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Abstract: This paper is concerned with complete synchronization of fractional-order chaotic systems
with both model uncertainty and external disturbance. Firstly, we propose a new dynamic feedback
control method for complete synchronization of fractional-order nominal systems (without both
uncertainty and disturbance). Then, a new uncertainty and disturbance estimator (UDE)-based
dynamic feedback control method for the fractional-order systems with both uncertainty and distur-
bance is presented, by which the synchronization problem of such fractional-order chaotic systems is
realized. Finally, the fractional-order Lorenz system is used to demonstrate the practicability of the
proposed results.

Keywords: complete synchronization; fractional-order systems; uncertainty; disturbance; dynamic
feedback control method

1. Introduction

As a branch of mathematical analysis, fractional calculus was proposed around the
same time as Newton Leibniz’s integral calculus, and it can be traced back to 1695. After
that, the fractional differential equations have been applied to describe many practical
systems, such as circuits [1], viscoelastic beams [2,3], diffusion models [4,5], nonholonomic
systems [6,7], chaotic systems [8–13] and so on. Additionally, many systems in reality
have fractional-order dynamic behavior. Hence, fractional calculus has developed rapidly
during the past few decades. As an important branch of fractional calculus, fractional-order
systems are also widely used in many practical applications, such as signal processing,
image processing, automatic control, robotics, etc.

Chaos is a kind of special nonlinear dynamic system which is highly sensitive to
the change of parameters and initial conditions. Many integer-order chaotic systems ex-
hibit fractional-order dynamic behavior, such as Lorenz [9], Chen [10,11], Rössler [12],
Lü [13], etc., which are called fractional-order chaotic systems. The concept of chaos syn-
chronization was first proposed by Pecora and Carroll in their 1990’s paper [14]. Since
then, chaos synchronization is one of the important branches of chaos control and has
great application potential in fields such as secure communication, signal encryption and
fault diagnosis. In recent years, synchronization of fractional-order chaotic systems has
attracted a lot of attention and various control methods have been proposed, such as adap-
tive control [15–20], passive control [21], active control [22], fuzzy control [23], sliding mode
control [24], feedback control [25], and so forth. Simultaneously, many synchronization
types of the fractional-order chaotic systems have been studied including complete synchro-
nization [26,27], projective synchronization [28], lag synchronization [29], etc. Although
scholars have made great achievements in the control of fractional-order chaotic systems,
there are still many challenges and problems to be solved. For instance, there are too many
combinations of controllers and control channels, and the control technology designed
in [30–34] does not take the uncertainty of the system into account.
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It is well known that chaotic systems are very sensitive to parameter disturbances and
external disturbances. Therefore, it is difficult to realize synchronization of chaotic systems
with parameter disturbances and external disturbances. Fortunately, there are some works
in studying the synchronization problem of integer-order chaotic systems with parameter
disturbances and external disturbances. But, there are some limitations in the research results
of synchronization of chaotic systems with model uncertainties and external disturbances.
For example, both model uncertainty and external disturbance are supposed to be bounded,
and the bounds are usually small. Such as, d(t) ∈ Ln

2 [0,+∞). And, the method used is
based on linear matrix inequalities (LMIs), thus the obtained result is too conservative in
some cases. Recently, the UDE-based method has shown some advantages over the existing
results, see [35–38]. Therefore, we shall investigate the synchronization problem of the
fractional-order chaotic systems by extending the existing UDE-based control method.

Inspired by the above discussions, we focus on complete synchronization of the
fractional-order chaotic systems with model uncertainty and external perturbation. A new
UDE-based control method is proposed to realize the synchronization problem of such
fractional-order chaotic systems. The rest of this paper is arranged as follows. Section 2
introduces the preliminary of fractional-order chaotic systems and problem formulation.
In Section 3, main results of this paper are presented. In Section 4, an illustrative example
is studied to show the correctness and effectiveness of the main results. The last section
gives the conclusion.

2. Preliminaries and Problem Formation
2.1. Preliminaries

In this section, we give the definition and some preliminaries of fractional-order
system which can be used in the next.

The derivative of α-order Caputo is defined as

Dα
t f (x) =

Dα f (x)
dtα

=


1

Γ(α−n)

∫ t
α

f (n)(ς)
(t−ς)α+1−n dς, n− 1 < α < n

dn f (t)
dtn , α = n

where n = [α], Γ(.) is a function which is defined by

Γ(z) =
∫ ∞

0
e−ttz−1dt.

