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Abstract: This paper is concerned with an SIS epidemic reaction-diffusion model. The purpose of this
paper is to derive some effects of the spatial heterogeneity of the recovery rate on the total population
of infected and the reproduction number. The proof is based on an application of our previous result
on the unboundedness of the ratio of the species to the resource for a diffusive logistic equation. Our
pure mathematical result can be epidemically interpreted as that a regional difference in the recovery
rate can make the infected population grow in the case when the reproduction number is slightly
larger than one.
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1. Introduction

Because of the spread of COVID-19, the role of mathematical models in infectious
disease epidemiology is becoming more important. This paper is aim to assert that,
by mathematical analysis for a diffusive SIS model, a regional difference of recovery rates
of infectious disease can make the total population of infected become large. In the field of
reaction–diffusion equations, the following SIS model has been studied since thre paper by
Allen, Bolker, Lou, and Nevai [1]:

∂S
∂t

= dS∆S− β(x)
SI

S + I
+ γ(x)I, (x ∈ Ω, t > 0),

∂I
∂t

= dI∆I + β(x)
SI

S + I
− γ(x)I, (x ∈ Ω, t > 0),

∂S
∂ν

=
∂I
∂ν

= 0, (x ∈ ∂Ω, t > 0),

S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥ ( 6≡)0 (x ∈ Ω),

(1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω; ∆ := ∑n
j=1 ∂2/∂x2

j is the
Laplace operator and ∂/∂ν is the directional derivative in the direction of the outward
unit normal vector ν. This epidemic model describes the spatio-temporal dynamics of the
population densities of susceptible and infected. The unknown functions S(x, t) and I(x, t)
stand for the population densities of susceptible and infected at location x = (x1, . . . , xn) in
the habitat Ω and time t > 0, respectively. Given non-negative piecewise smooth functions
β(x) and γ(x), respectively, indicate the rates of disease transmission and recovery from
infection. The given positive constants dS and dI represent the random diffusion rates of
susceptible and infected, respectively. The no-flux conditions on susceptible and infected
are assumed.
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The time-global well-posedness of (1) is known, as follows (see e.g., [2]): For each non-
negative initial data (S0, I0) ∈ L∞(Ω)× L∞(Ω) with ‖I0‖L1 :=

∫
Ω I0(x) dx > 0, there exists

a unique positive solution (S, I) ∈ C1+θ,(1+θ)/2(Ω× (0, ∞))× C1+θ,(1+θ)/2(Ω× (0, ∞)) for
any θ ∈ (0, 1) and, moreover, (S, I) satisfies the mass conservation law:∫

Ω
(S(x, t) + I(x, t)) dx =

∫
Ω
(S0(x) + I0(x)) dx =: N for any t > 0, (2)

that is to say, the model (1) assumes a spatio-temporal scale, in which the total population
of susceptible and infected is conserved. It is conjectured that any solution (S, I) of (1)
tends to a non-negative stationary solution as t → ∞. Therefore, in order to know the
spatial distribution of susceptible and infected after a long time, it is important to study
the steady-state problem, as follows:

ds∆S + β(x)
SI

S + I
− γ(x)I = 0, S ≥ 0 (x ∈ Ω),

dI∆I − β(x)
SI

S + I
+ γ(x)I = 0, I ≥ 0 (x ∈ Ω),

∂S
∂ν

=
∂I
∂ν

= 0, (x ∈ ∂Ω),∫
Ω
(S + I) dx = N.

(3)

Corresponding to the disease free situation, (3) with I = 0 admits a unique solution

(S, I) =
(

N
|Ω| , 0

)
, (4)

which is called the disease free equilibrium (DFE). On the other hand, a solution (S, I) of (3)
with S > 0 and I > 0 in Ω is called an endemic equilibrium (EE). In [1], it was shown that the
reproduction numberR0 (will be introduced in the next section) plays a threshold for the
existence/nonexistence of EE in the sense that there is no EE ifR0 ≤ 1, whereas there is a
unique EE ifR0 > 1. In the field of reaction–diffusion equations, the singular limit of EE
as dS or dI tends to zero has been studied by [1,3–5]. Concerning related research works
on (1) or (3), we refer to [6–19] and the references therein.

