
mathematics

Article

Conformal Vector Fields and the De-Rham Laplacian
on a Riemannian Manifold

Amira Ishan 1 , Sharief Deshmukh 2 and Gabriel-Eduard Vîlcu 3,*

����������
�������

Citation: Ishan, A.; Deshmukh, S.;

Vîlcu, G.-E. Conformal Vector Fields

and the De-Rham Laplacian

on a Riemannian Manifold.

Mathematics 2021, 9, 863. https://

doi.org/10.3390/math9080863

Academic Editor: Christos G.

Massouros

Received: 16 March 2021

Accepted: 13 April 2021

Published: 14 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
a.ishan@tu.edu.sa

2 Department of Mathematics, College of Science, King Saud University, P.O. Box 2455,
Riyadh 11451, Saudi Arabia; shariefd@ksu.edu.sa

3 Department of Cybernetics, Economic Informatics, Finance and Accountancy,
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1. Introduction

Conformal vector fields and conformal mappings play important roles in the geometry
of (pseudo-)Riemannian manifolds as well as in the general relativity (see, e.g., [1–5]).
The characterization of important spaces, such as Euclidean spaces, Euclidean spheres
and hyperbolic spaces, represents one of the most fascinating problems in Riemannian
geometry. In this respect, the role of conformal vector fields is eminent as these provide
one of best tools in obtaining such characterizations (cf. [6–22]).

On a Riemannian manifold (M, g), the Ricci operator S is defined using Ricci tensor
Ric, by

Ric(X, Y) = g(SX, Y), X ∈ X(M),

where X(M) is the Lie algebra of smooth vector fields on M (see [23]). Similarly, the rough
Laplace operator on the Riemannian manifold (M, g), ∆ : X(M)→ X(M) is defined by [24]

∆X =
m

∑
i=1

(
∇ei∇ei X−∇∇ei ei X

)
, X ∈ X(M),

where ∇ is the Riemannian connection and {e1, ..., em} is a local orthonormal frame on
M, m = dim M. Rough Laplace operator is used in finding characterizations of spheres
as well as of Euclidean spaces (cf. [17,25]). Recall that the de-Rham Laplace operator � :
X(M)→ X(M) on a Riemannian manifold (M, g) is defined by (cf. [24], p-83)

� = S + ∆ (1)

and is used to characterize a Killing vector field on a compact Riemannian manifold. It is
known that if ξ is a Killing vector field on a Riemannian manifold (M, g) or a soliton vector
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field of a Ricci soliton (M, g, ξ, λ), then �ξ = 0 (cf. [11]). In addition, Fischer–Marsden
considered the following differential equation (cf. [26]) on a Riemannian manifold (M, g):

(∆ f )g + f Ric = Hess( f ), (2)

where Hess( f ) is the Hessian of smooth function f and ∆ is the Laplace operator acting on
smooth functions of M. It is known that if a complete Riemannian manifold (M, g) has a
nontrivial solution f to (2), then the scalar curvature of g is a constant (see [26,27]). We re-
mark that Fischer and Marsden conjectured that if a compact Riemannian manifold admits
a nontrivial solution of the differential Equation (2), then it must be an Einstein manifold.
Counterexamples to the conjecture were provided by Kobayashi [28] and Lafontaine [29].

If we consider the sphere Sm(c) of constant curvature c as hypersurface of the Eu-
clidean space Rm+1 with unit normal ξ and shape operator B = −

√
cI, where I stands for

the identity operator, then it is well known that the Ricci operator S of the sphere Sm(c) is
given by

S = (m− 1)cI.

Now, consider a constant unit vector field ς on the Euclidean space Rm+1. Then re-
stricting ς to the sphere Sm(c) one can express it as

ς = u + f ξ,

with f = 〈ς, ξ〉, where u is the tangential projection of ς on the sphere and 〈·,·〉 is the
Euclidean metric. Taking covariant derivative of the above equation with respect to a
vector field X on the sphere Sm(c) and using Gauss–Weingarten formulae for hypersurface,
we conclude

∇Xu = −
√

c f X, ∇ f =
√

cu, (3)

where ∇ is the Riemannian connection on the sphere Sm(c) with respect to the canonical
metric g and ∇ f is the gradient of the smooth function f on Sm(c). Then it follows that
the rough Laplace operator ∆ acting on u and the Laplace operator acting on the smooth
function f are respectively given by

∆u = −cu, ∆ f = −mc f . (4)

Now, due to the choice of the constant unit vector field ς on the Euclidean space
and the equations in (3), we see that u is not parallel and that f is a nonconstant function.
Further, we observe that the vector field u on the sphere Sm(c) satisfies

�u = (m− 2)cu. (5)

In addition, the Hessian of f is given by

Hess( f )(X, Y) = g(∇X∇ f , Y) = −c f g(X, Y), X, Y ∈ X(M)

and using Equations (4) and (5), we see that the function f on the sphere Sm(c) satisfies the
Fischer–Marsden Equation (2).

