. mathematics

Article

Robust Solutions for Uncertain Continuous-Time Linear
Programming Problems with Time-Dependent Matrices

Hsien-Chung Wu

check for

updates
Citation: Wu, H.-C. Robust Solutions
for Uncertain Continuous-Time
Linear Programming Problems with
Time-Dependent Matrices.
Mathematics 2021, 9, 885. https://
doi.org/10.3390/math9080885

Academic Editor: Armin Fiigenschuh

Received: 13 March 2021
Accepted: 12 April 2021
Published: 16 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 802, Taiwan;
hcwu@nknucc.nknu.edu.tw
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1. Introduction

The theory of the continuous-time linear programming problem originated from the
“bottleneck problem” proposed by Bellman [1]. A continuous-time linear programming
problem with constant matrices was formulated and studied rigorously by Tyndall [2,3].
In this paper, we study the time-dependent matrices that is more complicated than the
constant matrices. Although Levinson [4] also studied the problem of time-dependent
matrices, the numerical methodology was not proposed to effectively calculate the optimal
solution. Wu [5] tried to design a computational procedure to calculate the approximate
optimal solutions. When the data in the continuous-time linear programming problem
with time-dependent matrices are uncertain, a robust counterpart should be established
and solved, which is the purpose of this paper.

The separated continuous-time linear programming problem is a subclass of the
continuous-time linear programming problem, and it can be used to model the job-
shop scheduling problems. Owing to its special structure, many researchers such as
Anderson et al. [6-8], Fleischer and Sethuraman [9], and Pullan [10-14] have paid much
attention to investigating its optimal solutions without providing the numerical technique.
On the other hand, many interesting theoretical results have also been established by
Meidan and Perold [15], Papageorgiou [16], and Schechter [17]. From the computational
viewpoint, Weiss [18] designed a simplex-like algorithm that can be used to solve the sepa-
rated continuous-time linear programming problem. In Wu [5,19], different computational
procedures have been proposed to solve the continuous-time linear programming problem
in which the functions are assumed to be piecewise continuous rather than continuous on
the time interval [0, T]. Especially, Wu [5] solved the more complicated problem that in-
volves time-dependent matrices. In this paper, we consider the uncertain continuous-time
linear programming problem with time-dependent matrices, which is more complicated
than the problem studied in Wu [5].

There are many types of continuous-time optimization problems that have been theo-
retically studied without considering the numerical issue. For example, the nonlinear types
of continuous-time optimization problems have been studied by Farr and Hanson [20,21],
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Grinold [22,23], Hanson and Mond [24], Reiland [25,26], Reiland and Hanson [27], and
Singh [28]. On the other hand, Rojas-Medar et al. [29], and Singh and Farr [30] studied
the nonsmooth continuous-time optimization problems. Additionally, Nobakhtian and
Pouryayevali [31,32] studied the nonsmooth continuous-time multiobjective programming
problems. Especially, the continuous-time fractional programming problems have been
theoretically investigated by Zalmai [33-36]. From the numerical viewpoint, Wen and
Wu [37-39] have developed many different numerical techniques to solve the continuous-
time linear fractional programming problems. As a matter of fact, numerically solving
the continuous-time optimization problems is a difficult task. Even for a median size of
continuous-time optimization problems, a great deal of computer resources may be needed.

Solving optimization problems that involve uncertain data has attracted many re-
searchers. The pioneering work for solving the stochastic optimization problem was initi-
ated by Dantzig [40], in which the uncertain data were driven by the observed probabilities.
The main difficulty is how to fit the uncertain data using some known exact probability
distribution function. Alternatively, the so-called robust optimization might pave another
avenue to model the optimization problems with uncertain data. The basic idea of robust
optimization assumes that each uncertain data should fall into a predetermined set. In other
words, the uncertainty can be circumscribed beforehand. For example, the real-valued
data can be assumed to fall into a bounded closed interval in R for convenience. Ben-Tal
and Nemirovski [41,42], and El Ghaoui [43,44] proposed to solve the so-called robust opti-
mization problems by assuming the optimization problems with uncertain data falling into
uncertainty sets. The interested readers may refer to the articles contributed by Averbakh
and Zhao [45], Ben-Tal et al. [46], Bertsimas et al. [47-49], Chen et al. [50], Erdogan and
Iyengar [51], Zhang [52], and the references therein. Wu [53] proposed a computational
procedure to solve the robust continuous-time linear programming problem with constant
matrices. In this paper, we solve the robust continuous-time linear programming problem
with time-dependent matrices by designing a practical algorithm. We emphasize that the
problems with time-dependent matrices are more complicated than the problems with
constant matrices. In Section 2, we formulate a robust continuous-time linear programming
problem with time-dependent matrices and transform it into a conventional form of the
continuous-time linear programming problem with time-dependent matrices under some
algebraic calculation. In Section 3, in order to numerically solve the desired problems, a
discretization problem is introduced. In Section 4, we derive the analytic formula of error
bound. We also introduce the concept of an e-optimal solution to obtain the approximate
solution. In Section 5, the convergent property of approximate solutions is studied. In
Section 6, we design a computational procedure and provide a numerical example to
demonstrate the usefulness of this practical algorithm.

2. Robust Continuous-Time Linear Programming Problems

We consider the following continuous-time linear programming problem with time-
dependent matrices:

q T
(CLP)  max )] / ai(t) - zj(t)dt
=170

9 9 t

subjectto Y By(t) - zj(t) < ¢i(t) + Z/ Kij(t,s) - zj(s)ds

j=1 j=170
forallt € [0,T]andi=1,---,p;

zj € L]0, T] and zj(t) > 0forallj=1,--- ,gand t € [0, T],

where B;; and K;; are the nonnegative real-valued functions defined on [0, T] and [0, T] x [0, T],
respectively, fori = 1,--- ,pand j = 1,---,4. When the real-valued functions c; are
assumed to be nonnegative on [0, T] fori =1, - - , p, it is obvious that the primal problem
(CLP) is feasible with a trivial feasible solution z;(t) = 0 forall j =1,--- 4.
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The functions aj and c; can be assumed to be certain or uncertain data fori =1,--- ,p
and j = 1,---,9. When the functions 4; and ¢; are assumed to be uncertain, they are
considered to be the pointwise-uncertain. In other words, given each t € [0, T], the
uncertain data 4(t) and c;(f) will be assumed to fall into the uncertainty sets Vs, (¢) and
Ve, (t), respectively, which are predetermined by the decision-makers. When the functions
aj and c; are assumed to be certain, the function values 4;(t) and c;(t) are assumed to be
certain for each t € [0, T]. When the function values a;(t) and c;(t) are assumed to be
certain, we can also consider the uncertainty sets V,,(t) = {a;(t)} and V() = {a;(t)} to
be the singleton sets. We denote by I (@) and I(%) the sets of indices in which the functions
aj and ¢; are assumed to be uncertain, respectively. In other words, if j € I (@) the function
aj is uncertain and, ifi € I <°), the function ¢; is uncertain.

We also assume that some of the functions B;j(t) and Kjj(t,s) are pointwise-uncertain
by similarly considering the uncertainty sets U, (t) and U (t, s), respectively. Given any

fixedi € {1,2,---,p}, we also denote by Il.(B) and Ii(m the set of indices in which the

functions B;j and K;; are assumed to be uncertain. Therefore, Il.(B) and Il.(K) are subsets of

{12 ,q}

The robust counterpart of the original continuous-time linear programming problem
(CLP) is assumed to take each data in the corresponding uncertainty set, and it is formulated
as follows:

q T
(RCLP)  max ]X%/O ai(t) - z;()dt
q 9 ot
subject to ZBij(t)-zj(t)Sci(t)+Z/0 Kij(t,s) - zi(s)ds
j=1 j=1-

forallt € [0,T]andi=1,---,p;
zj € L*[0, T] and z(t) > Oforj=1,--- ,gand t € [0, T};
foralla;(t) € Vo, (t) forallt € [0, T]and j=1,--- ,q;
forall ¢;(t) € V., (t) forallt € [0,T]andi=1,---,p;
forall B;j(t) € Up,(t) forallt € [0,T],i=1,--- ,pandj=1,---,g;
for all Kj;(t,s) € Uy, (t,s)

forall (t,s) € [0,T] x[0,T],i=1,---,pandj=1,---,4.

The robust counterpart (RCLP) as shown above is a semi-infinite problem, which
has infinitely many numbers of constraints. Therefore, it is really hard to solve. Usually,
the uncertainty sets are taken to be bounded closed intervals in R. When the uncertainty
sets Up, (1), U, (t,5), Va; (t), and V,(t) are taken to be bounded closed intervals in IR, the
semi-infinite problem (RCLP) can be transformed into a conventional continuous-time
linear programming problem with time-dependent matrices. Now, the uncertainty sets are
described below.

e ForByj(t) withj € II-(B) and Kj;(t,s) withj € Ii(K), the uncertain data B;j(t) and K;(t,s)
are assumed to fall into the bounded closed intervals given by

Up, () = {Bi(]p)(t) - B\if(t)’Bi(Jp)(t) + Eif(t)}

and

~

U () = [KU@ (t,5) — Rii(t,5), KL (1,5) + Eij(t,s)},

g
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(RCLP)

max

subject to

respectively, where Bl«(;)) (t) > 0and Kl-(jo) (t,s) > 0 denote the known nominal data of

Bjj(t) and K;j(t,s), respectively, and Eij(t) > 0and I?i]-(t, s) > 0 denote the uncertain-
ties such that ) -
Bij (i’) — Bi]'(t) > 0 and Kij (t,S) - Ki]'(t,s) > 0.

Forj &1 i(B) , we also use the notation Bl.(]Q) (t) to denote the certain data with uncertainty
Eij (t) = 0, and use the notation KZ.(].O) (t,5) to denote the certain data with uncertainty
I?ij(t,s) =0forj ¢ Il.(K).

For aj withj e @) and ciwithi e [ (¢) the uncertain data aj and ¢; are assumed to
fall into the bounded closed intervals given by

Vo (0) = [0 () =a;(0),0" (1) + 3(1)] and Ve, () = [ (6) = (1), ¢/ (1) +@(0),

where a](-o) (t) and CSO) (t) denote the known nominal data of a;(t) and c;(t), respectively,
and ;(t) > 0and ¢;(t) > 0 denote the uncertainties of a;() and c;(t), respectively. For
j ¢ I, we also use the notation a](.o) (t) to denote the certain data with uncertainties
a;(t) = 0 and use the notation CZ(O) (t) to denote the certain data with uncertainties
Cj(t) =0fori ¢ 10,

Under the above settings, the robust counterpart (RCLP) is written as follows:

T T
y /0 aj(o)(t) zj(Hdt+ Y /o aj(t) - zj(t)dt
je1@ jer
) Bi(j(])(t) zZi(t)+ ). Bij(t) - z(t)
(it tiier”}
¢ t
<O+ ¥ / K (t5) zi(s)ds + Y / Kij(t,s) - zj(s)ds
0. /0 1K), YO
(g1 (el

fori ¢ I(®) and for all t € [0, T];
Y B 50+ X Byt z(b)

{ig1™y {iel™}
t t
<c()+ )Y / Kl.(]o)(t,s) czj(s)ds + ) / Kij(t,s) - zj(s)ds
(g ety

fori € 19 and for all t € [0, T];
zj € L?[0, T] and z(t) > Oforj=1,--- ,gand t € [0, T};

for all Byj(t) € L{Bij(t) with j € Ii(B) forallt € [0,T];

for all Kij(t,5) € Uy, (t,5) with j € I forall (1,5) € [0, T] x [0, T];
forall a;(t) € Vo, (t) with j € 1@ forall t € [0, T];

forall ¢;(t) € V,,(t) withi € 19 forall ¢ € [0, TJ.

We convert the above semi-infinite problem (RCLP) into a conventional continuous-

time linear programming problem with time-dependent matrices. We first rewrite the
problem (RCLP) as the following equivalent form:
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(RCLP1) max ¢
. "0 )z
subjectto ¢ < Z /0 a; (t) - zj(t)dt + 2 /0 aj(t) - z;(t)dt

jg[(a) ]’61(3)
Y OBY® -z + X Byt -zt
(21"} {jiel”y
t t
<0+ L[ KV zeds e L[ Kylts) z(s)ds
oK)y 70 oK), 70
g™} {:je;™'}
fori ¢ I'9) and for all t € [0, TJ;
Y B0 50+ X Byt z(t)
(721"} {iel™?
t t
<c(t)+ ) / KZ.(].O)(t,s) - zj(s)ds + ) / Kij(t,s) - zj(s)ds
(k) 0 1K)y 70
{2 L™} (el ™}
fori € I(¢) and forall t € [0,T];
¢ eR;

zj € L2[0, T] and zj(t) > Oforj=1,--- ,gand t € [0, TJ;

for all By(t) € Up, (t) with j € I{”) forall t € [0,T);

for all Kyj(t,s) € Ux, (1,5) with j € I1) forall (1,5) € [0, T] x [0, T];
forall a;(t) € Vy,(t) with j € 1@ forall t € [0,T];

for all ¢;(t) € V() withi € 19 forall t € [0, T).