The purpose of this paper is to show a tendency that some concentration profile of
β(x)− γ(x) in the equal diffusion case dS = dI makes ‖I‖L1 grow. To be precise, it will
be shown that, under the same level of R∞

0 := ‖β‖L1 /‖γ‖L1 > 1, the total population of
infected in a heterogeneous setting of β(x)− γ(x) is larger than that in the homogeneous
setting of β(x)− γ(x). For instance, if the transmission rate β(x) is uniform over Ω and
the recovery rate γ(x) is very poor within a small area of Ω, then the total population of
infected will be higher than that in the case of the uniform transmission and recovery rates
over Ω with the same level of R∞

0 . That is to say, the regional difference of the recovery
rate can make the total population of infected grow.

The proof is an application of our result [20] on the profile of the positive stationary
solution to a diffusive logistic equation. In [20], the authors proved that some spatial
concentration setting of a resource function in the diffusive logistic equation makes the
L1 norm of the positive stationary solution become as large as possible. It will be shown
that, in the case of dS = dI , (3) can be reduced to a single equation, which is similar to
the stationary diffusive logistic equation. By a change of variable, the growth property of
the total population of infected will be related to the growth property of L1 norm of the
stationary solutions to the logistic equation.

This paper is organized, as follows: in Section 2, the known results on (1) and (3) and
our result on the diffusive logistic equation will be introduced. In Section 3, the main result
on the growth property of the total population of infected will be proved. Furthermore,
some pure and numerical analysis of the reproduction number will be shown. In Section 4,
some related issues to the results of this paper will be presented.
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2. Known Results
2.1. Diffusive SIS Model

In this subsection, we introduce the known results on the SIS model (1) and the
associated stationary problem (3). Concerning the long-time behavior of solutions of (1),
Allen et al. [1] proved that the following reproduction number R0 plays an important
threshold in the sense of Theorem 1,

R0(dI ; β, γ) := sup
ϕ∈H1(Ω)\{0}

∫
Ω β(x)ϕ2 dx

dI‖∇ϕ‖2
2 +

∫
Ω γ(x)ϕ2 dx

. (5)

It is noted that R0 is characterized as the principal eigenvalue of the following
eigenvalue problem 

dI∆ϕ +

(
β(x)

λ
− γ(x)

)
ϕ = 0 (x ∈ Ω),

∂ϕ

∂ν
= 0 (x ∈ ∂Ω).

(6)

Here, it is noted that (6) has infinitely many eigenvalues {λj} that are all real andR0
is the maximum eigenvalue.

Theorem 1 ([1]). The reproduction numberR0(dI ; β, γ) is monotone decreasing with respect to
dI > 0, and it satisfies

lim
dI→+0

R0(dI ; β, γ) = sup
x∈Ω

β(x)
γ(x)

, lim
dI→∞

R0(dI ; β, γ) =
‖β‖L1

‖γ‖L1
(= R∞

0 ). (7)

Furthermore, the following (i) and (ii) hold true:

(i) If 0 < R0 < 1, then DFE (obtained by (4)) is globally asymptotically stable (GAS) in the
sense that all solutions of (1) tend to DFE uniformly in Ω as t→ ∞, and, moreover, there is
no EE.

(ii) IfR0 > 1, then DFE is unstable, and, moreover, there exists a unique EE.

It is conjectured that the unique EE is globally asymptotically stable whenR0 > 1. In
some special cases, the validity was proved by [18,19]. As mentioned in Introduction, since
the pioneering work [1], (1) and (3) have been studied by a lot of researchers in the field of
reaction–diffusion equations from various viewpoints.

2.2. Diffusive Logistic Equation

In this subsection, we introduce known results on a diffusive logistic equation in the
bounded domain Ω of Rn. The results will be related to our analysis for the profile of
solutions of (3). We consider the following diffusive logistic equation:

∂u
∂t

= d∆u + u(m(x)− u), (x ∈ Ω, t > 0),
∂u
∂ν

= 0, (x ∈ Ω, t > 0),

u(x, 0) = u0(x) ≥6≡ 0, (x ∈ Ω),

(8)

where the unknown function u(x, t) represents the population density of the species at
location x ∈ Ω and time t > 0, a positive coefficient d is the random diffusion rate of the
species, and m(x) is called a resource function that stands for the density of resource (feed)
for the species. This paper will assume a class of m(x), as follows:

m ∈ L∞
+(Ω) := {m ∈ L∞(Ω) | m(x) ≥ 0 a.e. x ∈ Ω, ‖m‖L∞ > 0 }.
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It is well-known that (8) admits a unique time-global solution u ∈ C1+θ,(1+θ)/2(Ω× (0, ∞))
if u0 ∈ L∞

