU)kT2

2

)]

Hence, the average cost of the model is as follows:

AC2(T) =
[(

ACL(T), ACL(T)
)
,
(

ACU(T), ACU(T)
)]

= (S2+CH2)
T =

[(SL ,SL),(SU ,SU)]+[(ChL ,ChL),(ChU ,ChU)]
T

=

[(
(SL+ChL)

T , (
SL+ChL)

T

)
,
(

(SU+ChU)
T , (

SU+ChU)
T

)]
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The bounds of the average cost are obtained as follows:

ACL(T) =
sL
T +

hLk
(

p
L
−dL

)
T

2 , ACL(T) =
sL
T +

hLk(pL−dL)T
2 ,

ACU(T) =
sU
T +

hUk
(

p
U
−dU

)
T

2 , ACU(T) =
sU
T +

hUk(pU−dU)T
2

(44)

Now, the required Type-2 interval-valued minimization problem is

Minimize AC2(T) =
[(

ACL(T), ACL(T)
)
,
(

ACU(T), ACU(T)
)]

subject to T > 0
(45)

Here

ACc
c(T) =

2(sL+sL+sU+sU)+k
(

hL

(
p

L
−dL

)
+hL(pL−dL)+hU

(
p

U
−dU

)
+hU(pU−dU)

)
T2

8T

which is a non-constant function of T.
Therefore, using the optimality conditions of the Type-2 interval-valued function

AC2(T) we obtain

dACc
c (T)

dT = 0

⇒
k
(

hL

(
p

L
−dL

)
+hL(pL−dL)+hU

(
p

U
−dU

)
+hU(pU−dU)

)
T2−2(sL+sL+sU+sU)

8T2 = 0

⇒ T =
√

2(sL+sL+sU+sU)

k
(

hL

(
p

L
−dL

)
+hL(pL−dL)+hU

(
p

U
−dU

)
+hU(pU−dU)

) .

and
d2 ACc

c (T)
dT2 = (sL+sL+sU+sU)

2T3 > 0 at T =
√

2(sL+sL+sU+sU)

k
(

hL

(
p

L
−dL

)
+hL(pL−dL)+hU

(
p

U
−dU

)
+hU(pU−dU)

)
Thus, the optimal cycle is

T∗ =

√
2
(

p
L
+pL+p

U
+pU

)
(sL+sL+sU+sU)

(dL+dL+dU+dU)
(

hL

(
p

L
−dL

)
+hL(pL−dL)+hU

(
p

U
−dU

)
+hU(pU−dU)

) (46)

The optimal production time is

t∗p =
(dL+dL+dU+dU)T∗(

p
L
+pL+p

U
+pU

)
=

√
2(dL+dL+dU+dU)(sL+sL+sU+sU)(

p
L
+pL+p

U
+pU

)(
hL

(
p

L
−dL

)
+hL(pL−dL)+hU

(
p

U
−dU

)
+hU(pU−dU)

) (47)

In addition, the optimal lot size is

Q∗2 = D2T∗ =
[(

dL, dL

)
,
(

dU , dU

)]
T∗ (48)

Finally, the bounds of the optimal AC2(T∗) are determined from Equation (44).

Corollary 1. If the carrying/ordering cost, demand rate, production rate, and holding cost are
interval-valued, i.e.,

sL = sL = sL, sU = sU = sU , dL = dL = dL, dU = dU = dU , p
L
= pL = pL, p

U
= pU = pU

and hL = hL = hL, hU = hU = hU .

Then, the relations (47)–(49) are converted in the relations (50)–(52).
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The optimal cycle is

T∗ =

√
2(pL + pU)(sL + sU)

(dL + dU)(hL(pL − dL) + hU(pU − dU))
(49)

The optimal production time is

t∗p =

√
2(dL + dU)(sL + sU)

(pL + pU){hL(pL − dL) + hU(pU − dU)}
(50)

The optimal lot size is

Q∗2 = [(dL, dL), (dU , dU)]

√
2(pL+pU)(sL+sU)

(dL+dU)(hL(pL−dU)+hU(pU−dL))

↔ [dL, dU ]

√
2(pL+pU)(sL+sU)

(dL+dU)(hL(pL−dU)+hU(pU−dL))

(51)

Corollary 2. If sL = sL = sU = sU = s, dL = dL = dU = dU = d, p
L
= pL = p

U
=

pU = p and hL = hL = hU = hU = h,
i.e., if the setup cost, demand, production rate, and carrying cost are deterministic, then

Equations (46)–(48) are converted to Equations (52)–(54).

The optimal cycle is

T∗ =

√
2ps

h(p− d)d
(52)

The optimal production time is

t∗p =

√
2ds

ph(p− d)
(53)

The optimal lot size is

Q∗2 = [(d, d), (d, d)]

√
2ps

h(p− d)d
↔
√

2psd
h(p− d)

(54)

which is the classical EPQ model.

6.2.3. Numerical Example

In this subsection, three numerical examples are considered and solved to justify the
proposed model’s optimal policy.