Given any fixed i € {1,---,p}, forj € Ii(B), since z;(t) > 0 and Bj;(t) < B;
gij(t), we have

Eyy B (020 + Ty my Bi() - 51(1) < Ty B (120 + Ty, Bi() 20 (1)

Similarly, for j € Il-(K), since zj(s) > 0 and Ki(;)) (t,s) — I?l-j(t, s) < Kij(t,s), we also have

t

Z / Kfjo)(t, S) . Z]'(S)ds + Z /Ot Ki]‘(t,s) -Z]'(S)dS

ey (el
q t -
> Z’/o Kl.(;))(t,s) ~zj(s)ds — /0 Kij(t,s) - zj(s)ds. 2)
= i}

Using the inequalities (1) and (2), we consider the following cases.



Mathematics 2021, 9, 885

6 of 52

Fori € 119, since CZ(O)(t) —Gi(t) <c(t) forall t € [0, T], we obtain

) Bl.(]p)(t)~2j(t)+ Y. Bij(t)-z(t)

{i:ig1®} {ijel®}
t t
- ) /()Kf}p)(t,s)%j(s)ds— ) /OKi]-(t,s)~z]-(s)ds—ci(t)
{721} (el
q _
<[LBY® 50+ L Byt z(t)
=1 {iel™}

q ~
- Jg/otKi(]Q)(t,s)-zj(s)ds— Y[ Rits)zds | - (V1) -a)

0
.. K
{1:161,-( 5!

forall By(t) € Ug, (1), Kij(t,s) € Ux,(t,s), and ¢;(t) € V,(t), which implies

B?I}?Xa{ Y B ®-m0+ L By -z(h)

g™y {1y

-y /thj.O)(t,s)-zj(s)ds— Y /tKi/-(t,s)~zj(s)ds—ci(t)}

ey ey
q ~
~ L8050+ T Bz @)
j=1 Gijel®y

(i/;Kéo>(t,s>-z;(s)ds ) /tl?ij(t,s)'zf(S)ds)<C§0)(t)a(t))'
=

0
. (K)
{]-]Eli( }

where the equality can be attained.
Fori ¢ I(®), we obtain

Y OB+ L Byt z(t)
{ije1P) (jjer®y
t
- ) /Kl.(]Q)(t,s)-zj(s)ds— )

0
{21} {jjer™y

/ot Kij(1,5) -zj(s)ds — [ (1)
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which implies

P | ey {gel®y

max{ z BO(1) - z()+ Y By(t) (1)

t
- ) / Kl(].o)(t,s) s)ds — / Kij(t,s) - zj(s)ds —C(O)(f)}

0
(i1} (et

q
= (]Zl Bl(jo)(t) . Zj(f) + Z ) §,](t) . Z](t)) (4:)
- }

.. B
Uveﬁ

where the equality can be attained. Since a](o) (t) —aj(t) < aj(t) forj € 1@ and t € [0, T],

q t t
)j{/o KO (t5)-zi(s)ds — Y /[)K,-j(t,s)~zj(s)ds) — ),
j=

.. K
(jjel™®y

we have

9 T T
E{/o a](O)(t).zj(t)dt_jeIZ(;i‘)/O ai(t) - zj(t)dt

< 2/ Hdt+ Y /Taj(t)~zj(t)dt,

jert@ 70

which implies

min{ 2()/0Tu]<,0>(t).z,-(t)dt+ ) /OTaj(t)-Z]'(t)dt}
je1e '

‘i jel@
q T 0) T,\

:2/ V() z(dt— Y[ a0 -z, 5)
j=1"0 jer@ 70

where the equality can also be attained. From the Equalities (3)—(5), it follows that
(¢,z(t)) = (¢,z1(t), - ,zn(t)) is a feasible solution of problem (RCLP1) if and only

if it satisfies the following inequalities:

VBV 5+ X By(t)z(0)
=1 {iiel™
q t t
SZ/ K () zi(s)ds — Y /Ku(f/S) zi(s)ds + c*) () — Gi(t) fori € 19
=170 oK)y 70
4 {j:ie; ™}
L0 5
Y B () zi(t)+ Y Bylt)-z(t)
= ™)
q t 0) t )
<Y [ KO(s) z(s)ds— Y] /Klj(t s)-z:(s)ds + O (t) fori ¢ I
=0 Y oK)y 70
4 (e}
T
0 ~
cpgg/o 2 (1) zj(t)dt—{gl)/o ai(t) - zj(t)dt
= ]6 a
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This shows that problem (RCLP1) is equivalent to the following problem:

(RCLP2) max ¢

q
subjectto ¢ < Z/
=170

T T

(0) ) _ Gt -z .
a0 (1) -z (1)t jg,)/o (1) - 2j(Hdt;
B0 0+ X By()-z0) < (V0 —a)
=1 (el

9t .
+ ];/()Kl-(]p)(t,s)~zj(s)ds— ) /

ety
forallt € [0,T] and i € I(%);

) B ©
Y B () -zi(t)+ Y By(t) zi(t) < ¢ (t)
j=1 {ier™}

9t b
+ 2/ Kl.(]p)(t,s) czj(s)ds — ) / Kij(t,s) - zj(s)ds
j=170 oK)y 70
Uegel ™}
forallt € [0,T] and i ¢ I(%);
p €R;
zj € L2[0, T] and zj(t) > O0forj=1,--- ,gand t € [0, T]

which can also be rewritten as the following continuous-time linear programming problem:

q T T
(RCLP3)  max ]; /O a§0)(t).zj(t)dt—j§l) / ai(t) - zj(t)dt

. 1. ) =~ ) ~
subjectto Y B (1)-zj()+ Y By(t)-z(t) < (ci (t)—ci(t))
= {iell™}

q t
+ ];/0 Kl.(]p)(t,s)zj(s)ds—

forallt € [0,T] and i € I(%);

q ~
ZBZ.(].O)(t)-Zj(t)-f— Y Bi(t) z(t) <<

=1 {jjer™y

(=]
=
—~
~
~—

9t PN
+ Z/ Kl.(;))(t,s) -zj(s)ds — ) / Kij(t,s) - zj(s)ds
=170 oK), 70
{i:je; ™'}
forallt € [0,T] and i ¢ I'9;
zj € L*[0, T] and z(t) > Oforj=1,--- ,gand t € [0, T].

The duality theory in continuous-time linear programming problem states that the
dual problem of (RCLP3) can be formulated as follows:
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|4 T 0) T
(DRCLP3)  max ) /0 <Ot - wi(t)dt — Y /0 G(t) - w(H)dt
i=1 iel(c)
p -~
subjectto Y B{) () -wi(t) + Y Bij(t)-wi(t)z(a]@)(t)—aj(t))

i=1 i~ 1(B)

{i:jel;”’}

PoT T
+ Z/ Kl.(p)(s,t) cwi(s)ds — ) / Kij(s, t) - w;(s)ds
=T (ijer®y !

1

forallt € [0,T] and j € I?;

Bi(]p)<t) ) wi(t) + Z gl](f) . wi(t) > a](,o)(t)

P
=1 {ijerl®y

1

PoT o) T
+ Z/t K (s,t) - wi(s)ds — Y /t Kij(s,t) - wi(s)ds
=1 {ijer®y
forallt € [0,T]and j & I®;
w; € L?[0, T] and w;(t) > 0fori=1,--- ,pand t € [0, T].

3. Discretization

In order to efficiently develop the numerical method, the following conditions are

assumed to be satisfied.

Fori =1,---,pandj = 1,---,4q, the functions Bi(jo) and Ki(jo) are assumed to be
nonnegative on [0, T| and [0, T] x [0, T], respectively. The functions Bl.(;)) - Eij for

jel i(B) and Kfjo) - 121-]- forj e Il.(K) are also assumed to be nonnegative on [0, T| and

[0, T] x [0, T], respectively.
(0)

Fori =1,---,pandj = 1,---,4, the functions a; "’ and c

1(0) are assumed to be

piecewise continuous on [0, T]. For j € I3 and i € I(%), the functions aj and ¢; are

assumed to be piecewise continuous on [0, T], which also suggest that the functions

4 (0)
] 1

—djand ¢;’ — ¢; are piecewise continuous on [0, T] for j € I (@) and i € 1(¢).

Foreachj=1,---,qand t € [0, T|, the following inequality is satisfied:
0 o~
i=1 {ijel®)y
Foreachi=1,---,pand for

B = min i (0) (r) - O B.
B; = jr;%(gl) tel[r(},fT]{Bu (t) + Bjj(t) : B;;” (t) + Byj(t) > 0}

and ~ (0) (0)
B[Ej?ﬁ% tel[r(},fT]{B'f (8): B (1) >O}'

the following inequality is satisfied:

min min{Bi, EI} =0c>0.
=1, p

In other words,
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B (1) + By(t) if B (+) + Byj(t) £ 0forj e IV
c<d i )
B (¢)

e p(0) . 2 1(B)
t 1fBi]. (t) #O0forj ¢ ™.
Let ;, 6;, B;j, and &;; denote the set of discontinuities of a;(t), c;(t), B;j(t), and

Kl-]-(t,s), respectively. Then, 2;, &;, and B;; are finite subsets of [0, T] and Rij is a finite
subset of [0, T] x [0, T]. We also write

_ e ()
ﬁi]' = ﬁij X ﬁij ’

where ﬁfjl) and ﬁl(]z) are a finite subset of [0, T]. In order to determine the partition of the
time interval [0, T|, we consider the following set:

q P pq P 9 (1) P 9 2
p=|U | U{Us |ULUUB; |U[UUS JULUU ST | UL T
j=1 i=1 i=1j=1 i=1j=1 i=1j=1
Then, D is a finite subset of [0, T] written by
D= {dOIdlrer' o rd'r‘}r

where, for convenience, we set dg = 0 and d, = T. Let P, be a partition of [0, T]
satisfying D C P,. In other words, each closed [dy,d, 1] is also divided into many
closed subintervals.

Let
P = (e, 0,
where eén) = 0and e,(qn) = T. The n closed subintervals are denoted by

E"l(") = [el(f)l,el(n)} forl=1,---,n.

For convenience, we also write

El(n) = (el(f)l,el(n)) and Fl(n) = {eﬁ)l,el(n)).

We denote by Dl(n) the length of closed interval E"l(”). Let

(n)

| Pull= max 9,
=1, n

and assume
| Pn||— 0asn — oo.

From a computational viewpoint, we also assume that there exists 1., n* € N satisfying

T
ne-r<n<n*-rand ||73n||§n—*. 8)

When 1, — oo, we have n — co. In the sequel, n — oo implicitly means that n, — coc.

(0)

Under the above construction for the partition Py, it is clear that the functions a I ﬁj
forj € 1), a](O) forj ¢ 1), cl(o) — ¢ fori € I(¢), and cfo) for i ¢ I(%) are continuous on each
(n)

open interval E; forl =1, ---,n. Now, we define
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ir_1f) [a@(t) - Ej(t)} for j € 1(@)

2 ree™ !

g inf a](-o)(t) for j ¢ 1(@)

teEl(”)

and

inf [c§°>(t) —a-(t)] fori € I()

L ) e
l inf CEO)(t) fori ¢ I(9)

teE™

and the vectors

T T
al(”) = (ul(ln),al(;),- . ,al(;)) € R7 and cl(n) = (cl(f),cg‘), . ,c(”)) c RP.

(0) ) —a:(t f 'e[(a) (0) _ 1 (c)
a,(?)s{ 00 -5 fo andc<m<{ o =a() foric 1¢ } o
j i

forallt € E,(n) and/ =1,---,n.
For the time-dependent matrices B(t) and K(t,s), the (i, j)th entries of constant matri-

ces Bl(n) and Kl(]:l ) are defined and denoted by

sup {Bf}o)(t) + B\i]-(t)} forj e Ii(B)

) ) teE™
B = 10
i I TR .
teEl(”>
and R
inf [Ki;))(t,s)fKij(t,s)} forj € 1)
KM _ (ts)€EM X EM (1)
tkij inf Kl(o)(t,s) forj ¢ Il.(K)
(ts)eEM xEM 7
Then,
50 B (1) + By(t) forje 1P -
by = B(O)(t) forj ¢ 1® (
ij ] =4
forallt € E"l(n) and/ =1,---,n,and
0 = . (K
K Kl.(]. )(t,s) — Kjj(t,;s) forje Il.( ) 13)
thij = K}Jp)(t,s) forj ¢ IZ.(K)

for all (¢,s) € El(n) X E_IE”) and,k=1,---,n.