+(Ω) and u tends to a unique positive solution to the following steady-state problem, as
t→ ∞: d∆u + u(m(x)− u) = 0, u ≥ 0, (x ∈ Ω),

∂u
∂ν

= 0, (x ∈ Ω),
(9)

More precisely, the following result is well-known:

Theorem 2 ([21]). For any d > 0 and m ∈ L∞
+(Ω), (9) admits a unique positive solution

ud,m ∈ W2,p(Ω) for any p > 1. If u0 ∈ L∞
+(Ω), then the solution of u(x.t) of (8) satis-

fies limt→∞ u( · , t) = ud,m uniformly in Ω. That is to say, ud,m is globally asymptotically
stable (GAS).

In the sense of Theorem 2, it is important to study the profile of ud,m in order to know
the final spatial distribution of the species after a long time. From such a view-point, Ni
proposed the following optimization problem: Find the value of

Sn := sup
d>0, m∈L∞

+ (Ω)

‖ud,m‖L1

‖m‖L1
. (10)

Hence, ‖m‖L1 and ‖ud,m‖L1 represent the total amount of resource and the total
population of the final state of the species, respectively. Subsequently, the variational
problem (10) can be ecologically interpreted as “How much can the species survive per
unit resource?” As a trigger to consider the problem (10), Lou [22] exhibited a fundamental,
but unusual, procedure for (9), as follows: Multiplying 1/ud,m by (9) and integrating the
resulting expression over Ω yields

d
∫

Ω

∆ud,m

ud,m
dx + ‖m‖L1 − ‖ud,m‖L1 = 0.

Here, the integration by parts and the boundary condition leads to

∫
Ω

∆ud,m

ud,m
dx =

∫
Ω

( |∇ud,m|
ud,m

)2

dx ≥ 0.

Subsequently, one can see that, for any d > 0 and m ∈ L∞
+(Ω), ‖ud,m‖L1 /‖m‖L1 ≥ 1,

where the equality only holds when m(x) is constant. That is to say, a heterogeneity of m(x)
can make the total population of the species grow. It follows that Sn > 1 for any dimension
number n. In the research field of diffusive logistic equations, there was a conjecture that
Sn is finite for any n, and, especially, S1 = 3 (see [23,24]). Bai, He, and Li shows the validity
of S1 = 3 [25].

However, in [20], the authors proved Sn = ∞ in the higher-dimensional case when
Ω is a unit ball Bn

1 := { x ∈ Rn | |x| < 1 } and n ≥ 2. This is a big contrast to the
one-dimensional case [25], where the supremum is 3. The proof is based on the sub-super
solution method, employing a concentration setting of resources near the center as

mε(x) :=

{
1/εn (x ∈ Bn

ε := { x ∈ Rn | |x| ≤ ε }),
0 (x ∈ Bn

1 \ Bn
ε ).

Afterwards, a control of the diffusion rate as dε = O(1/εn−2) enables us to construct
an L1 unbounded sequence of sub-solutions as ε→ 0.

Theorem 3 ([20]). Suppose that the dimension number n satisfies n ≥ 2. If c1 > 0 and
c2 > 0 satisfy

1− 2c1n(n− 1)− c2 ≥ 0 and 2c1n− c2

e
≥ 0, (11)
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then the unique positive solution uε(x) of
c1

εn−2 ∆u + u(mε(x)− u) = 0 x ∈ Bn
1 ,

∂u
∂ν

= 0 x ∈ ∂Bn
1 .

satisfies

uε(x) ≥


c2
εn e−|x|

n/εn
(x ∈ Bn

ε ),
c2

e|x|n (x ∈ Bn
1 \ Bn

ε )
(12)

for any 0 < ε < 1.

It is noted that (11) forms a triangle whose vertices are

(c1, c2) = (0, 0),
(

1
2n(e + n− 1)

, e
e + n− 1

)
,
(

1
2n(n− 1)

, 0
)

.

on (c1, c2) plane. By integrating the right-hand side of (12), one can see that the following
inequality holds ([20], Theorem 2.2):

‖uε‖L1(Bn
1 )

‖mε‖L1(Bn
1 )
≥ c2

(
1− 1

e
+

n
e
| log ε|

)
for ε ∈ (0, 1).

Setting ε → +0 in this estimate, we obtain Sn = ∞ if n ≥ 2. From the ecological
viewpoint, this result implies that the total population of the species grows larger and
larger, regardless of the limited total resources when the support of resources shrinks
(ε→ 0).