Recall that a smooth vector field u on a Riemannian manifold (M, g) is said to be a
conformal vector field, if

£ug = 2σg, (6)

where £ug is the Lie differentiation of g with respect to the vector field u and σ is a smooth
function on M called the potential function (or the conformal factor) of the conformal
vector field u. A conformal vector field is said to be nontrivial if the potential function σ is
a nonzero function. We observe that using Equation (4), the vector field u on the sphere
Sm(c) satisfies

£ug = −2
√

c f g, (7)
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that is, u is a nontrivial conformal vector field with potential function (conformal fac-
tor) −

√
c f . Thus, the sphere Sm(c) admits a nontrivial conformal vector field that is an

eigenvector of the de-Rham Laplace operator with eigenvalue (m− 2)c (see Equation (5))
and the potential function is solution of the Fischer–Marsden differential Equation (2).
These raise two natural questions:

(i) Is a compact Riemannian manifold (M, g) that admits a nontrivial conformal vector
field u, which is eigenvector of de-Rham Laplace operator � corresponding to a positive
eigenvalue, necessarily isometric to a sphere?

(ii) Is a compact Riemannian manifold (M, g) that admits a nontrivial conformal vector
field u with potential function a nontrivial solution of the Fischer–Marsden differential
equation, necessarily isometric to a sphere?

In this paper, we answer the above two problems, showing that the first question has
an affirmative answer (cf. Theorem 1), while an affirmative answer for the second question
requires an additional condition on the Ricci curvature (cf. Theorem 2).

2. Preliminaries

Let u be a nontrivial conformal vector field on an m-dimensional Riemannian manifold
(M, g) and X(M) be the Lie algebra of smooth vector fields on M. Let γ be the smooth
1-form dual to u, that is

γ(X) = g(X, u), X ∈ X(M).

If we define a skew-symmetric operator G, called the associate operator of u, by

1
2

dγ(X, Y) = g(GX, Y), X, Y ∈ X(M),

then using the above equation and Equation (6) in Koszul’s formula (see [30] [p. 55,
Equation (9)]) we have

∇Xu = σX + GX, X ∈ X(M), (8)

where ∇ is the Riemannian connection on (M, g). We adopt the following expression for
curvature tensor

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z, X, Y, Z ∈ X(M),

and use Equation (8) to compute

R(X, Y)u = X(σ)Y−Y(σ)X + (∇G)(X, Y)− (∇G)(Y, X),

where
(∇G)(X, Y) = ∇XGY− G(∇XY).

Using the above equation and the expression for the Ricci tensor

Ric(X, Y) =
m

∑
i=1

g(R(ei, X)Y, ei),

where {e1, ..., em} is a local orthonormal frame, we obtain

Ric(Y, u) = −(m− 1)Y(σ)−
m

∑
i=1

g(Y, (∇G)(ei, ei)),

where we used the skew-symmetry of the operator G. The above equation gives

S(u) = −(m− 1)∇σ−
m

∑
i=1

(∇G)(ei, ei). (9)
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Now, using Equation (8), we compute the action of the rough Laplace operator ∆ on
the vector field u and find

∆u = ∇σ +
m

∑
i=1

(∇G)(ei, ei). (10)

Note that using Equation (8), we get

divu = mσ, div(σu) = u(σ) + mσ2. (11)

Let τ = TrS be the scalar curvature of the Riemannian manifold. Then we have the
following expression for the gradient of the scalar curvature

1
2
∇τ =

m

∑
i=1

(∇S)(ei, ei),

where {e1, ..., em} is a local orthonormal frame.