Remark 1. From (7), it follows that, ifBl(Z) # 0, then BZ(Z) >0 >0frali=1,---,p,
j=1,---,qandl =1,--- ,n. Given any fixed t € E"l(n),from (6), forany j =1,--- ,q, there
exists i; € {1,- -+, p} such that

(1) +Bij(1) >0 ifje 1}},B>
ifj ¢ 1"

——
o
=3
==
\Y
o
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which suggests that B 7é 0,1ie., Bl(l ) > ¢ > 0. In other words, for each j and I, there exists
ijj € {1,2,---,p} such that B( ) >0 > 0.

Givenany n € Nand ! = 1,---,n, we formulate the following linear program-
ming problem:

L) ()
(Py) max 2201 a2
1:1]':1

subject to 2 Bh] 715 < cg ) fori=1,---,p;
j=

q

(n) (n) ()
;Bli]" y<cff +ZZ°k ~Kiyij 2
=

forl =2,-- ,nandl—l, P
zjj>0forl=1,--- ,nandj=1,---,q.

According to the duality theory of linear programming, the dual problem of (P,) is

given by
R n p
(Dy) min 22
—1i=1
. L (m) (
subject to Z 11] Wy > ) al] +01 2 ZKklz] Wi
i=1 k=I+1i=
forl=1,---,n—landj=1,---,q;
4
ZBZ(:;) @m>b()()for]—l q;
i=1
w; >0forl=1,--- ,nandi=1,---,p.
Now, let R
-
;= .
o™

By dividing Ol(n) on both sides of the constraints, the dual problem (f)n) can be

equivalently written by

. L) ()
(Dy) min ZZOZ ey Wy

subject to ZBlz] >al ) 4+ 2 Zbk klz] W
k=I+1i=

forl:1,~~,nf1and]—1,~-,q;

M-

I
—_

Bn?j) Wy 211,(17-) forj=1,---,q;
wy >0forl=1,--- ,nandi=1,---,p.

Remark 2. We have the following observations.
. Ifcl(") > 0foralll =1,--- ,n, then the problem (Py,) is feasible, since (z1,2p, -+ ,Zn) = 0

is a feasible solution of (Py,). If the vector-valued function c is nonnegative, then cl(") > 0 for
alll =1,--- ,n, which suggests that the primal problem (P,,) is feasible.
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®  The dual problem (D) is always feasible for each n € N, which can be realized from part (i)
of Proposition 1 given below.

Recall that Dl(”) denotes the length of closed interval E l(”). We also define
5" = max of" (14)
Then, we have
51(”) = max{al("),al(i)l,~ .- ,0,(171)} = max{bl"),sl@l}
which suggests that

") forl=1,- ~1 (15)

sl<n) > Dl(”) and || Py [|> s () > 511

For convenience, we adopt the following notations:

(n) _ (n)

T :jinlfif(qal] and 7, ' = kirllax T (16)
) s : (n) . gn) M) —  vin 7™

o' = min min {5 B >0} and ") = min o 17)

p
() _ (n) (n) _ 5 (1)
Vo= o jfnﬁ).(,q{i_zl Kklij} and v = max 7 (18)
n) _ : K d n) _
gbl = krrllaxnlnlmxp Z k11] and ¢, kmax ¢k

sup {a](.o)(t) - ﬁ](t)} forj e 1
T—]_rnaqu], where 7; = t;[j’ﬂ op for i & 1@
p 0¥ (1) orj ¢
te[0,T]
sup [cfo)(t) - El(t)} fori e 1(9)
¢ = max (;, where(; = tel0T] 0)
i=1p sup c;  (t) fori ¢ 1(9)
te[0,T]
v = max sup Z [K(O)(t s) — Ki]-(t,s)} + ) Ki(;))(t,s)
J=4 M (1,8)€[0,T] % [0,T] {1161 (219}

i K;: Z K,](t s) (19)

= max sup
1=L4 (1,5)€[0,T] % [0,T]

i=1,,p (t,5)€[0,T]x[0,T]

iK Z Kij(t,s) 3. (20)

= maX Sup
i=1,,p (t,5)€[0,T]x[0,T]

¢ = max sup { J(t,5) — ,-]-(t,s)] + ) I(Z.(],O)(t,s)
(K)
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Foreach!/ =1, --,n, by Remark 1, since Bl(i ) > o > 0for B 75 0 and there exists zl]

such that Bl(:)] > ¢, it follows that Ul(") > ¢. We also have the followmg inequalities:
j

al(n) < (Tl(_t)l, (”) > ’L’l( ") and vl(n) > Vl( ") (21)
and
‘L"l(") < Tl(”) <, 171(”) < 1/1(”) <vand c'Tl(") > (Tl(n) >0c>0 (22)
forany n € N.

Proposition 1. The following statements hold true.

(i) Let
(n) (m\ "
T v
w") = 1. <1 +s" l(n)> > 0. (23)
Y 7
We write zbl(i " — mln)forz =1,---,pandl =1,--- ,nand consider the following vector:
T
W) = (W W, w) it = (wf) @l w)
Then, w'") is a feasible solution of problem (D) satisfying
T v
wl(l)gg p(r-T~E> (24)
foralln eN,i=1,- ,pandl—l
(ii)  Given any feasible solutzon w) of problem ( ), we define
u‘)l(ln) = min{wl(;’),ml(”)}
fori=1,---,pandl =1,--- ,nand consider the following vector:
T T
w) = (w, Wi, W) withw]” = (af) @l ) )

Then, w'") is a feasible solution of problem (D) satisfying the following inequalities:
@ <y =0 p(r T a)

foralln e N,i=1,--- ,pandl =1,--- ,n. Suppose that each cl(n) is nonnegative and

that w() is an optimal solution of problem (D,,). Then, w'") is also an optimal solution of
problem (Dy,).

Proof. For the proof, refer to Wu [5]. O

Proposition 2. Suppose that the primal problem (P) is feasible with a feasible solution

z(M = (z%"),zgn),u' ,zfln)), where z,") = (zl(f),zl(g)," z,q ) forl=1,---,n. Then,
oA <L (1Pt 4) < Eep(r?) 5)

forallj=1,---,q,1=1,--- ,nandn € N.

Proof. For the proof, refer to Wu [5]. O
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Let z(") = (2571),2%”), e ,Z,(ln)) with Zl(n) = (Zl(f),il(;),- - ,Z};))T be an optimal so-
lution of problem (P,). We construct a vector-valued step function z) : [0, T] — R4
as follows:

5 (n) _ [,(n) ,(n) —
2(”)(1‘) _ zl" ifte F'/ = {elil,el ) forl=1,---,n 26)
2" =T
The following result will be useful for further discussions.
Proposition 3. Suppose that (") = (Zgn), Zé"), R Z,(zn)) is a feasible solution of primal problem
(Py), where Zl(n) = (zl(f),zl(;),- . ,Zl(‘;))Tforl =1,---,n. Then, the vector-valued step function
z(") defined in (26) is a feasible solution of problem (RCLP3).
Proof. The feasibility of z(") suggests that
-1
BY”Z%") < an) and Bl(”)zl(”) < cl(”) + Z D,((")KI(I?)ZIE") forl=2,---,n.
k=1

Therefore, we obtain

q ©

Y By () -zi+ ) Bij(t)-z

1= {iiel™y

R q
= Z Bi(].o) (t) -le + Z [BI(JO) (t) + Bi]'(t)} . le < 2 Bg;) -le < C;?) (27)
Giet™) {ijer™y =
fori=1, ,p and
q ) .
Z B (t)-zij+ ), Bi(t)-z;
= {iell™)
T Yo gl v )
= Y0 K (ts) 2 + Yo o Kij(ts) -z
0 5 _
= ¥ BY® -+ [Bl.]. (1) + Bl](t)} 2
(1™ {ijer™y
= ) 0
— Yo Y k9%s+ ¥ [KU (t,s) — Klj(t,s)} Zj
=t (ig") (el
Lop) N ) ()
< Y By oz — Y0 Ky g < g (28)
j=1 k=1

forl=2,---,nandi=1,---,p. Two cases will be considered below.
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. Suppose thatt € Fl(”) forl =2,---,n. Since el(ﬁ)l is the left-end point of closed interval

El("), we have

q
-y /EH)KI.(]Q)(t,s)-E](»")(s)ds+ Z/ Ri(t,s) 2" (s)ds

{jijery k=1

(since K-(-O)(t s) > Oforalliand j, and Kl-(j )(t,s) - Kij(t,s) >0forje Il.(K))

q ~
= Z ozt ), Bi(h)-z
=1 {ijer™y

—ZE% ' Vagt Y L o Kylts) zy

< Clz (by (28))

V() —(t) foriell®
= { CZ(O)( f) fori ¢ I(9) by )

For | = 1, using (27), we can similarly obtain the desired inequality.
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e  Suppose thatt = T. Then, we have

S ) -7z
. ] ] )
j=1 {ijer®y
S ) () T ()
- Z ; K;; (T,s)-z." (s)ds+ ) K;i(T,s) ‘2 (s)ds
= Gjery
q 5 ~n
=Y BY(T)-2(T) + By(T) - 2" (T)
= (et
q n n
—ZZ/E@ KO(1,8) 2" (s)ds + Y Z/E(n) Ry (T,s) - 2" (s)ds
J=1k=1""k (jje1®y k=1""
1.0 _ ~ _
=) By (T)-zZwj+ ). By(T) Zy
=1 (e}
- Z Z Dkn K(O T,s) -z + Z ) D,((M Kii(T,s) - zy
] 1k=1 {] ]EI }k 1
q -~
< Z Bljo (T) 'an + Z Bl](T) Zn]
= g™
LI ) 0
- Yo K (Ts) 2+ Z Z 0" )2k

(since Kl.(jo)(T,s) > 0 foralliand j, and KZ-(]-O)(T,S) - I?ij(T,s) >0forje Il.(K))
< csz) (from (28) by taking I = n)
& —a(r) forie1©
N C(O)(T) fori ¢ I1(¢)

1

} (by (9))
Therefore, we conclude that (Egn), cee, Egn)) is a feasible solution of problem (RCLP3),
and the proof is complete. [

4. Analytic Formula of the Error Bound

Given any optimization problem (P), we write V(P) to denote the optimal objective
value of problem (P). For example, the optimal objective value of problem (RCLP3) is
denoted by V(RCLP3).

Suppose that z(") is an optimal solution of problem (P,,). Then, using (9), we have

/OT(a(t))T'i(”)(t)dt > l_il/ﬁl(”) (a}”)) Z ZD(H) ( n)) S(n) _ =V(P,). (29

Therefore, we have
T T
V(RCLP3) > / (a(t)) 2™ (1)dt (by Proposition 3)
0
> V(Py) (by (29)).

According to the weak duality theorem for the primal-dual pair of problems (DRCLP3)
and (RCLP3), we obtain

V(DRCLP3) > V(RCLP3) > V(P,) = V(D,). (30)
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In the sequel, we want to show that

lim V(D,) = V(DRCLP3). (31)

n—oo

Let w() = ( g”),wén)f . ,wEZ”)) with wl(") =( l(ln)’wl(;)" . ,wl(;;))T be an optimal

solution of problem (D, ). We define

wl(i”) = min{wl(?),ml(n)},
where m,(n) is defined in (23), fori = 1,---,pand [ = 1,---,n, and consider the

following vector:
T T
w) = (wi W, wl) withw!” = (), ol

Then, part (ii) of Proposition 1 states that w(™) is an optimal solution of problem (D)
satisfying the following inequalities:

-exp(r~T-—) (32)

forallneN,i=1,--- ,pandl=1,--- ,n.

Foreach! =1,--- ,nandj=1,---,q, we define a real-valued function ftl(?) on the
half-open interval Fl(") =] l(ﬁ)l,el(n)) given by
B P
B = (4" =) - LK -ai)
1=
P
_ 0 _ = _
Y w - [ B 0w+ L By -y
i=1 i=1 {1]611( )}
" () o | ) )
+ f 2K1] (s,t) Wy~ Z Kif(s’t) wy; - ZKllz] i |98
i=1 {ije1®y i=1
" SO s py Rots o™ | vy k™ 50,
+ Z £ 2 ij (s,t) Wi~ — 2 Z](S’ ) Wi B Z klij ~ Wki §
k_l+1 k i=1 {I]EII(K)} =1
Foreachj=1,---,q, we also define a real number
P ~
R =YBy el - | B el + ¥ ByD-ay | (3)
i=1 i=1 {1]611<B)}
Forl=1,---,n,let
ﬁl(n) = max{ max sup [le(ﬁ)(t) + ago)(t) — al@)},max sup [le(ﬁ)(t) + a@)(t) —a(t) — al(’.q)} (34)
) g - ! P e g J !
€E, teE;
and
7'[1(") = max 7’11((").
k=l n
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Then, we have
nl(") = max{frl(”), ﬁl(i)l, S, ﬁ,g")} = max{frl("), nl(i)l} (35)
which suggests that
" = ) (36)
and, for any t € El(n),
7 (1) (0) (n) ; a
7_[(71) > ﬁ(n) > hl]' (t) +a]’ (t) - al] for] ¢ I( ) (37)
=" = ;‘Z(") (0) ~ (n) for i I(a)
ij (t)—i—a] (t) —aj—a;’ forje

forl=1,---,n—1. We want to prove
lim ﬁl(") =0= lim 7'[,(").
n—oo n—oo

We need some useful lemmas.