3. Main Results and Proofs
3.1. Profiles of the Infected Population Density

In order to apply Theorem 3 to the L1 estimate of EE, in what follows we consider (3)
with the following three conditions:

Ω = B2
1(=: B1) (unit disk)

and
dS = dI(=: d) (equal diffusion)

and

β(x) ≡ β := 2/ε2, γ(x) = γ̃(x) :=

{
1/ε2 for x ∈ Bε,
2/ε2 for x ∈ B1 \ Bε.

(13)

Hereafter, B2
r will be denoted by Br for simplicity. This setting (13) assumes a situation

where the rate of disease transmission is uniform, but the recovery rate is poor within the
centered area Bε.

Because of the equal diffusion setting, it is natural to introduce a new unknown function

w(x) := S(x) + I(x).
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Subsequently, (3) is equivalent to

d∆w = 0, w ≥ 0 (x ∈ B1),

d∆I + I
(

β− γ− β

w
I
)
= 0, I ≥ 0 (x ∈ B1),

∂w
∂ν

=
∂I
∂ν

= 0 (x ∈ ∂B1),∫
Ω

w dx = N.

(14)

Obviously, we have

w(x) ≡ w :=
N
|B1|

=
N
π

.

Thus, if we obtain the profiles of I(x), we also know S(x) = w− I(x). By the setting of

m(x) := β− γ̃(x) and v(x) :=
β

w
I(x),

the function v(x) satisfies the diffusive logistic Equation (9). Subsequently, we can apply
the results in [20] to v(x) (I(x)). Here, we define a positive constant

γ :=
∫

B1

γ̃ dx = π

(
2
ε2 − 1

)
(15)

so that levels of R∞
0 are the same as ‖β‖L1 /‖γ̃‖L1 = ‖β‖L1 /‖γ‖L1 . Our main theorem in

this subsection is stated, as follows.

Theorem 4. Let Ĩ(x) be the solution to (14) with the heterogeneous recovery rate γ(x) defined
in (13), and I(x) be the solution to (14) with the homogeneous γ(x) that is defined in (15). Subse-
quently, there exists a constant α, such that for any ε ∈ (0, 1), the following inequality holds:

‖ Ĩ ‖L1

‖ I ‖L1
≥ α

(
1− 1

e
+

2
e
| log ε|

)
.

Proof. Thanks to the change of variables v(x) = (β/w)I(x) and Theorem 3, we choose
α = c2, then

Ĩ(x) ≥


αw
2

e−|x|
2/ε2

(x ∈ Bε),

αwε2

2e|x|2 (x ∈ B1 \ Bε).

Therefore, we obtain the following lower estimate:

‖ Ĩ ‖L1 ≥
απε2w

2

(
1− 1

e
+

2
e
| log ε|

)
.

On the other hand, in the homogeneous recovery situation, it is easy to see that

I(x) ≡ w
(

1− γ

β

)
=

ε2w
2

. Hence, ‖I(x)‖L1 =
πε2w

2
.

These imply the required assertion.

This theorem states that, under the same level of R∞
0 = ‖β‖L1 /‖γ‖L1 , the total

population of infected in a heterogeneous setting of m(x) = β(x)− γ(x) is larger than that
in the homogeneous setting of m(x). This mathematical result can be interpreted as that
if the disease transmission rate β(x) is uniform over B1 and the recovery rate γ(x) is low
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within a small centered area of B1, then the total population of infected in the heterogeneous
setting grows larger than that in the homogeneous setting. That is to say, the regional
difference of the rate of recovery can make the total population of infected grow with the
order O(| log ε|) as ε→ 0.

3.2. Analysis of the Reproduction Number

In this subsection, we assume that β and γ are defined by (13). In order to ob-
tain radial solutions of the eigenvalue problem (6), we consider the following boundary
value problem: ϕrr +

1
r

ϕr +
1
d

(
β

λ
− γ̃(r)

)
ϕ = 0 (0 < r < 1),

ϕr(0) = ϕr(1) = 0.
(16)

We recall that the maximum eigenvalue of {λj} is equal to R0. By the radial sym-
metry of ϕ(x) and γ̃(x), we write ϕ(r) = ϕ(x) and γ̃(r) = γ̃(x) (r = |x|) for simplicity.
Concerning the range ofR0, we obtain the following lemma:

Lemma 1. For any d > 0 and ε ∈ (0, 1), it holds that 1 < R0(d, ε) < 2.