Consider the following fractional-order nonlinear system

Dα
t x = f (x) (1)

here x ∈ Rn is a state vector, f (x) ∈ Rn is a continuous vector function.
Many properties of fractional-order calculus are introduced as follows.

Property 1 ([39]). The fractional-order calculus defined by Caputo is a linear operator and satisfies

Dα
t (λ f (t) + µg(t)) = λDα

t f (t) + µDα
t g(t)

where λ, µ are real constants.

Property 2 ([40]). For fractional-order nonlinear system (1), f (x) meets the following Lips-
chitz condition:

‖ f (y)− f (x)‖ ≤ L‖y− x‖

where ‖ · ‖ is an ∞-norm, L is a positive real number.
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Property 3 ([41]). Suppose that x(t) ∈ R is a continuous and derivable function. Then, for
∀α ∈ (0, 1) and ∀t ≥ t0,

1
2

Dα
t x2 ≤ xDα

t x.

For the stability problem of fractional-order nonlinear system, there are many theories
to judge the stability of the system, but the Mittag–Leffler stability theory is most used.

Lemma 1 ([42,43]). Assume that x = 0 is the equilibrium point of system (1), and D ⊂ Rn is
the region containing the origin. If there exists a Lyapunov function V(x) : [0, ∞)× D −→ R
satisfying the local Lipschitz condition with respect to x:

β1(‖x‖) ≤ V(x) ≤ β2(‖x‖)

Dα
t V(x) ≤ −β3(‖x‖)

where t ≥ 0, x ∈ D, α ∈ (0, 1), β1, β2, β3 are class-κ functions, then the equilibrium point x = 0
of system (1) is asymptotically stable.

2.2. Problem Formation

The fractional-order chaotic system with model uncertainty and external disturbance
can be expressed as

Dα
t x = f (x) + ud + Bu (2)

where x ∈ Rn, f (x) ∈ Rn is a concinnous nonlinear vector function, ud = 4 f (x) + d(t),
4 f (x) is the model uncertainty, d(t) is the external disturbance, B ∈ Rn×r is the constant
matrix, r ≥ 1, and u ∈ Rr is the controller to be designed.

Suppose that system (2) is chosen as the drive system. Then the response system can
be described as

Dα
t y = f (y) (3)

where y ∈ Rn, f (y) ∈ Rn is a concinnous nonlinear vector function.
The error system (e = x− y) is presented as

Dα
t e = f (x)− f (y) + ud + Bu (4)

where ud, B are given in Equation (2).
In the following, our goal is to design a controller u satisfying the performance in the

form of
lim

t→+∞
‖e(t)‖ = 0. (5)

3. Main Results

In this section, we investigate how to design a simple and physical controller u to
satisfy (5), that is to say, the designed controller u can stabilize the error system (4).

Firstly, we study the stabilization of the error system (4) with ud = 0 and get the
controller us. A conclusion is obtained as follows.

Theorem 1. Consider the error system (4) with ud = 0. If ( f (x)− f (y), B) can be stabilized,
then the dynamic feedback controller is designed as

us = Ke (6)

where K = k(t)BT , and the feedback gain k(t) is updated

Dα
t k(t) ≤ −γ

n

∑
i=1

e2
i (7)
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and
k̇ = −γ‖e(t)‖2, γ > 0. (8)

Proof. Define the following non-negative function:

V =
1
2

n

∑
i=1

e2
i +

1
2γ

(k(t) + M)2 (9)

where M is a sufficiently large constant and satisfied nL ≤ M.
Calculating the Caputo derivative of V along the system in Equation (9), and using

Property 1 and Property 3, we obtain that

Dα
t V ≤

n

∑
i=1

eiDα
t ei +

k(t) + M
γ

Dα
t (k(t) + M) =

n

∑
i=1

eiDα
t ei +

k(t) + M
γ

Dα
t k(t). (10)

In view of the error system (4) with ud = 0, we conclude that

Dα
t V ≤

n

∑
i=1

ei( fi(x)− fi(y) + k(t)ei) +
k(t) + M

γ
Dα

t k(t)

=
n

∑
i=1

ei( fi(x)− fi(y)) +
n

∑
i=1

k(t)e2
i +

k(t) + M
γ

Dα
t k(t).

Combining Property 2 and the condition given in Equation (7), we get

Dα
t V ≤ nL

n

∑
i=1

e2
i +

n

∑
i=1

k(t)e2
i − (k(t) + M)

n

∑
i=1

e2
i = (nL−M)

n

∑
i=1

e2
i .