Lemmal. Fori=1,---,p;j=1,--- ,q;andl =1, -- ,n, we have

Sup [al('O)(t> - “z(]'n)} —0 forj ¢ 1(@)
teg™
| asn — oo
Sup [HJ('O)(t) —aj(t) — al(jn)} —0 forje1@
teE,(”)
and
sup [Bi}’ ~ 8 (0)] 0 forj ¢ 1"
teg;"
2 as n — oo.
sup. [BZ(Z}) _ Bl.(]F’)(t) —~ Bij(t)] —~0 forjel®
teE,"

Proof. According to the construction of partition P, it is clear that a;o) for j ¢ I and

o0

i ajforj e 1(@) are continuous on the open interval El(n) = ( (m) el(n)). Let

-1
a](-o) for j ¢ 1(2)
a; =
/ ](O)—ﬁj forjel(a).

Then, we also see that the function 4; is continuous on the open interval El(") =

(el(f)l, el(n)) and

Lll(n) = inf Llj.
teE™
Given a decreasing sequence {4, }7._, satisfying é,, > 0 for all m and é,, — 0 asn —,

where 5] is defined by
1 (n) (n)
(51 = - (El e 1),

we can define the closed interval

EM — [el(fl +Om, 0" — 514,

Im
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which implies
o
El(n) = U E;;? and El(:;)l - EI(Z)Z for my > mjy. (38)
m=1
Since E 1(:111) CE l("), we see that 4; is uniformly continuous on each closed interval E l(::l)

Therefore, given any € > 0, there exists 6 > 0 such that |ty — t2| < ¢ implies

‘ﬂj(f]) — ﬂj(f2)| < %for any 1, € E(n). (39)

Im

Since the length of El(n) is less than or equal to || P, ||< T/n* with n* — co by (8), we
can consider a sufficiently large ny € N satisfying T/ny < 4. In this case, each length of

El(”) for/ =1,--- ,nisless than J for n > ngy, which also suggests that, if n > n, then (39)
(n)

is satisfied for any t1,t, € E,,

. We consider the following cases.

e  Suppose that the infimum ”l(jn) is attained at t("*) € El(">. Using (38), there exists m*

) (1) (n)

satisfying tne) ¢ E(Z*. Given any t € E; ", we see that t € Ejny for some my. Let

m = max{mg, m*}. Using (38), it follows that t, t("*) € El(;). Therefore, we obtain

‘a]'(t) - al(;l) = ‘aj(t) —aj (t(”*))‘ < g

(n)

Im

since the length of E
uniform continuity.

is less than 6, where € is independent of t because of the

*  Suppose that the infimum al(;l) is not attained at any point in El("). The continuity of a;

on the open interval E l(”) suggests that that the infimum al(f) is either the right-hand

limit or left-hand limit given by

1(}1): lim a;(t) oral(j"): lim a;(t).
tﬁel(f)l + t%el(@ —

a

(n)

Therefore, for sufficiently large 7, i.e., the open interval E; " is sufficiently small such
that its length is less than §, we can obtain

‘aj(t) - al(]m

<€
2
forallt e El(”).

(n)

From the above two cases, since aj(t) > a j forallt € El(") , we conclude that

0 < sup [aj(t) —a(ﬁ)} <

lj <eforl=1,---,n.
teEl(")

<
2
This completes the proof. [

Lemma?2. Fori=1,---,p;j=1,---,q;andl,k=1,---,n, we have

sup  [K[Y(s,5) = Kij)| 0 forjg 10
(st)eE" xE™

sup Kl.(]m (s,t) — Kij(s, t) — KIEZH —0 forjel
(s,t)eEM xE™

asn — oo
(K)

i
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and
0 _ ) K
sup l/E(”) <Kl(] )(s, t) — K,EZ;) 'w,((’;)ds] -0 forj & Il.( )
teE™ k
1 asn — o,
sup | [, (Kl.(jo) (s,t) — I?Z-j(s,t) - K,EZ;) -u‘),(g)ds] —0 forje Ii(K)
tee™ B
1
Proof. Let
K — Ki(.o) forj ¢ Ii(K)
v Klz]o) Kl] forj S Ii(K).
Then,
K}EZ; = inf Kl] (S, t).

(s)eE™ xE™

According to the construction of partition P,, we also see that Kjj is continuous on the

open rectangle
B x B = (o)) x (o), o).

Let {0 };,_; be a decreasing sequence and be convergent to zero such that 6,, > 0 for
all m, where é; is defined by

si= Lomind (¢ o), (6 - ).

Therefore, we can define the compact rectangle
(n) o pln) _ [,(n) (n) (n) (n)
Ep/ X E)) = {ekil + O ey — (Sm] X {6171 + O e — 5,,1}.

The following inclusion

is obvious. For (s,t) € E,En) X El(n), there exist my and m, such that s € E,E’:n)l and t € El(;) ,
respectively. Let m = max{mj, my}. Then, we have E,EZB C E,E"m) and E 1(77:1)2 C El(:z)‘ Therefore,
we obtain ) ) ) )
n n n

(s,4) € Egny x Eln) CEQ) X E

Im’

which proves

EM x B = U EM x B, (40)
We also see that
Eg x Efn) C B0 < E) for my > my. (41)

Since E(n) E(n) @ E]En) X El(n), it follows that K;; is continuous on each compact

rectangle E,E ) X El(m)'
(n) l( )

rectangle Ekm x E;,'. Therefore, given any € > 0, there exists § > 0 such that

which also means that Kj; is uniformly continuous on each compact

|t1—t2‘ <5and|81—52| <9
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implies
|Kij(s1,11) — Kij(s2,2)| < g (42)
for (s1,t1), (sp, t2) € E,Efn) X El(;;). Since the length of E,gn) is less than or equal to || Py, ||<
T/n* with n* — oo using (8), we can consider a sufficiently large ny € N satisfying
T/ng < 6. In this case, each length of E,E”) fork =1,---,nis less than é, which means
that, if n > ny, then (42) is satisfied for any (s1, f1), (s2,f2) € E,EZ} X El(::l). We consider the
following cases.
*  Suppose that the infimum Kl% is attained at (s("*), (")) ¢ E]En) X El(n). Using (40),
there exists m* satisfying (s("*), (")) ¢ E™, x E™)

km* Im**
we see that (s, t) € EIEZBO X El(:;z) for some my. Let m = max{m*, mp}. Using (41), it

follows that (s, t), (s, ") ¢ EIE:;) x EM. Then, we have

Im

Given any (s,t) € Elgn) X El(n),

Kl']'<S, t) — K,SZ;

Kij(s,t) — Kjj (s(”*),t(”*)) ’ < %,

since the lengths of E,E;) and El(;? are less than J, where € is independent from (s, t) in

E,E") x E l(") because of the uniform continuity.

*  Suppose that the infimum K,EZ) is not attained at any point in E]En) X El("). Let

]

’Cij = {Kij(sr t) : (S,t) S Elgn) X El(n)}

Since Kj; is continuous on the open rectangle E,En) x E l(”), it follows that the infimum

K,EZ; is in the boundary of the closure of £;; and is the limit of the function Kj; on

E,E") X El("). Therefore, for sufficiently large n, i.e., the open rectangle E]En) X El(n) is
sufficiently small such that the lengths of Elin) and E l(") are less than J, we have

Kij (S, i’) - KIEZ;

<€
2

forall (s,t) € E]E") X E,(").

From the above two cases, we conclude that

0< sup Kij(s,t) — K(”.)} < g <e€
(st)eEM xE™

and
0 < sup [/EW (Kij(s,t) — KIE;’Z)) .wl({’l?)ds]
teEl("> k
€am . pm o7 T, .Y -
< > 0wy <e-T 5 exp(r T (7) (using (32)),

which implies

sup [/E(") (Ki]'(s, t) — K,EZ;) -u‘),(c?)ds] — 0asn — oo.
teE,(") k

This completes the proof. [
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Lemma 3. Foreachl =1,--- ,n, we have

lim 7‘(1( " =0 = lim nl( ),
n—o0 n—o0
Proof. It suffices to prove
sup [ﬁl(;l)(t) + a;o)(t) - a,(;l)] -0 forj ¢ 1(2)
teEl(”)
- asn — oo.
sup [hl(;l)(t) + a](.o)(t) —aj(t) — al(;l)} —0 forje @
teE™

From (8), since

-T
o < Py ||§r7—>0asn—>oo

and w,(l”) is bounded according to (32), it follows that

(el(n)—t) Kl(h]) wl(l)<bl() Kl(ﬁ]) '()—>Oasn—>oo

Using Lemmas 1 and 2, we have

0
sup h< ) < Dl .ZK”IJ wl(Z "4 Z wl(z ). sup [Bl(;o - Bi(j >(t)]

teE™ {i:j21®} teE™
+ % @) sup [B — B (1) - By(h)]
{iier™} teE;"”
- (0) () . (1)
+ Z Z sup [/ <K1] (s,t) — Kklij> -y ds}
— E
(g1 e

+) Z sup {/ <Kz(]0)(s ) — Kl-]-(s,t) K](dl;) wl(a)ds} —0asn — .
k=1 {I]EI }tEE B

Now, for j ¢ 1), we have

0< sup [ () +,” ()~ "] < sup B (0) + sup [a7(1) — |
fEEI(n> te E n) tEEl(n)

and, forj € I (@), we have

0 < sup [l_al(]'?)(t) + a](-o)(t) —aj(t) — al(]«")} < sup le(;l)(t) + sup [a](.o)(t) —a(t) - al(;q)}.
teEl(”> teEl(”) teEl(")

Using Lemma 1, we complete the proof. O

We define the following notations:

%l(n)— max sup ZKISQ)(SJ)_ Y. I?f]p)(s,t) (43)
=LA | (el 1)< E™ |i=1 (e}
and
p _
o) = min ¢ inf |y BY()+ Y B(1)] ¢ (44)
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From (7), (6) and (19), we see that

6" > min & int |V B+ Y BY()| § >0 >0andg" <v.

(izje1®y
Let
El(n) = max ’E,(:Z) < vand bl(”) = min E,E") > 0. (45)
k=l,--n k=l,--n
Then, we see that 0 < bl(n) and
e > e and b <6} (46)

Now, we define the real-valued functions u(™ and v(") on [0, T| by

(n) i (n) = DR
u (f) = El(n) ifte F/forl=1,---,n
¢, ifr=T
and . "
U(n)(t): bl(n) iftEFl forl=1,---,n
bn ift =T.

Then, we have
u™(t) <vand o™ (t) > oforallt € [0, T] (47)

From (32) and Lemmas 1 and 2, we see that the sequence {l_zl(;l)}zc’:l is uniformly

bounded. In other words, the sequence {ﬂl(n) }o> 1 is uniformly bounded. Therefore, there
exists a constant r satisfying 711(") <ziforalln e Nand! =1,---,n. Now, we define a
real-valued function p(") on [0, T] by

, ift :el(f)l forl=1,---,n

nl(n), ift e El(”) forl=1,---,n

(n) (9 _ (n)  (0)py _ (n)
p( () = { max ;gﬁax){rj +a’ (1) —al) |,
(m) , ,(0) (T — 4 g o)
jr?ﬁ:(){rj +4; (T) —a;(T) a,; }}, ift=ey,’ =T,
where r](") is the jth component of r(®) in (33). Then, we have

p"(t) <rforalln e Nand t € [0, T). (48)

Let1, = (1,1,---, 1)—r € R? denote a p-dimensional vector such that each component
of 1, is 1, and let the real-valued function §) . [0, T] — R be defined by

W PU(H) ul (t) - (T —t)
fl )(t) = o) -expl o (D) ] (49)

We need a useful lemma given below
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Lemma 4. We have

—(n ; T p R
> hl(j (1) + a](0>(t) — a;j) +/t 501 (5) - X;Kio) - Y Rils0) |ds
and, if j € 1), then

e [LE0h+ T By
i=1

{izjer®y

n R " T . P ~
>hl(j)(t) a](O)(t) o) al(j) /tf()(s). ZK,(,Q)(Srf)* Y. Kij(s,t) | ds.
i=1 NS
{ije;™}

Moreover, the sequence of real-valued functions {§") }oo 4 is uniformly bounded.