Proof. Let ϕ(r) be a positive eigenfunction that corresponds to the principal eigenvalue
λ = R0. By the definition of the reproduction number (5), we can see that

R0 ≥
∫

B1
β dx

0 +
∫

B1
γ̃ dx

=
1

1− ε2/2
> 1.

SupposeR0 ≥ 2 to derive a contradiction. Afterwards, by (13), we have the following
inequality

ϕrr +
1
r

ϕr =
1

dε2

(
1− 2
R0

)
ϕ ≥ 0 for any r ∈ (0, ε).

Multiplying the above equation by r and integrating over (0, r), we obtain rϕ ≥ 0 for
0 ≤ r ≤ ε. Here, we used ϕr(0) = 0. Hence, we have

ϕ(ε− 0) := lim
r↗ε

ϕ(r) ≥ 0. (17)

We also see

ϕrr +
1
r

ϕr =
2

dε2

(
1− 1
R0

)
ϕ > 0 for any r ∈ (ε, 1).

Hence, multiplying the above equation by r and integrating over (r, 1), we obtain

ϕ(ε + 0) := lim
r↘ε

ϕ(r) < 0. (18)

Here, we used ϕr(1) = 0. On the other hand, the eigenfunction ϕ is in C1-class. This
contradicts (17) and (18). Therefore, we obtain 1 < R0 < 2.

By the profile of the step function γ̃, we divide the region B1 into two regions; the
low recovery region Bε and the high recovery region B1 \ Bε. Afterwards, we consider the
following two initial value problems in order to construct two parts of solutions of (16)
over Bε and B1 \ Bε: ϕrr +

1
r

ϕr +
A2

ε2 ϕ = 0 (0 < r < ε),

ϕr(0) = 0
(19)
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and ϕrr +
1
r

ϕr −
B2

ε2 ϕ = 0 (ε < r < 1),

ϕr(1) = 0,
(20)

where

A = A(d, λ) :=

√
1
d

(
2
λ
− 1
)

and B = B(d, λ) :=

√
2
d

(
1− 1

λ

)
(1 < λ < 2).

It is known that the solution of (19) is expressed by

ϕ(r) = CJ0

(A
ε

r
)

(C : arbitrary constant),

where J0(z) is the Bessel function of the first kind. On the other hand, the solution of (20) is
expressed by

ϕ(r) = D
(

I0

(B
ε

r
)
+

I1(B/ε)

K1(B/ε)
K0

(B
ε

r
))

(D : arbitrary constant),

where I0(z), K0(z) are the modified Bessel functions of the first and second kind, respectively.
To accomplish the construction of the solution of (16), we need to connect two so-

lutions of (19) and (20) at r = ε in C1-class. For this end, we consider the following
algebraic equations

CJ0(A) = ϕ(ε) = D
(

I0(B) +
I1(B/ε)

K1(B/ε)
K0(B)

)
and

−C
A
ε

J1(A) = ϕr(ε) = D
B
ε

(
I1(B)− I1(B/ε)

K1(B/ε)
K1(B)

)
,

equivalently,  J0(A) −
(

I0(B) + I1(B/ε)
K1(B/ε)

K0(B)
)

−AJ1(A) −B
(

I1(B)− I1(B/ε)
K1(B/ε)

K1(B)
)[C

D

]
=

[
0
0

]
.

There exists a non-trivial solution ϕ(r) if and only if the determinant of the above
coefficient matrix is zero, which is,

(BJ0(A)K1(B)− AJ1(A)K0(B))
I1(B/ε)

K1(B/ε)
− BJ0(A)I1(B)− AJ1(A)I0(B) = 0. (21)

As a summary of this subsection, we obtain the following theorem.

Theorem 5. Let β and γ be chosen by (13). For any d > 0 and ε ∈ (0, 1), the reproduction
numberR0(d, ε) (that is defined by the principal eigenvalue of (6)) is characterized by

R0(d, ε) = max{ λ ∈ (1, 2) | λ satisfies (21) }.