Example 7. Suppose the manager of a production center wishes to analyze the optimal policy of
the previous few cycles of the production system at a time. Since the production rate, demand
rate, ordering cost, and holding cost fluctuate from cycle to cycle, the manager considered these
components as Type-2 interval-valued. The Type-2 interval-valued inventory parameters’ values for
this example are:[(

p
L
, pL

)
,
(

p
U

, pU

)]
= [(220, 270)(340, 390)];

[(
dL, dL

)
,
(

dU , dU

)]
= [(130, 150), (190, 210)];

[(sL, sL), (sU , sU)] = [(110, 120), (180, 200)];
[(

hL, hL

)
,
(

hU , hU

)]
= [(3, 5), (8, 10)]
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Solution:
The optimal cycle, production time, lot-size and average cost are obtained by using

the Equations (44) and (46)–(48). The optimal values of these inventory parameters for this
example are given by

T∗ = 0.282794, t∗p = 0.157623,[(
Q∗L, Q∗L

)
,
(

Q∗U , Q∗U
)]

= [(36.7632, 42.4191), (53.7308, 59.3867)][(
AC∗L, AC∗L

)
,
(

AC∗U , AC∗U
)]

= [(410.255, 471.624), (731.08, 849.09)]

Example 8. To validate the optimal values of Example 7, in this example, the values of production
rate, demand rate, ordering cost, and holding cost are considered as interval-valued, which are of
the form: [(

p
L
, pL

)
,
(

p
U

, pU

)]
= [(245, 245)(365, 365)]↔ [245, 365];[(

dL, dL

)
,
(

dU , dU

)]
= [(140, 140), (200, 200)]↔ [140, 200];

[(sL, sL), (sU , sU)] = [(115, 115), (190, 190)]↔ [115, 190];[(
hL, hL

)
,
(

hU , hU

)]
= [(4, 4), (9, 9)]↔ [4, 9].

Solution:
The optimal cycle, production time, lot-size and average cost are obtained by using

the Equations (44) and (49)–(51). The optimal values of these inventory parameters for this
example are given by

T∗ = 0.287247, t∗p = 0.160105,[(
Q∗L, Q∗L

)
,
(

Q∗U , Q∗U
)]

= [(40.2146, 40.2146), (57.4494, 57.4494)]↔ [40.2146, 57.4494][(
AC∗L, AC∗L

)
,
(

AC∗U , AC∗U
)]

= [(433.974, 433.974), (780.329, 780.329)]↔ [433.974, 780.329]

Example 9. To validate the optimal values of both Examples 7 and 8, in this example, the values of
production rate, demand rate, ordering cost, and holding cost are considered as real-valued (crisp),
which are of the form:[(

p
L
, pL

)
,
(

p
U

, pU

)]
= [(305, 305)(305, 305)]↔ 305;[(

dL, dL

)
,
(

dU , dU

)]
= [(170, 170), (170, 170)]↔ 170;

[(sL, sL), (sU , sU)] = [(153, 153), (153, 153)]↔ 153;[(
hL, hL

)
,
(

hU , hU

)]
= [(7, 7), (7, 7)]↔ 7.

Solution:
The optimal cycle, production time, lot-size and average cost are obtained by using

the Equations (44) and (51)–(54). The optimal values of these inventory parameters for this
example are given by

T∗ = 0.290476, t∗p = 0.161905,[(
Q∗L, Q∗L

)
,
(

Q∗U , Q∗U
)]

= [(49.381, 49.381), (49.381, 49.381)]↔ 49.381[(
AC∗L, AC∗L

)
,
(

AC∗U , AC∗U
)]

= [(603.221, 603.221), (603.221, 603.221)]↔ 603.221
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7. Concluding Remarks

In this work, both the necessary and sufficient optimality conditions for the nonlinear
Type-2 interval-valued unconstrained optimization problem have been derived based
on the proposed Type-2 interval order relation. Henceforth using these conditions, the
optimality conditions of constrained optimization problems taking all the possible cases
(Case-1 to Case-3) are derived. For Case-1, both the necessary and sufficient optimality
conditions are discussed with detailed derivations. Simultaneously, in Case-2 and Case-3,
only the necessary conditions are derived as the consequences of the Case-1. The necessary
conditions derived in all three cases are named generalized KKT conditions.

For future investigation, one may extend the concepts of optimality in derivative-free
optimization (saddle point optimality) and the optimality theory of variational problems
in the Type-2 interval environment. The proposed work concepts may also be applied to
solve real-life optimization problems, such as inventory problems, transportation problems,
reliability optimization problems, and several other nonlinear optimization problems under
Type-2 interval uncertainty. In the inventory model case, the classical inventory models
can further be extended for the Type-2 interval environment using the proposed theoretical
discussions incorporating deterioration, preservation, price dependent demand, price and
stock dependent demand, overtime production, imperfect production process, etc.
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Nomenclature

Notation Descriptions
R Set of real numbers
Rn Set of ordered n-tuples of real numbers
I1(R) = {[aL, aU ] : aL, aU ∈ R} Set of all closed and bounded intervals
I2(R) = {[(aL, aL), (aU , aU)] : aL, aL, aU and aU ∈ R} Set of all type-2 intervals
S2 =

[(
SL, SL

)
,
(
SU , SU

)]
Type-2 interval-valued set up cost

H2 =
[(

hL, hL

)
,
(

hU , hU

)]
Type-2 interval valued Carrying
cost/unit/unit time

P2 =
[(

p
L
, pL

)
,
(

p
U

, pU

)]
Type-2 interval-valued production rate

D2 =
[(

DL, DL
)
,
(

DU , DU
)]

Type-2 interval-valued demand rate

Q2 =
[(

QL, QL

)
,
(

QU , QU

)]
Type-2 interval-valued order quantity

tp Production time
T Length of the business cycle
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