Proof. Fort € Fl(">, from (49), we have

)

(n) _(n) E(”) (T = n (n) E(") T—
:/El ng)'expll (() °) ds+ ) /_w)né‘)-explk (() S)]ds
£ p" b," k=1+17E" b, b
() _(n) (n) (n) (n)
¢ 6" (T —5s) n m, lel ~(T—s)]
< - exp ds + ) T eXp | | ds
I R A o
(by (36) and (46))
T (" " (T —s) " e (T 1)
‘/t 67 'e"P[ NOR Al e B (50)
! ! ! !
Since
(n)
g (T—t
F'eXP[l((n))] ift:el(f)lforlzl,u.,n
o) 5 (1) = E’z)
g (T —t
ﬂ(n)'exp # iftEE(n)forl:1,~~,n,
! b(n) )
l
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using (50), it follows that, for t € Fl(n),

(n)

e T

L <1+ 0 / f(”)(s)ds> ift = e} forl =1, ,n
bl(”) ,f(n)(t) > 7, t

T
7'[1(”) + {%l(n) : /t 7 (s)ds ift e El(n) forl=1,--- ,n.
T
> " g [0 (s)ds (since 7" < pforall 1 =1, ). (51)
Jt

(n)

Fort =e¢,’ = T, we also have

b (T) = max{max].g](a) {r](”) + a](.())(T) - uf;) }'maxjel(a> {r](n) + a]@(T) —a;(T) - af;}) } } (52)

Foreachj=1,---,gand! =1, --,n, we consider the following cases.

e Fort= e,(qn) =T, from (44) and (52), we have

i=1 {i:je1®}
- r](") + aj(o)(T) - a,(;;-) forj ¢ 1
T A a0 — (1) el forjel@. [
e TForte Fl("), by (44), (51), and (37), we have

=1 {ijer”}
NG OE ART ARIOT for j ¢ 1)
PO+ 0 -a0) a7 [ f(s)ds forje 1@
Since
g > 8" > Kfjo) (s,t)— Y, Ki(st)

{izje1™y
for (s, t) € [el(f)l, T] x El(n), we obtain the desired inequalities.
Finally, from (47) and (48), it is obvious that the sequence of real-valued functions
{f(m1}*_ is uniformly bounded. This completes the proof. [

We define a vector-valued function w(")(t) : [0, T] — R by

~ (1) : (n) —
W) (¢) = w," +im (1, ifte "V forl=1,--,n (53)
= (1) | ¢(n) e

wy, +f(T)1, ift=T.

Remark 3. Since the sequence of real-valued functions {§(") }oo_ is uniformly bounded by Lemma 4,

from (32), we also see that the family of vector-valued functions {W"™},cy is also uniformly
bounded.

Proposition 4. For any n € N, W) is a feasible solution of problem (DRCLP3).
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Proof. Forl =1,---,n, we define a real-valued function b](n) on Fl(”) by

ll ij wl(ln) on both sides, we obtain

M

Therefore, by adding the term (

: b (n) L (0) 5
(e =) - o kit = b (1) + 50 (1) - LE) O+ L By

i=1
Tt " KO 2 )
_/t $)(s) - ;Kij ()= Y Ky(st) |ds =R (),

which implies

p
b]( (1) - (ez( )_t)', Kl(li])'wl(i)

O ) — g™ forj ¢ 1@
> a](())( ) /a\l] (n) Or]. g (a) (by Lemma 4) (54)
a; () —a;(t) — a); forjel
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Now, from (53), we obtain

B (1) o () + Y By(h)-a” (1)
1 {ijel™}

p

i=1 {ijel™}
p n
(n) () ! (n) () (n) - (n) (n)
= B, ; Gy ds . Lo ds |+ (t)
p n 4
< (Lot -otr - £ Fol?al?) 0 (4 -0) -kl ol
zagj.n)ern)(t)f(el(")ft) }:Kl(ﬁj) wl(ln) (by the feasibility of w(™) for problem (D,,))
(0) (a)
a;’(t) forj &1
> ] 54
—{ (1) —a;(t) forje 1@ (by (54)

~(n P n = _(n 2o (n
]( ) = ZBZ.]Q)(T) all+ Y By(T) ol | - ‘ZBftij) -l

i=1 {i:jeli(B)} i=1
(n) S &
1) (LB M+ ¥ By(T)
=1 {izjer®y

Then,

which implies

i=1 {ije1®y
(7Y _ (1) )
T . f I
> a;(T) j o o 7 (by Lemma 4) (55)
aj(T)—aj(T)—anj forj € 1(@),
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Now, from (53), we obtain

S { a;(T) forj ¢ 1(2)

aj(T) —a;(T) forje (@), } (using (55))

Therefore, we conclude that w(™) is indeed a feasible solution of problem (DRCLP3).

This completes this proof. [J

Foreachi=1,---,pandj=1,---,q,in order to obtain the approximate solutions,

i

we need to define the step functions a](") :[0,T] - Rand g [0, T] — R as follows:

and

) a" ifte " forl=1,--- n
A I

'(’%f{ it F forl =10
¢/ ift=T,

respectively. For eachi =1,- - -, p, we also define the step function " [0, T] - R by

and

and

i

(1) wl(.”) iftepl(”) forl=1,---,n
w (t> = RO
w,) ift=T.

/ MO - a](.’”(t)} 2 (1)dt 0 forj ¢ I®
0r asn — oo (56)
/0 [0 =gty —a" ()] 2" ()t 0 forj e 1@

/0 ! [c‘o)(t) - a}”)(t)] " (B)dt = 0 fori ¢ 1)

(
T l asn — oo. (57)
/O [CEO)(t) —a(t) — c-(’”(t)] " (B)dt =0 forie 1)

a0 —a" ] -2 (1) for j & I®
iaj(»o)(t) —ai() —a" (1) 2" forje 1@

: : . fori ¢ 1(¢)
V() —a(t) - c‘(")(t)} " (t) forie I©
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are continuous a.e. on [0, T], i.e., they are Riemann-integrable on [0, T]. In other words,
their Riemann integral and Lebesgue integral are identical. Lemma 1 says that

O gy — gt (4 forj ¢ 1()

aj(o)() i] ®) (n) or].§Z —0asn — coa.e. on [0, T]

a; () —a;(t) — a; (t) forje 1@

and ©) () _ g

\ - i ¢ 1(0)

C1(0)<t) il (®) () for% 71 — 0asn — oo a.e.on [0, T].

c; /(t)—ci(t) —¢; /' (t) foric 1

Since 2](.”) is uniformly bounded by Proposition 2, using the Lebesgue bounded conver-

gence theorem, we can obtain (56). On the other hand, since u‘)i(") is uniformly bounded us-

ing Proposition 1 and the Lebesgue bounded convergence theorem, we can also obtain (57),
and the proof is complete O

Theorem 1. The following statements hold true.
(i)  We have

limsup V(D,) = V(DRCLP3) and 0 < V(DRCLP3) — V(D) < ¢,

n—o0

where

(n) (n)
non e r-n]
7‘ Z/—(;z) bén) -exp [l] Cl(t)dt (58)
1

satisfying e, — 0as n — oo. Moreover, there exists a convergent subsequence {V (Dy, ) }3°,
of {V(Dy)}5>q satisfying

lim V(D,,) = V(DRCLP3). (59)

k—o0

(i) (No Duality Gap). Suppose that the primal problem (P,,) is feasible. Then, we have

V(DRCLP3) = V(RCLP3) = limsup V(D) = limsup V(P,)

n—oo n—oo

and
0 < V(RCLP3) — V(P,) = V(DRCLP3) — V(D,) < €.
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Proof. To prove part (i), we have

0 < V(DRCLP3) - v(D,)) (by (30))
V(DRCLP3) - fz / e g
1=1i=1
n P,
<Z/ ) w,(t)dt—Lg/ Wt dtflgg/éfn)cl(i).wl(:’)dt (60)
(by Proposition 4)
— TC(O) D d (0 Av d o n) w(n
42/0,< lt+1§/, () - @ tzhzl/ i)
Z/" ') =) -y + Z Z/ —ai(t) — i) @yt
ig1(© iclle
+ Z/ 00 (8 - O (t)dt + Z/ 1) () @i )at (61)
ig1(e) iclle
T
= Vo]l (e + RORCIOREROI RO
A } z / 00 -0t -] -2
+ 2/ oo )t + z/ 100 (0 —a )
ig1(e) iclle

Lemma 3 states that 711(”) — 0asn — oo, which implies p(") — 0asn — o a.e. on

[0, T]. Therefore, we obtain f") — 0as # — co a.e. on [0, T]. Using the Lebesgue bounded
convergence theorem for integrals, we also obtain

/ 501 (t)dt—>0asn—>oo fori ¢ I(9)
(62)
/0 RIOE cio)(t)—a-(t)>dt—>0asn—>oo fori € 1(9)

From Lemma 5, we conclude that ¢, — 0 as n — co. From (61), we also obtain
V(D,) < V(DRCLP3) < V(Dy) + €4,
which implies

lim sup V(D,,) < V(DRCLP3) < limsup[V(Dy) + €]

n—oo n—o0
<limsup V(D) + limsupe, = limsup V(D,).
n—00 n—00 n—oo

Part (ii) of Proposition 1 states that {V(D;)}{’_; is a bounded sequence. Therefore,
there exists a convergent subsequence {V(Dy, ) }7> ; of {V(Dy)}5 ;. Using (61), we obtain
the equality (59). It is easy to see that &,, can be written as (58), which proves part (i).

To prove part (ii), using part (i) and inequality (30), we obtain

V(DRCLP3) > V(RCLP3) > limsup V(D,) = V(DRCLP3).

n—oo

Since V(D,,) = V(P,) for each n € N, we also have

V(DRCLP3) = V(RCLP3) = limsup V(D;) = limsup V(P,)

n—o0 n—oo

and
0 < V(RCLP3) — V(P,) = V(DRCLP3) — V(D,) < ¢.
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This completes the proof. [

From Remark 2 and Theorem 1, if the vector-valued function c is nonnegative, i.e., the
primal problem (P,) is feasible, then the strong duality holds for the primal and dual pair
of continuous-time linear programming problems (RCLP3) and (DRCLP3).

Proposition 5. The following statements hold true.
(i)  Suppose that the primal problem (Py,) is feasible. Let z].n) be defined in (26) forj=1,--- ,4.

Then, the error between V (RCLP3) and the objective value of (Egn), e ,2((1")) is less than or
equal to &, defined in (58). In other words, we have

0 < V(RCLP3) (Z/ Hdt— ) /Taj(t).zj(t)dt) <en.

jert@ 70

(i) Letw w ) be defined in (53) fori =1,- - -, p. Then, the error between V(DRCLP3) and the
n) ~(n)

objective value of (w1 e, Wy ) is less than or equal to €,,. In other words, we have

0< <Z/ tdt— ) /Ta(t) -@i(t)dt) — V(DRCLP3) < g,

iclle)

(&, ... 5
1 7

Proof. To prove part (i), Proposition 3 states that (z - ,24 ) is a feasible solution of
problem (RCLP3). Since

n q n
VY [ 2 wd =Y Y ol 2 = Ve = VD)) (63)
j= 1 =1j=

and

forallt € E",(n) and!/ =1,---,n,it follows that

0 < V(RCLP3) (2/ dt—‘Z/
V(RCLP3) — ZZ / ol )t

=1j=1
= V(DRCLP3) — V(D,,) (by (63) and part (ii) of Theorem 1)
< ¢y (by part (i) of Theorem 1).

To prove part (ii), we have

p T 0) e
0< Z/o c; (t)-w;(t)dt — Z / — V(DRCLP3) (by Proposition 4)
i=1 iclle
p T
< O () - @; () dt — ; dt) D,
(Boe ,5/6 o

(since V(D) < V(DRCLP3) by part (i) of Theorem 1)
= g, (by (60) and (61))
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This completes the proof. [

Definition 1. Given any € > 0, we say that the feasible solution (zle PEEEN qu ) of primal
problem (RCLP3) is an e-optimal solution when

0 < V(RCLP3) (Z/ SOLED

We say that the feasible solution (wge), ey, w§f)) of dual problem (DRCLP3) is an
e-optimal solution when

0< (2/ (dt— Y /OTa-(t) -wl("?)(t)dt> — V(DRCLP3) < e

icl(e)

Theorem 2. Given any € > 0, the following statements hold true.

(i)  The e-optimal solution of primal problem (RCLP3) exists in the sense that there exists
n € N satisfying (de)’. . ,zge)) = (fﬁ"), : ,Egn)), where (Eg”)f = ,Eg")) is obtained
from Proposition 5 satisfying €, < €.