3.3. Numerical Simulation for the Reproduction Number

Based on Theorem 5, we show some numerical simulations of R0. We define the
left-hand side of (21) by f (λ; d, ε) for λ ∈ (1, 2), ε ∈ (0, 1) and d > 0. Figure 1 shows the
graph of f (λ) in the case d = 1/10, ε = 1/2. The setting of ε = 1/2 means that the disease
transmission rate is a constant, which is, β ≡ 8, but the recovery rate is non-constant:

γ̃(r) =

{
4 (0 < r < 1/2),
8 (1/2 < r < 1).
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More precisely, in a unit-disk region, the value of the recovery rate is 4 within a half radius
disk B1/2; 8 outside the disk B1/2. This setting realizes a situation that the recovery rate is
equal to the disease transmission rate in the outer shell area B1 \ B1/2, whereas the recovery
rate is half the transmission rate in the central area B1/2 and, so, the recovery rate is weaker
than the transmission rate with respect to the average over the whole region B1.

We remark, from Theorem 5, that the graph of f (λ) possesses infinitely many zero
points, and each zero point corresponds to each eigenvalue of (16). The largest zero point
of the graph is the reproduction number, in this caseR0 = 1.5133 · · · .

Figure 1. Graph of f (λ) with d = 1/10 and ε = 1/2.

For fixed d, we have a map (0, 1) 3 ε 7→ R0 ∈ (1, 2), and so Figure 2 exhibits the
ε-dependence of the reproduction numbersR0(ε) for some d.

Figure 2. Graphs ofR0(ε) for d = 0.1, 0.2, 0.3, 0.4, andR∞
0 (ε) = 2/(2− ε2).
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In Figure 2, the graph of R∞
0 (ε) = 2/(2 − ε2) represents R∞

0 = ‖β‖L1/‖γ̃‖L1 =
‖β‖L1/‖γ‖L1 , which corresponds to the case limd→∞R0 from Theorem 1. We note that,
for each ε ∈ (0, 1), the reproduction numberR0 is monotone decreasing with respect to d.
Although this monotonicity has been proved in Theorem 1 mathematically, Figure 2 shows the
concrete relationship between the reproduction number and the diffusion rate for fixed ε. One
can also observe that, for fixed some d, the reproduction numberR0 is monotone increasing
with respect to ε. This monotone behavior can be epidemically interpreted as follows: First,
we remember that ε ∈ (0, 1) represents the level of heterogeneity of the recovery rate and also
‖β‖L1/‖γ̃‖L1 = 2/(2− ε2) represents the ratio of the disease transmission rate to the recovery
rate. In the extreme case when ε > 0 is very close to 0, then the ratio is about 1. On the other
hand, if ε < 1 is very close to 1, then the ratio is about 2. Hence, the ratio ‖β‖L1/‖γ̃‖L1 makes
the reproduction number be large. Finally, we can also see from Figure 2 that within the small
ε range, the reproduction number with each fixed d is not much changed with respect to ε,
but the reproduction number with each fixed small ε > 0 drastically decreases as d increases;
whereas within the range that ε is close to 1, the reproduction number with each fixed d
drastically increases for ε, but the reproduction numbers with various d are almost the same.

4. Discussion

In the previous section, we studied the impact of spatial heterogeneity of the recovery
rate of individuals on the dynamics of an SIS epidemic reaction-diffusion model. Among
other things, Theorem 4 asserts that the stationary infected population ‖I‖L1 in the case of the
heterogeneous recovery rate is larger than that in the case of homogeneous recovery rate. In
this situation, the reproduction numberR0 is larger than 1, but it is not so much larger. This
means that, in the epidemic model sense, the scope of our analysis is in the small disease spread
situation. Subsequently, it can be said that our result implies that, as long as the time-scale
focusing on a pandemic sign period, the heterogeneity of the recovery rate can make the total
infected population be worse in the sense that the ratio is large as ‖ Ĩ ‖L1 /‖ I ‖L1 = O(| log ε|)
though both are still small as ‖ Ĩ ‖L1 = O(ε2) and ‖ I ‖L1 = O(ε2).

Our analysis is also valid in the Kermack and McKendrick type SIS model (see [10]):{
St = dS∆S− β(x)SI + γ(x)I, (x ∈ Ω, t > 0),
It = dI∆I + β(x)SI − γ(x)I, (x ∈ Ω, t > 0).

We assume the same diffusion rate d := dS = dI and put w = S + I, and then
we obtain {

wt = d∆w, (x ∈ Ω, t > 0),
It = d∆I + I(β(x)w− γ(x)− β(x)I), (x ∈ Ω, t > 0).

when considering the stationary problem of the above model and the heterogeneous
recovery rate γ(x) setting, we can see the same result, which is, the spatial heterogeneity
of γ(x) makes the infected population grows larger than the homogeneous recovery
rate setting.
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