3. Characterizations of Spheres

Let u be a nontrivial conformal vector field on an m-dimensional Riemannian manifold
(M, g) with nonzero potential function σ. In this section, we find two new characterizations
of spheres through nontrivial conformal vector fields, using the de-Rham Laplace operator
� and the Fischer–Marsden differential equation. If u is a nontrivial conformal vector field
with potential function σ on an m-dimensional compact Riemannian manifold (M, g), then
using Equation (11), we have∫

M

σ = 0,
∫
M

(
u(σ) + mσ2

)
= 0. (12)

Theorem 1. Let u be a nontrivial conformal vector field on an m-dimensional compact Riemannian
manifold (M, g), m > 2. Then �u = λu for a constant λ, if and only if λ > 0 and (M, g) is
isometric to the sphere Sm

(
λ

m−2

)
.

Proof. Suppose u is a nontrivial conformal vector field with potential function σ on a
compact Riemannian manifold (M, g) that satisfies

�u = λu,

where λ is a constant. Then using Equations (9) and (10), we conclude

∇σ = − λ

m− 2
u. (13)

If λ = 0, then the above equation will imply that σ is a constant and then the first
Equation in (12) will imply σ = 0, contrary to our assumption that u is a nontrivial
conformal vector field. Hence, the constant λ 6= 0. Now, taking covariant derivative in
Equation (13) and using Equation (8), we get

∇X∇σ = − λ

m− 2
(σX + GX), X ∈ X(M).

Taking the inner product with X ∈ X(M) in the above equation and noticing that G is
skew symmetric, we conclude

g(∇X∇σ, X) = − λσ

m− 2
g(X, X).
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Using polarization in above equation, and noticing that

Hess(σ)(X, Y) = g(∇X∇σ, Y)

is symmetric, we get

Hess(σ)(X, Y) = − λσ

m− 2
g(X, Y). (14)

Taking trace in above equation, we get

∆σ = − mλ

m− 2
σ.

Since u is a nontrivial conformal vector field, it follows that σ is nonconstant due to
Equation (12) and consequently, the above equation suggests that σ is an eigenfunction
of the Laplace operator with eigenvalue mλ

m−2 . Thus the nonzero constant λ > 0. Hence,
Equation (14) being Obata’s differential equation implies that (M, g) is isometric to the
sphere Sm

(
λ

m−2

)
(cf. [18,19]).

Conversely, if (M, g) is isometric to the sphere Sm
(

λ
m−2

)
, then Equation (5) confirms

the existence of nontrivial vector field u satisfying �u = λu for a constant λ.

Recall that if an m-dimensional Riemannian manifold (M, g) admits a nontrivial
solution of the Fischer–Marsden differential Equation (2), m > 2, then the scalar curvature
τ is a constant (cf. [26,27]) and the nontrivial solution f satisfies

∆ f = − τ

m− 1
f , (15)

Now, we consider an m-dimensional Riemannian manifold (M, g) that admits a
nontrivial conformal vector field u with potential function σ that is a nontrivial solution of
the Fischer–Marsden differential Equation (2) and define a constant α by τ = m(m− 1)α
for this Riemannian manifold. Then we have the following:

Theorem 2. Let u be a nontrivial conformal vector field with potential function σ and associated
operator G on an m-dimensional compact Riemannian manifold (M, g), m > 2. Then σ is a
nontrivial solution of the Fischer–Marsden Equation (2) and

Ric(∇σ + αu,∇σ + αu) ≥ α2‖G‖2

holds for a constant α, where the constant α is given by τ = m(m− 1)α, if and only if α > 0 and
(M, g) is isometric to the sphere Sm(α).

Proof. Suppose the potential function σ of a nontrivial conformal vector field u is a non-
trivial solution of the Fischer–Marsden (2) on an m-dimensional compact Riemannian
manifold (M, g) and the associated operator G satisfies

Ric(∇σ + αu,∇σ + αu) ≥ α2‖G‖2, (16)

where the constant α is given by τ = m(m− 1)α. Since the potential function is a nontrivial
solution of the Equation (2), by Equation (15), we have

∆σ = −mασ. (17)
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As observed earlier, for a nontrivial conformal vector field u we have that the potential
function σ is nonconstant and by Equation (17) we see that σ is an eigenfunction of the
Laplace operator and therefore α > 0. Now, using Equation (9), we have

Ric(u, u) = −(m− 1)u(σ)−
m

∑
i=1

g(u, (∇G)(ei, ei)). (18)

Using Equation (8) and skew-symmetry of the associated operator G, we find

divG(u) = −‖G‖2 −
m

∑
i=1

g(u, (∇G)(ei, ei)), (19)

where

‖G‖2 =
m

∑
i=1

g(Gei, Gei)

for a local orthonormal frame {e1, ..., em}. Inserting Equation (19) in Equation (18), we get