(i) The e-optimal solution of dual problem (DRCLP3) exists in the sense that there exists n € N

satisfying (wge),- . ,wlg,e)) = (@gn),- . ,@;”)), where (@%n), e ,@,E,n)) is obtained from

Proposition 5 satisfying e, < €.

Proof. Given any € > 0, from Proposition 5, since ¢, — 0 as n — oo, there exists n € N
such that &¢,; < €. Then, the results follow immediately. [

5. Convergence of Approximate Solutions

By referring to (26) and (53), we are interested in obtaining the convergent properties of
the sequences {z(")}*_, and {w(m }o_, that are constructed from the optimal solutions z(")
of primal problem (P,,) and the optimal solution w") of dual problem (D,,), respectively.
We need a useful lemma.

Lemma 6. We define a real-valued function 1 on [0, T] by

n(t) ==~ -exp["'(f,_t)]- (64)

Let w(©) be a feasible solution of dual problem (DRCLP3). We also define
wm(t) mm{w(o)( ), (t)}for alli=1,--- ,pand t € [0, T]. (65)

1

Then, w'Y) is a feasible solution of dual problem (DRCLP3) satisfying w) (t) < w(®(t)
and wl(l)(t) <y(t)foralli=1,--- ,pandt € [0, T].

Proof. The feasibility of w() for problem (DRCLP3) states that

M‘vs

BZJO)() o+ Y By -w®) 0

1 {ijer®y
O —am 4y MK ©) "z ) @
a; t—at)+), /t K;; (s,t)-w; (s)ds — ) /r Kij(s, t) -w; ' (s)ds forjel
i=1 ey
{ije; ™}

PoT T .
O+ ) [ K0 o ois- T [ Rytsn -0 ()is for j ¢ 1%
i=1

i

\Y
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Since Kl-]-(s, f) > 0and wl(l) (1) < wlgo) (t), from (66), we obtain
r .
YO+ ¥ Byt w® () (67)
i=1 {ijer®)
©)py_ ~ o) (1) T () ,
a; () —a;(t) + Z/ K (s,t)-w; ' (s)ds — ) / Kij(s,t) -w; ' (s)ds  forj e 1@
- =1 {iger®y !
= PooT T
(0) (0) (1) Q.. Coo(1) :
a; (t)Jr,;/t K" (s,t) - w; (s)dsf{ Z%K)}/ Kij(s,t) -w; ' (s)ds forj ¢ 1@
= ijell

For any fixed t € [0, T], we define the index sets

I = {i (1) < q(t)} and I = {i w0 (t) > iy(t)}.

Then,

{0 e
T](t) if i € I>.

For each fixed j, three cases are considered.

*  Suppose that I, = @ (i.e., the second sum is zero). Then, ¥ (t) = wfl) (t) for all i.

Therefore, from (67), we have l

14 . ld ~
YBY - w )+ ¥ B -wVm =B v+ L By
i=1 {ijel™} =1 {ijel™}
PoT T
a](p) -+ / K,.(]p) (s,1)- wfl)(s)ds - / Kij(s,t) ~wfl) (s)ds forje 1@
> = fijer ¥y
= PoT T ‘
a](.()) (H+ Z/t Ki(]Q) (s,t)- wgl) (s)ds— ) Kij(s, t) - wZ(l)(s)ds forj ¢ 1@

= t
=1 {ijel™}

e Suppose that [ # @ and that
BY(t) = 0foralli € I and j ¢ I*)
Bi]Q)(t) +Byj(t) = Oforalli € I and j € IV

Then, we obtain

i=1 {ije1®}

=Y BYm- o+ Y Byn-w e
i€l {irje1® el }

=Y 80w+ Y Byl -w (1)
i€l (ijer® ier}

=Y BP0 (1) + ¥ B (1) wl (1)
iEIS iels
+ Y B -+ Byj(t) -\ (1)

{izje1® je1oy {ijer!® el

=Yy B w0+ L By w0,
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Using (67), we also obtain
p o~
YBY 0w+ X By w(
=1 {iel™}
O _amay [ (1 Tz 1) :
a; () —aj(t)—i—Z/ Kij(s,t) - w; ' (s)ds — ) / Kij(s,t) -w; " (s)ds  forj e 1@
> oo figel} "
= T T
A O+Y [ Ky a@ds— X [ Kyt v o) for j ¢ 1)
i=1 7t LK)y Ut
{ijer ™}

plete.

Suppose that I.. # @ and that there exists i* € I such that B ( ) #O0forj ¢ 1 Py ) or
z*j (t) + Bj +j(t) #0forj € Ii(* ) ie., Bi(*].)( ) >oforj & Ii* or Bi(*j)( )—l—Bi*]-( )y >0
forjel i(*B) by (17). Therefore, we obtain

Blf)() oM+ T By-wM )

Mw

i—1 {i~jell-<B>}
>y BP0 -wV )+ Y BywlU) ©8)
il {ijel® el }
2 B )+ Z Eljﬂ(t) ZO’U(t)
icl {izje1® jer.}

From (64), we see that
T
c-n(t)=t+v- / 1n(s)ds,
Jt

which implies

o-q(t) (69)
PoT T .
1)+ /, KO (s,0)-y(s)ds — Y /t Rij(s,t) - 7(s)ds forj ¢ 1
i=1 (ije1™}
= P AT T
u}o)(t)fﬁj(t)JrZ%/t K (s, 1) - (s)ds — Z(K) /t Rij(s,t) - n(s)ds forje 1.
= {izjel;™}

for all t € [0, T]. Using (68) and (69), and the facts that wgl)(t) < y(t) and K (s £ —
I?l-]-(s, f)>0forje Ii(K), we also have

P .
Y BV + Y Byewl ()
i=1

{ije1®)y
O 4y [T O 'z ¢ 1@
a; (t) + Z /t Kj; (s,t)-nq(s)ds— Y /t Kij(s, t) - 17(s)ds forj &I
< = (ie1®y
I I PN LT o) T @)
a; (1) —a;(t) + Z/t K;; (s,t)-n(s)ds— ) /t Kij(s, t) -n(s)ds forj e I'?).
i=1 {ije1™)
O 43 [T O 1) ! WV P 1@
a; (t)+Z/t Kj; (s,t) - ;" (s)ds — Z t K,Jst ()d forj & I
i=1 K)
> {ijer™y
I I PN LT o) 1) To ) @)
a; (1) —a;(t) + Z;/t Kjj (s,t) - w; ' (s)ds — Z(: ) /t Kij(s,t) -w; '(s)ds  forj e I'®).
i= (ije1™y

This concludes that w(!) is a feasible solution of (DRCLP3), and the proof is com-
O
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Lemma 7 (Riesz and Sz.-Nagy [54] (p. 64)). Let {f;}{>, be a sequence in L?[0, T). If the
sequence { fi }2 is uniformly bounded with respect to || - |2, then a subsequence {fy. }3 ; exists

that weakly converges to f € L2[0, T]. In other words, for any g € L*[0, T], we have

lim fk £)dt = / £

]%oo

Lemma 8 (Levinson [4]). If the sequence { fi }}- , is uniformly bounded on [0, T| with respect to
|| - |2 and weakly converges to f € L?[0, T], then

f(t) <limsup fi(t) and f(t) > li;gio?ffk(t) a.e. on [0, T].

k—o0

Theorem 3. Suppose that the primal problem (P,,) is feasible. According to (26) and (53) let

{20y and {W}®_ be the sequences that are constructed from the optimal solutions z(") of

primal problem (P,) and the optimal solution w'™) of dual problem (Dy,), respectively. Then, the

following statements hold true.

(i)  There exists a subsequence {2} | of {2")}*_| such that {2}, is weakly conver-
gent to an optimal solution z* of primal problem (RCLP3).

(ii) For each n, we define

") (t) = min{@{" (1), () }.

Then, there exists a subsequence {w("™)}#>  of {W(")}%_ such that {w(™)}  is weakly
convergent to an optimal solution W* of dual problem (DRCLP3).

Proof. Proposition 2 states that the sequence of functions {z(") }o° 4 is uniformly bounded

(n)

with respect to || - ||2. We write Z; " to denote the jth component of Z("). Lemma 7 says that

) ©
there exists a subsequence {E&n" ) } of {Eﬁ") } . that weakly converges to some 250) €
k=1 "=

@) 1y *®
L?[0, T]. Using Lemma 7 again, there exists a subsequence {Egnk )} of {Eén" )}
k=1 k=1
=(0)

that weakly converges to some z, " € 12 [0, T]. By induction, there exists a subsequence
M) -1y *°
{2;”" )} of {2](-”" )} that weakly converges to some 2](0) € L?[0, T] for each j.
k=1 k=1
Therefore, we can construct a subsequence {Zz (") }o, that weakly converges to z(). Since

Z(") is a feasible solution of problem (RCLP3) for each ny, we have Z(m) (t) > 0and

Y B2+ ¥ Byt -2 (70)

t

q t
c§°>(t)—a(t)+z/0 KO (t,5) 2" (s)ds — Y /K (ts) 2" (s)ds fori € 1)
j=1

IN

[ t
CEO)(t) + 2/0 Kf/p)(t,s) -E}nk)(s)ds -y / Kij(t,s) ~fz§"")(s)ds fori ¢ 1(9)
j=1

(e}
From Lemma 8, for each j, we have

lim sup E}”k)(t) > E;O)(t) > liminff](nk)(t) > 0a.e. in [0, T]. (71)

k— 00 k—oc0

Therefore, we obtain () (t) > 0 a.e. in [0, T]. Since Bi(jo) > 0and Eij >0, forie I©),
by taking the limit superior on both sides of (70), we obtain
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=1 {iiel™y
q -
<timsup | Y B (0 -2 () + Y By(t) 2™ (1)| by (7))
k—oo |j=1 {j:jeIi(B) }
t
gcfo)(t) t) + limsup Z/ K ts ")( yds — ) /Kij(t,s)~2](nk)(s)ds (by (70))
k—c0 LK), Y0

{iel ™}
t/\

=) +z/wwm 0(s)ds— ¥ AmmggWWMﬁmmﬂ 72)

(e}

(by the weak convergence)

Fori ¢ 1 (¢), we can similarly obtain

Y B2+ Y Bz
= {ier™}
9t b
HORD IR CUCEIEOL TS N B STOD I O
=1 ety

Let AV be a subset of [0 [ T] on which inequalities (72) and (73) are violated, let N7 be a
subset of [0, T] on which z(9) () # 0, and let N = Ny U N;. We define

zO(t) ift g N
| Z i
Z(t)_{o ift e N,
where the set A/ has a measure of zero. It is clear that z*(t) > 0 for all € [0, T| and that
z5(t) =20 (t) a.e. on [0, T], i.e., ?]k(t) = E(-O)(t) a.e. on [0, T] for each j. We also see that

]
E;‘ € L2[0, T) for each j. Now, we consider two cases.

e Fort &N, from (72), we have

q N q .
LBV -0+ L B 50 =100 570+ L B0z
pas Gijer®y =1 Gier™}
£
<) +Z/% )50 L [ Ry(t)-2 o)ds
{jifeli(K)}
£
< 1(0) +2/Kl] (t,s) - Zj(s)ds — ZZK) /Kij(tfs)'zj(s)dﬁ
{rje; ™}

From (73), we can similarly obtain

1 (0) ok ) ok
g;BU B-ZH+ ¥ Bt -z
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e Fort € N, from (72), we have

= {ijer™y
t/\
< EO) ) —Gi(t —I—Z/ K(O t,s ()ds— ) /Ki]-(t,s)~2](.0)(s)ds
(er®y "
t
<) —a(t +Z/ K () 2i(s)ds — Y | Ryjlt,s) 25 (s)ds
{iie1y
From (73), we can similarly obtain
Y. BY(t) -2+ Y By(h) -z (t)
i J 1 ]
= {ier™y
t/\
+Z/1< (t,s) 2 (s)ds— Y /Kij(t,s)-f}‘(s)ds.
ety "

This shows that z* is a feasible solution of problem (RCLP3). Since z*(t) = z(%)(t) a.e.
on [0, T], it follows that the subsequence {z(")}% | is also weakly convergent to z*.