Applying the condition of nL ≤ M and using the following notation V1(t) =
n
∑

i=1
e2

i =

‖e‖2 yield that
Dα

t V ≤ (nL−M)V1(t) ≤ 0. (11)

In the sequel, there are two cases for lim
t→∞

∫ t
t0

V1(s)ds. As in the proof of Theorem 1

in [44], we get the desired conclusion that lim
t→+∞

V1(t) = lim
t→+∞

‖e(t)‖ = 0.

Therefore, the drive system (2) with ud = 0 and the response system (3) achieve
complete synchronization.

In the next, we investigate the stabilization of the error system (4) and present the
following result.

Theorem 2. Consider the error system (4). If ( f (x)− f (y), B) can be stabilized and there exists
a suitable filter g f (t) such that

ũd = ud − ûd → 0, t→ ∞ (12)

where
ûd = ud ∗ g f (t) = (Dα

t e− F(x, e)− Buude) ∗ g f (t) (13)

and ud satisfies the following structural constraints

[In − BB+]ud ≡ 0 (14)

In is the identity matrix of order n, then the UDE-based controller u is designed as

u = us + uude (15)
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where
us = K(t)e(t) = k(t)BTe(t) (16)

uude = B+

{
`−1

[
G f (s)

1− G f (s)

]
∗ F(x, e)− `−1

[
sαG f (s)

1− G f (s)

]
∗ e(t)

}
, 0 < α ≤ 1 (17)

F(x, e) = f (x) − f (y) + Bus, B+ = (BT B)−1BT , G f (s) = `[g f (t)], ` represents Laplace
transform, `−1 represents Laplace inverse transform, ∗ represents convolution, and the feedback
k(t) is updated by

Dα
t k(t) ≤ −γ

n

∑
i=1

e2
i

and
k̇ = −γ‖e(t)‖2, γ > 0. (18)

Proof. Taking into account the controller u in Equation (16) and the error system (4), one has

Dα
t e(t) = F(x, e) + ud + Buude.

It is noted that
ud = Dα

t e(t)− F(x, e)− Buude

and the system Dα
t e(t) = F(x, e) is asymptotically stable according to Theorem 1.

According to condition given in Equation (12), if the controller uude meets the follow-
ing equation

Buude = −ûd = −ud ∗ g f (t) = −(Dα
t e(t)− F(x, e)− Buude) ∗ g f (t) (19)

then this controller is proposed.
Taking the Laplace transform of both sides of Equation (19), it yields that

Buude(s) = −sαe(s)G f (s) + F(s)G f (s) + Buude(s)G f (s)

i.e.,
Buude(s)− Buude(s)G f (s) = −sαe(s)G f (s) + F(s)G f (s).

Furthermore, we obtain

uude(s) = B+

{[
G f (s)

1− G f (s)

]
F(s)−

[
sαG f (s)

1− G f (s)

]
e(s)

}
(20)

that is

uude(t) = B+

{
`−1

[
G f (s)

1− G f (s)

]
∗ F(x, e)

}
− B+

{
`−1

[
sαG f (s)

1− G f (s)

]
∗ e(t)

}
, 0 < α ≤ 1 (21)

which completes the proof.

4. Numerical Simulations

Next, we take the famous fractional-order Lorenz system as an illustrative example to
show our proposed results.

Example 1. Consider the controlled fractional-order Lorenz system with both uncertainty and dis-
turbance

Dα
t x = f (x) + ud + Bu (22)

where x ∈ R3 is the state, and ud = ∆ f (x) + d(t), i.e.,
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f (x) =

 f1(x)
f2(x)
f3(x)

 =

 10(x2 − x1)
28x1 − x2 − x1x3
− 8

3 x3 + x1x2

, ∆ f (x) =

 0
0.3x1x2

0

, d(t) =

 0
10
0

, B =

0
1
0

 (23)

System (22) is chosen as the drive system, the corresponding response system is
noted as

Dα
t y = f (y) (24)

where y ∈ R3 is a state vector, and

f (y) =

 f1(y)
f2(y)
f3(y)

 =

 10(y2 − y1)
28y1 − y2 − y1y3
− 8

3 y3 + y1y2

. (25)

The error dynamical system (e = x− y) is presented as

Dα
t e = F(x, e) + ud + Bu (26)

where e ∈ R3 is the state, and

F(x, e) =

 10(e2 − e1)
28e1 − e2 − x1e3 − x3e1 + e1e3
− 8

3 e3 − e1e2 + x1e2 + x2e1

, ud = ∆ f (x) + d(t). (27)

In order to design the controller u, we firstly investigate complete synchronization of
the following fractional-order nominal Lorenz system

Dα
t x = f (x) + Bus (28)

where x ∈ R3 is the state, and f (x), B are given in Equation (23), us is the controller to
be designed.