Ric(u, u) = −(m− 1)u(σ) + divG(u) + ‖G‖2

and integrating the above equation while using Equation (12), we derive∫
M

Ric(u, u) =
∫
M

(
‖G‖2 + m(m− 1)σ2

)
. (20)

Using the Bochner’s formula (cf. [31]) (p. 19, Equation (1.45)), we have∫
M

(
Ric(∇σ,∇σ) + |Hess(σ)|2 − (∆σ)2

)
= 0. (21)

Now, using the symmetry of Hess(σ) and skew-symmetry of the operator G in com-
puting div(G∇σ), we get

div(G∇σ) = −
m

∑
i=1

g(∇σ, (∇G)(ei, ei))

and using Equation (9) in above equation, we have

div(G∇σ) = Ric(u,∇σ) + (m− 1)‖∇σ‖2.

Integrating the above equation yields∫
M

Ric(u,∇σ) = −(m− 1)
∫
M

‖∇σ‖2. (22)

In addition, Equation (17) implies∫
M

‖∇σ‖2 = mα
∫
M

σ2. (23)

Note that

Ric(∇σ + αu,∇σ + αu) = Ric(∇σ,∇σ) + 2αRic(u,∇σ) + α2Ric(u, u)
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and integrating the above equation while using Equations (20)–(23), we conclude∫
M

Ric(∇σ + αu,∇σ + αu) =
∫
M

(
(∆σ)2 − |Hess(σ)|2 −m(m− 1)α2σ2 + α2‖G‖2

)
,

that is, on using Equation (17), we have∫
M

(
Ric(∇σ + αu,∇σ + αu)− α2‖G‖2

)
=
∫
M

(
1
m
(∆σ)2 − |Hess(σ)|2

)
.

Now, using inequality (16) and the Schwartz’s inequality |Hess(σ)|2 ≥ 1
m (∆σ)2 in the

above equation, we derive

|Hess(σ)|2 =
1
m
(∆σ)2

and the above equality holds if and only if

Hess(σ) =
1
m
(∆σ)g.

Hence, by Equation (17) we have

Hess(σ) = −ασg,

where α is a positive constant and the potential function α is a nonconstant function
due to the fact that u is a nontrivial conformal vector field and first equation in Equa-
tion (12). Hence, by Obata’s result, it follows that (M, g) is isometric to the sphere Sm(α).
The converse is trivial as the sphere Sm(α) admits a nontrivial conformal vector field u
with potential function σ = −

√
α f (see Equation (7)) with ∇σ = −αu (see Equation (3).

Thus, we have
∇σ + αu = 0

and u being a gradient (see Equation (3)), it follows that dγ = 0, where γ is the smooth
1-form dual to u, and therefore we derive immediately that G = 0. Hence, we conclude
that on the sphere Sm(α) the conditions in the statement of the Theorem 2 hold.

4. Conclusions

The aim of the present work was to study whether the existence of a nontrivial
conformal vector field on an n-dimensional compact Riemannian manifold satisfying some
very natural conditions influences the geometry of this space. Investigating this question,
we arrived at two characterizations of the standard n-spheres with the help of nontrivial
conformal vector fields, using the de-Rham Laplace operator and the Fischer–Marsden
differential equation. One of the key ingredients in proving these results was the Obata’s
celebrated theorem on the characterization of the standard spheres (see [18]). Finally, we
would like to mention some possible applications of the results. Obviously, it is unfeasible
to obtain results of this type imposing such conditions for a general vector field on a general
Riemannian space, but it is expected to be possible to adapt and apply the techniques
developed in this article to other remarkable vector fields and famous (partial) differential
equations on Riemannian manifolds. It is clear that such characterizations provide us
a better insight of the relationship between differential equations and vector fields on
Riemannian manifolds. In particular, it is worth mentioning that as immediate applications
of the results, we obtain not only characterizations but also obstructions to the existence of
certain nontrivial solutions to some (partial) differential equations on spaces of great interest
in differential geometry, like Euclidean spheres, complex and quaternion projective spaces
(see, e.g, [25]). Applications in physics are also notable, as many complicated physical
problems are modeled through differential equations on certain (pseudo)-Riemannian
manifolds (see, e.g, the recent books [32,33]). We only mention that the Fisher and Marsden
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equation investigated in this work in a geometric setting is nothing but the so-called vacuum
static equation on static spaces introduced by Hawking and Ellis in [34].
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