Using the feasibility of W(") for problem (DRCLP3), Lemma 6 states that w(" is also
a feasible solution of problem (DRCLP3) for each n satisfying @ ( )( ) < @5’1) (t) for each

i=1,---,pand t € [0,T]. Remark 3 states that the sequence {w )} | is uniformly
bounded. Since

T v-(T—1t) T v-T
=_. e SV R b
n(t) - exp{ - } < exp( - )for allt € 0, T],

it follows that the sequence {vw" }°° is also uniformly bounded, which implies that the

sequence {w("}*®_ is uniformly bounded with respect to || ||2 Using Lemma 7, we can
similarly show that there is a subsequence {w(")} | of {w(")}%_, that weakly converges

to some w(%). The feasibility of w(") for problem (DRCLP3) states that w("¥)(t) > 0 and

0 gy () g (1)
S EOW- a0+ T By af) &
i=1 {ije1l >}
oM ™) T () (a)
+2 K st (s)ds— ) Kij(s,t) -w; ¥ (s)ds forje I
- {irje1™y
| Lo R o) . (m¢) :
a; () + 2/ Kii"(s,t) - ; Hs)yds— Y. Kij(s,t) - w; ¥ (s)ds forj ¢ 1(@)
=17t {ijert®y f
From Lemma 8, for each i, we have
lim sup zbl("")(t) > zbl( )( t) > 11m1nfw( )( t) > 0a.e.in [0, T], (75)
k—o0 k—e0

which suggests that v“v(0>(t) > 0 a.e. in [0, T]. Since Bl-(jo) > 0 and El-]- >0, forje 1), by
taking the limit inferior on both sides of (74), we obtain
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i=1 (i1}
(0) ey [T () "2 (mt)
> a; (t)—a](t)—i-l}lrn_}gf Y K (s,t)-w;" (s)ds — ) Kij(s,t) - w; ¥ (s)ds
¢ 1 (ijel®y "
O 2 S (0) "z 0
—a (t)—a](t)—i—Z/ KOs, 1) 00 (s)ds — Y Rij(s,t) -0 (s)ds ae. in [0, T]
j p il i ;
i=1 .. _1(K)
{izjie;™}
(by the weak convergence) (76)
For j ¢ 11?), we can similarly obtain
p -~
Y@ a M+ Y Byt a )
=1 (izjer®y
0) LT (0) T 0)
t)—i—Z/ KOs, 1) 0 (s)ds— Y / Rij(s,t)- o (s)ds  (77)
=R (ier®y "

We define #(t) = 7(t)1,. Then, we see that w() (£) < g(t) for each k and for all
€ [0, T1.
Let N be a subset of [0, T| on which the 1nequaht1es (76) and (77) are violated, let N
be a subset of [0, T] on which w(®) () # 0, and let N’ = Ny U N;. We define

o WO ifte N
w(t)_{q(t) ifre A,

where the set A has a measure of zero. Then, we see that W*(t) > 0 for all t € [0, T]
and that w*(t) = w(% () a.e. on [0, T]. Now, we claim that W* is a feasible solution of
(DRCLP3). We consider two cases.

e  Suppose that t & N. For j € 1), from (76), we have

I HORACR S SR ODRORD M ORI ORI SR VOO R0
i=1 {ijer™y =1 {jer )}
T
> a0 (¢ +Z/ K(o (s, ) )( )ds— Y / Kij(s, t) wz(O)(s)ds
{ijer®y !
T
_ + Y [ K ai@ds - T [ Rylsn) @ (s)ds
oK)y Tt
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For j ¢ 1(@), from (77), we can similarly obtain

M‘

I RORADES W CDRAD

{izjer®y
(0) ST A T e,
> a; (t) + 2/ Kl.]. (s,t) - w7 (s)ds — Z / Kij(s,t) - W7 (s)ds.
=17 {jer®y !

e Suppose thatt € N. Foreachi = 1,---,p, since wl(”k)(t) < n(t) forall t € [0,T],

using Lemma 8, we have

Il
MR

zf)go)(t) < limsup wi("")(t) < #(t)ae. on|0,T].

Nj—>00
Foreachi=1,---,p,since @;(t) = zbz.(o) (t) a.e. on [0, T), it follows that
w; (t) < #n(t)ae. on[0,T]. (78)

Therefore, for j € I (a), we obtain

P 0) 5 i p(0) A
Y B (1)@ () + Y By(st)-@i(t) =) B (t)-n(t)+ Y, Bi(s,t)-n(t)

i=1 {ijer®y i=1 {ijerl®y
> o -7(t) (by (68))

() —l—Z/ KO) s,t)-n(s)ds— ) TIz“(s t) - n(s)ds (by (69))
4 A Ui y
{izje1™y
T _
> a0(r) +Z/ K (s,1) - @ (s)ds — 3 /t Rij(s,t) - @7 (s)ds (by (78)).
{ijer®y

For j ¢ 1(), we can similarly obtain

P
Y B () @r )+ Y Bylst) @) (1)
i=1 {ije1®}
Oy [Tx0 p o To -
>d%0+ Y [ KOst @ (s)as— Y /Kij(s,t).w;ﬂ(s)ds.
=17/t N S
{i:jel;™}

The above two cases conclude that w* is indeed a feasible solution of (DRCLP3). Since
w*(t) = w((t) a.e. on [0, T}, it follows that the subsequence {W(”k)},‘f’zl is also weakly
convergent to w*.
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Finally, we prove the optimality. Now, we have

i/OTa,(O)() Pt — Z/ ) (t)dt

j=1 jeI@
T
_ (0) (0 = o)
= a; () H)dt + —aj(t))-z; " (t)dt
/‘¢Zl:ﬂ)/0 / ]gw/ g ) j
(0 (m) ) 5(m)
J¢Xlla> zzi/ o (9 )~y ) (Dt

+22/Mk<a° )50 - ) Y [ el

]61 j=11=1

/ ‘k)> .Zl(]ﬁk)dt

]¢I 3)[ 1

103
+ ) 121 /E(”k) (”]('O)U) —aj(t) *”gfk)) 5 dt+ Z Zalnk “zjnk :
=15

jel@ 1= j=1i=

1y
0 _
= Z Z/E;nk) (a](. )(t) —al(jn")> -z§}1k>dt

jg1@ 1=1
Mg
0 ~ -
+ LY Lo (070 =70 —a?) 2+ v (P
jel@ 1=1 E

and

i=1 icre 70
T T
(0) (k) (0) (k)
= c; (t) - @, (t)dt + c; ' (t) —ci(t)) -@; ¥ (t)dt
El £ [60-50)
n
= 2% [ i + ¥ Z/w (V0 -aw) -
igno =1 /B P R
T
0 (n (0 (nx)
+ (£) - 50 (£)dt + ¢; —Ci(t)) - f\™ ()dt
igézl(:c)/o 1€ZI:(‘ / )
-y Zk/ (V) =) - afae
i (VBN i :
Ny 0
+ T z/.<n)<c§)<t>—a<t>—c§?k>)- dt+zm"k -
iero i=1 /B =iz
T
0 (n 0 . 5lme)
+ ) OESAGIESY Gi(t)) - §U) (t)dt
zgl(f)/o i€l / )
_ vy (0) (y _ )Y . (m0)
igmzl-/ff"”(ci (1) — ) i de
O ~ n
+Z§C) 121/ oo (20 =50 = ) -aat + V(D)

+ 2/ §0%) (1) dt + Z/ O f))-f("”(f)df-

ig1(0) i€l

2" ()t

S(m)
zi™at

(79)

(k)
@, dt

(80)
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Since V(P ) = V(Dy,) and zbl(nk) < @5"") for each i and 5y, from (79) and (80),

we have
q T T
0) r\ . ={m) _ ~ ~(ng)
;/O SORANCIEDY /O 3;(0) -2 ()t
= jel@
1
=LY L@ 0 —a?) 7 ar
jg1@ 1=17E
1k
E B 030
jera =
EoT o) (1) T )
22/ O gy - ™) (p)ar — Z/ Gt - ™ (1)t
i=170 it 70
1k
0 n _(n
B 21 I=1 £ C'( (0 Cl(i k)) wl(l Vi
1 C =
Nk
T L (0 -a0 )
iclle) I= I
T T
- L % rmwa- T ("0 -a) s war ey
igl(e) " c1lo)

Oy _ )Y om0
02 (6010 -57) 4
T
- /0 (1)) = 2™ (1)) - 2™ ()t — 0ask — oo (82)
and, forj e I (@), we have
103
0 ~ _
023 [ (a0 a0 ) -5
T
- /O () = a() — 2™ (1)) - 2" (1)t = O as k — . (83)

Additionally, fori ¢ I (¢) we have

Tk
0 n —_(n
0< ;/E;nk) (cl( () — Cl(i k)) -wl(i Kt
T
= | (c§°>(t> - c‘l(”k)(t)) -\ (£)dt — 0 as k — o (84)

- OT (c@)(t) — Gt — c'("k)(t)) ") (£)dt — 0 as k — co. (85)



Mathematics 2021, 9, 885

43 of 52

By taking limit on both sides of (81) and by using (62) and (82)—(85), we obtain

& T ) 4nk>
jim [12/0 w2 [ >df]

> lim [Z/ ") (4)dt — ) /OTa-(t) .wgnk)(t)dt].

k—o0 ic1©)

Using the weak convergence, we also obtain

q
];/()Ta](,o)(f)~2;‘(t)dt—‘g:)/Taj(t).f]’!‘(t)dt
= .

T

>2/ O by . @t (D)t — 2/ G(t) - @ (bt

i1t 0

According to the weak duality theorem between problems (RCLP3) and (DRCLP3),
we have

ST T
];/0 a; (t)-zj(t)dtjg(%‘)/o aj(t) -z} (t)dt
_i/oTC F(Bdt— ) /()T@(t)-@;‘(t)dt,

=1

iel(e)

which also suggests that (2], - - ,Z;) and (@7, - - - ,@},) are the optimal solutions of prob-
lems (RCLP3) and (DRCLP3), respectively. Theorem 1 also states that V(DRCLP3) =
V(RCLP3), and the proof is complete. []

6. Computational Procedure and Numerical Example

In order to obtain the approximate solutions of the continuous-time linear program-
ming problem (RCLP3), we use Proposition 5 by considering the limit situation, which can
be used to design the computational procedure. It is natural to see that the approximate
solutions are the step functions. Proposition 5 shows that it is possible to obtain the appro-
priate step functions so that the corresponding objective function value is close enough to
the optimal objective function value when 7 is taken to be sufficiently large.

Theorem 1 and Proposition 5 state that the error between the approximate objective
value and the optimal objective value is given by

(n)
[W] ’CEO)(t)dt]

b

P n
(0) (1)
V(Dn)+22l/1§;,l) o () dt+/El(n)

i=11=1

(n) (n)
(n) W L Ul VR I
/ wli dt + /El(n) bl(n) exp[ bl(n) Cl(t)dt

(n)

In order to obtain 77;/, by referring to (34), we need to solve the following problem:

oy

sup {hl(] )( t) +aji(t )} (86)

teEl(")
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where the real-valued function a; is given by

a(-o)(t) forj ¢ 1(2)
aj(t) = ](0) ~ : (a)
a; (t) —aj(t) forjeI'?.

()

We rewrite the real-valued function le ;o as follows:

=(n d n) _(n 4 (n N (n
hl(f )(t) - ZBl(ij) ’ wl(i ) ;BZ(JO)(t) ' wl(i ) + Z Bi]'(t) 'wl(i )

HON ~
+/tl ‘ KZ.(].O) (s,t) wl(l") - ). Ki(s,t) wl(ln) ds
i=1 {izje1™y

n . P ~ n P n n
+ Z /E(n) Z Kz(]()) (S, t) ’ wl(cl:) - Z Kij (S’ t) ’ wl(a) - KlElzz wl(a ) ds.
k=1+1" %k i=1 i=1

{izjer®y i
Fort e Fl(n) and/ =1, - ,n, we define the constant
g0 o) K o 4
Z ll] "Wy Z Z kh] "Wy~ as
i=1 k=I+1

and the real-valued function

w0 =-| LB al s L By ay
=1 {izjer®y
+/ s, 1) (n) Y K(st)w()ds
l li
{izjer™}
+ 2/ K()st) o — Y Ry(s,t) -l | ds.
k=I+1 {i:jeli(K)}
Then, the real-valued function }-11(;1) is given by

(1) = El( ") E;f)(t) fort € Fl(n).