Suppose that system (28) is the drive system, the corresponding response system is in
the form of (24). Let e = x− y, then the nominal error system is

Dα
t e = F(x, e) + Bus (29)

where e ∈ R3 is the state, B is given in Equation (23), F(x, e) is given in Equation (27), us is
given in Equation (28).

Note that if e2 = 0, then the following two-dimensional system

Dα
t e1 = −10e1

Dα
t e3 = − 8

3 e3

is asymptotically stable.
Therefore, (F(x, e), B) can be stabilized. Based on Theorem 1, the controller us can be

designed as
us = k(t)BTe = k(t)

(
0 1 0

)
e = k(t)e2 (30)

where k(t) is defined in Equation (18).
Substituting the controller us given in Equation (30) into the error system (29), the

controlled error system is presented as follows

Dα
t e1 = 10(e2 − e1)

Dα
t e2 = 28e1 − e2 − x1e3 − x3e1 + e1e3 + k(t)e2

Dα
t e3 = − 8

3 e3 − e1e2 + x1e2 + x2e1.
(31)
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Numerical simulation is carried out by choosing the initial conditions of the drive
system (28): x(0) = [5,−4, 3]T , the initial conditions of the response system (24): y(0) =
[−1,−1,−1]T , and k(0) = −1, γ = 1, α = 0.95. Figure 1 shows that the error system (29)
is asymptotically stable, that is to say, the drive system (28) and the response system (24)
realize complete synchronization. The states of the drive system (28) and the response
system (24) are displayed in Figure 2, respectively. Figure 3 demonstrates k(t) converges to
a constant.

0 1 2 3 4 5 6 7 8 9 10

Time (s)
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Figure 1. The error system (29) is asymptotically stable.
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Figure 2. The states of the drive system (28) and the response system (24).
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Time (s)

-35

-30

-25

-20

-15

-10

-5

0

k(
t)

k(t)

Figure 3. k(t) tends to a constant.

Noticing that the structural constraint condition (14) is satisfied, according to Theorem 2,
the controller uude is designed as

uude(t) = B+

{
`−1

[
G f (s)

1− G f (s)

]
∗ F(x, e)

}
− B+

{
`−1

[
sαG f (s)

1− G f (s)

]
∗ e(t)

}
, 0 < α ≤ 1 (32)

where the filter G f (s) is proposed as

G f =
1

τs + 1
, τ = 0.001.

Therefore, the controlled Lorenz system is

Dα
t e1 = 10(e2 − e1)

Dα
t e2 = 28e1 − e2 − x1e3 − x3e1 + e1e3 + 0.3x1x2 + 10 + k(t)e2 + uude

Dα
t e3 = − 8

3 e3 − e1e2 + x1e2 + x2e1.

Numerical simulation is done with the initial conditions of the drive system (22)
and the response system (24): x(0) = [5,−4, 3]T , y(0) = [−1,−1,−1]T , respectively, and
k(0) = −1, γ = 1, α = 0.95. Figure 4 displays the synchronization error e(t) tends to
zero, which implies that the drive system (22) and the response system (24) reach complete
synchronization. Figure 5 demonstrates the states of the drive system (22) and the response
system (24), respectively. Figure 6 represents that the feedback gain k(t) tends to a constant.
From Figure 7, it is clear that ûd converges asymptotically to ud.
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Figure 4. The error system (26) is asymptotically stable.
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Figure 5. The states of the drive system (22) and the response system (24).
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Figure 6. k(t) tends to a constant.
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,û

d

ud

ûd

Figure 7. ûd converges asymptotically to ud.

5. Conclusions

This paper has investigated complete synchronization of the fractional-order systems
with both model uncertainty and external disturbance. Based on the fractional-order
nominal systems, we propose a new dynamic feedback control method. Then, a new
UDE-based control method for the fractional-order system has been obtained by extending
the existing UDE-based control method. Finally, complete synchronization of the fractional-
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order chaotic systems has been realized by the above method, and an illustrative example
has been used to show the practicability of the obtained results. The simulation results
have shown that the UDE-based dynamic feedback control method has good performance.
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