B () +ay8), if t € E"
lim h(")(t) +ai(t)), ift= el
n () = He;m( v ) -
lim (le(]?”(t) + aj(t)), if ¢ = e
t—e) —
Since a](-o), ﬁj, Bl.(].o), and EZ-]- are continuous on E l(”) and since Kl.(;))

on E,E”) X El(") foralll,k =1,---,n, it follows that 1_11(;1) +ajis also continuous on E;

(87)

(88)

and Kj; are continuous

(n).
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(n)

This also suggests that I, j (n)

is continuous on the compact interval ;. In other words, the

supremum in (86) can be obtained below

sup {le(j")(t) +a]~(t)} = sup hl(?)(t) = max hl(?)(t). (89)

el £ £

(0)

In order to further design the computational procedure, we need to assume that a i
= g0 (0
aj, Bij”, Kjj

the purpose of applying the Newton’s method, which also suggests that a](.o), aj, Bl.(;)), Kl.(]Q),
(n)

and I?l-]- are twice-differentiable on the open interval E; "’ and open rectangle E ,E") x E l("),
respectively, forall [,k =1,--- ,n. From (89), we need to solve the following simple type
of optimization problem:

,and K,j are twice-differentiable on [0, T] and [0, T] x [0, T], respectively, for

max A" (b). (90)

Then, we can see that the optimal solution is

t* — el(i)l or t* = El(n) or Satleylng % (hl(]n)(t)> ‘t:t* = 0

According to (88), it follows that the optimal solution of problem (90) is

= el(f)l ort* = el( " or satisfying ;t (E( )( t) +a;(t ))’ =0.

t=t*

Let Z 1(;1) denote the set of all zeros of the real-valued function % (ﬁfjﬂ) (t) +aj(t)). Then,

(n) ( (1) (n) (,(n) (n)
i hl(]'.q)(t) _ max hlj (el—1>'hlj (el ),t*n;;?() h] (t") ¢, 1fZ 75 @ o1)
teE") n n n ! . n
! max{hl(] ") (el( )1) h,(j ) (el( )> }, if Z,(j ) = @.

Therefore, using (89) and (91), we can obtain the desired supremum (86).
From (87), for t € El("), we have

~( d = _
ﬁ(h ) Z dt 1] lzn) + Z &Bi]'(t) wl(zn)

()
“ (0) 5 e _ 1 (0) D)
/t atK’J (s,t) -, ds K (t,t) -

(m)
¢ 05 _ = -
s Ut atKif(S't)'wl(?)ds_Ki]'(t't)'wl(z‘n)]

n P
E/E Zai Hoal - Y ;tK (s,t) -2 |ds. (92)

{izjer™®}
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and
d2 = p dZ 0 _ dZ R ~
E(hl(]n)(t)> B Z ﬁBz‘(j )(t) l(zn) + Z(B) Adt2 Bl](t) wl(zn)
= {ijer;”}

(n)
e 92 0 _ d B
/t —Kfj )(s,t) 'wl(f)ds - ﬁK’(J )( £)- wl(l”)]

e 2 d
X [/t' R S

+ 2 / K9t 2" — ) 82K(s 1 - |ds
atZ z] ’ ki ot2 ki :
k=1+1 {ijert®y

We consider the following cases.

7 (n)

Suppose that h j (m)

+ aj is a linear function of f on E;"” assumed by

B (8) + aj(t) = oy £+ by

forj=1,---,q. Using (89), we obtain

a2 (), 00 (), 5, o =0
max hl(.”)(t): max hl(]-n) el(n)l ,hl(]”) el(n) ,a; (n)—l—b]-}, ifa; >0 (93)

£
b max hl(;q) el(f)l ,hl(]@ el(") , - e,(")l+bj}, ifa; <0

7.(n)

Suppose that hl]. + a;j is not a linear function of t. In order to obtain the zero t*

of %(El(?) (t) +a;(t)), we can apply the Newton’s method to generate a sequence
{tm}f,f:l such that t,;, — t* as m — co. The iteration is given by

d /~n d
i 70+ 00,

dz 7.(n dz
ﬁ (hl(/ )(t)) ‘t:tm + ﬁ (ﬂ](t)) ’t:tm

form =0,1,2,---. The initial guess is ty. Since the real-valued function %(El(]'?) (t) +
a;(t)) may have more than one zero, we need to apply Newton’s method by using as

many as possible for the initial guess .

(94)

Now, the computational procedure is given below.

Step 1. First, set the error tolerance € and the initial value of natural number n € N
regarding the iterations.

Step 2. Solve the dual problem (D) to obtain the optimal objective value V(D,) and
optimal solution w.

Step 3. Use Newton’s method given in (94) to find the set Z 1(171) of all zeros of the
real-valued function 4 (h(n)( t) +a;(t)).

Step 4. Use (91) to calculate the maximum (90), and use (89) to calculate the supremum
(86).
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e  Step 5. Use (34) and the supremum obtained in Step 4 to obtain ﬁl(n). According

( (n)

to (35), use the values of ﬁln) to obtain 77,

. Step 6. Use (58) to calculate the error bound ¢;,. If ¢, < €, then go to Step 7. Otherwise,
consider one more subdivision of each closed subinterval and set n < n + 71 for some
integer 71, and go to Step 2, where 7 is the number of new points of subdivisions for
all the closed subintervals.

e Step 7. Solve the primal problem (P,) to obtain the optimal solution z(").

e Step 8. Use (26) to set the step function z(")(t), which is the approximate solution of
problem (RCLP3). Proposition 5 states that the actual error between V(RCLP3) and
the objective value of z(") (t) is less than €, where the error tolerance € is reached for
this partition P;,.

In the sequel, we present a numerical example that considers the piecewise continuous
functions on the time interval [0, T|. We consider T = 1 and the following problem:

maximize /O "o () - 21 (8) + an(t) - za(B))dt

subjectto by (t) -z1(t) < 1 (t) +/0t[k1(t,s) -21(s) + ka(t,s) - za(s)]ds for all t € [0,1]
ba(t) - zo(t) < co(t) + /Ot[kg(t,s) -21(8) + kq(t,8) - z2(s)]ds for all t € [0,1]
z = (z1,22)" € L3[0,1].

The data a1 and a; are assumed to be uncertain with the nominal data

sint, if02<t<06 andal’()={ t, if05<t<07

et if0<t<02 2t, if0<t<05
£2, ifo6<t<i 2, if07<t<1

and the uncertainties

a1(t) =< sin(0.01t), if02<t<06 andd(t)={ 001  if05<t<07

001t ifo<t<02 0.02¢, ifo0<t<05
(0.02t)2, if06<t<1 (0.02t)2, if0.7 <t<1,

respectively. The data c; and ¢, are assumed to be uncertain with the nominal data

£, if0<t<03 t, if0<t<04
©),,, |} (nt)?, if03<t<05 ), ) 5t if04<t<05
a =9 p if05<t<o0s M (=9 3" o5 _1<0s

cost, if0.8<t<1 2, if08<t<1.

and the uncertainties

(0.01£)3, if0<t<03 001t, if0<t<04
G = 0, if0.3 <t<05 and &(f) = 0.02t, if04<t<05
! (0.03t)2, if0.5<t<0.8 2 (0.01)%, if05<t<08
0, if0.8<t<1 (0.02t)2, if0.8 <t <1.

The uncertain time-dependent matrices B(t) and K(t, s) are given below:

[ Bu(t) Bu® ] [b() 0
B<f>—[32<t> BZM‘[ 0 bz(f)}

and
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The data by = B1 and by, = By; are assumed to be uncertain with the nominal data

B (5) =01 () =

1 25sint, if02<t<0.6

20cost, if0<t<02
2742, ifo6<t<i

and
25cost, if0<t <05

BY (1) = (t) = { 22, if 0.5 <t <07
25¢2, if0.7 <t <1

and the uncertainties

~ ~ 0, if0<t<02
By1(t) = by(t) = { sin(0.01¢), if0.2<t <06
(0.03t)2, if06<t<1

and

~ ~

Bi(t) =by(t) ={ 001t, if05<t<07

0, if0<t<05
(0.02t)2, if0.7<t<1

The data ky = Ky1, ko = Ky, k3 = K»1, and k4 = Ky, are assumed to be uncertain with
the nominal data

3+ 52, if0<t<08and0<s<05
2 +sins, if0<t<08and05<s<1
(Int)?2 +3e75, if0.8<t<1and0<s<05
cost+5e7%, if0.8<t<land05<s<1

B.s2, if0<t<06and0<s<0.7
2. sins, if0<t<06and 0.7 <s<1
(Int)?-e75, if0.6<t<1land0<s<07
3t2.sins, if06<t<land07<s<1

K9(ts) = K9 (t,5) =

K9 (t,5) = K (1,5) =

312 . gins, if0<t<03and0<s<0.6
(0) ) ) 2t-8?, if0<t<03and0.6 <s<1
Ko (ts) = k3" (ts) = (Int)? + (coss)?, if03<t<1and0<s<06
852, if03<t<land06<s<1
2452, f0<t<05and0<s<03
sint + s2, f0<t<05and03<s<1

(cost)?+3e%, if05<t<land0<s<03
213 .2, if0.5<t<1land 03 <s<1.
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and the uncertainties

0.05¢t)3 + (0.025)2, if0<t<08and0<s<05
0.03t)%2 +sin(0.02s), if0<t<0.8and0.5<s<1
—001s if08<t<land0<s<0.5
—0.01s if08<t<land05<s<1

0.02¢)%.(0.055)2, f0<t<06and0<s<07
)

(
Ki(t,s) = ki(t,s) = £
e
(
(0.03t)% - sin(0.05s), if0<t<0.6and0.7 <s<1
e
(
(
(

Il
=)

Kip(t,s) = ka(t,s) =

—0.01s ifo6<t<land0<s<0.7
0.02t)? - sin(0.02s), if0.6<t<1land0.7 <s<1

)
0.03t)2 -sin(0.01s), if0<t<03and0<s<06
) - (0.025)2, if0<t<03and0.6<s<1
if0.3<t<1land0<s<0.6
(o 01t)3-(0.055)?, if0.3<t<1land0.6<s<1

(0.01t)2 4 (0.025)?, if0<t<05and0<s<0.3
- = ) sin(0.01¢) + (0.025)?, f0<t<05and03<s<1
Kaa(tys) =ka(tis) =4 003, if05<t<land0<s<03
(0.02¢)3 - (0.03s)?, if05<t<land03<s<1.

Ko (ts) =ks(t,s) =

We see that Bi(jo) (t) and §ij(t) satisfy the conditions (6) and (7). From the discontinuities
of ay, ap, c1, c2, by, by, k1, k2, k3, and k4, according to the setting of partition P, we see that
r = 8 and

D = {dy = 0,dy = 02,d, = 0.3,d3 = 0.4,d, = 0.5,d5 = 0.6,ds = 0.7,dy = 0.8,dg = 1}.

For n* = 2, this means that each closed interval [dy, d,11] is equally divided by two
subintervals for v = 0,1, - - - 7. In this case, we have n = 2 - 8 = 16. Therefore, we obtain a
partition Pyg.

We denote by

V(RCLP3,) = /O " a(t) 20 (1)t

the approximate optimal objective value of problem (RCLP3). Theorem 1 and Proposition 5
state that
0 < V(RCLP3) — V(RCLP3,) < ¢,

and
0 < V(RCLP3,) — V(P,) < V(RCLP3) — V(P,) < &.

The numerical results are shown in the following Table 1.

Table 1. Numerical Results.

n* n=n*-8 &n V(P,) V(RCLP3,)
2 16 0.0261958 0.0303016 0.0327564
10 80 0.0053931 0.0367996 0.0373742
50 400 0.0011151 0.0382602 0.0383788
100 800 0.0005599 0.0384469 0.0385064
200 1600 0.0002805 0.0385406 0.0385704
300 2400 0.0001871 0.0385719 0.0385918
400 3200 0.0001404 0.0385875 0.0386025
500 4000 0.0001124 0.0385969 0.0386089

The decision-maker tolerating the error € = 0.0005 suggests that n* = 100 is sufficient
to achieve this error € by referring to the error bound ¢, = 0.0005599. We use the active
set method in MATLAB to solve the primal and dual linear programming problems (P;,)
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and (D), respectively, to obtain the numerical results. We need to mention that using the
simplex method in MATLAB to solve the problems (P,,) and (D) for large n encounters a
little bug. There is a warning message from MATLAB when the simplex method is used to
solve the dual problem (D,) for large n. However, it is fine when the simplex method is
used to solve the primal problem (Py,).

7. Conclusions

Solving the continuous-time linear programming problem is indeed difficult. Espe-
cially, when the time-dependent matrices are involved in the problem, more efforts should
put into taking care of the time factor through the time interval [0, T]. In this paper, a more
complicated problem was studied when the uncertainty was assumed to be considered in
the continuous-time linear programming problem with time-dependent matrices. In this
case, a robust counter part was established and solved.

The main essence for solving the continuous-time linear programming problem is to
formulate the discretization problem by considering n time points that divide the whole
time interval [0, T] into n time subintervals. In this case, we can formulate a large-scale
conventional linear programming problem that can be solved to obtain the approximate
optimal solution. In other words, when the scale is large enough, the error between the
actual optimal solution and approximate optimal solution is small. The main purpose of this
paper is to obtain an analytic formula for the upper bound of error as shown in Theorem
1. The limitation of the approach proposed in this paper is that the large-scale linear
programming problem should be solved, which will consume huge computer resources,
which the personal computer sometimes lacks. In other words, the high-level computer
will increase the efficiency of the methodology proposed in this paper. Alternatively, a
new computational procedure such as parallel computing may be proposed, which can be
future research.
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