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Abstract: This article introduces an approach to the automated generation of special algebras
through genetic algorithms. These algorithms can be also used for a broader variety of applications
in mathematics. We describe the results of research aiming at automated production of such algebras
with the help of evolutionary techniques. Standard approach is not relevant due to the time complex-
ity of the task, which is superexponential. Our research concerning the usage of genetic algorithms
enabled the problem to be solvable in reasonable time and we were able to produce finite algebras
with special properties called EQ-algebras. EQ-algebras form an alternate truth–value structure for
new fuzzy logics. We present the algorithms and special versions of genetic operators suitable for
this task. Then we performed experiments with application EQ-Creator are discussed with proper
statistical analysis through ANOVA. The genetic approach enables to automatically generate algebras
of sufficient extent without superexponential complexity. Our main results include: that elitism is
necessary at least for several parent members, a high mutation ratio must be set, optional axioms
fulfilment increases computing time significantly, optional properties negatively affect convergence,
and colorfulness was defined to prevent trivial solutions (evolution tends to the simplest way of
achieving results).

Keywords: EQ-algebra; genetic algorithm; superexponential problem; finite algebra

MSC: 68T20; 68T35

1. Introduction

Genetic algorithms (GA) are among the basic methods used to solve optimization
problems. Particularly the GA are suitable for tasks with uncertain knowledge of the
domain or for optimization applications. The basic idea of GA is based on the theory of the
adaptation of natural selection in biological systems, according to which only individuals
with the best qualities survive. By crossing individuals with appropriate characteristics,
descendants are likely to be adapted to successful survival.

This paper presents the results of the use of genetic algorithms to search for the
structure of truth values in a new class of algebras called EQ-algebras. A standard solution
to this problem with a classical hard-computing approach, for its complexity, appears
to be insoluble, even for small algebraic structures. Even if we limit the problem to the
finite structures, we will still be facing a problem with an exponential class of complexity.
Some of these tasks are even problems with a super-exponential class of complexity. A
natural candidate for this purpose can be seen in evolutionary techniques [1]. There is also
suitable criterion directly convertible into fitness function based on the fraction of axioms
and expressions fulfilling the desired properties of an algebra. Our research, development
and experiments concerning the usage of these optimized evolutionary techniques are
discussed in the article.

The computer application working through the methods described in the article
(software package EQCreator), which produces EQ-algebras (equality based structures
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usable as truth values algebras) in a feasible time. The article further describes experimental
evaluation on special algebras and their operators with special axioms, which could be
useful for various types of fuzzy logics.

This article shows a formulation of the problem at first and also a description of
EQ-algebras basic principle. We also summarize former work of several authors using GA
for finite algebra structures creation. Additionally, we describe in detail our application
of evolutionary principles, especially Genetic Algorithms and the implementation of the
presented methods in the form of computer application EQCreator [2]. Finally, we present
experiments demonstrating the time efficiency of the presented evolutionary approach as
well as the main issues with an impact on the efficiency of the method.

2. Finite Algebras Automated Production

By a finite algebra we mean finite set of algebra elements, a finite number of algebra
operations (operators) of various amount of parameters (n-ary operators) and a set of
axioms, to which the algebra must conform to be well constructed [3].

The specificity of a particular algebra is especially predefined by the set of axioms
(constraints) by which the creator (mathematician) is trying to model some system (real-life
or artificial). In this article we demonstrate our methods on the specific algebras called
EQ-algebras. These ones are especially useful for fuzzy logicians to model alternative fuzzy
logic truth value structures based on the notion of fuzzy equality.

The research main motivation was to provide group of prof. Novak from Institute
for Research and Applications of Fuzzy Modelling (Univ. of Ostrava) tool for generation
suitable EQ-algebras (not only plain EQ-algebras but especially special algebras with
properties suitable as truth structures of new fuzzy logics called EQ-logics), e.g., involutive
EQ-algebras. These EQ-logics were presented for example in [4].

The problem is the following task. We would like to design and create finite algebras
with specific properties:

• n—number of algebra elements (finite);
• Operators of an algebra;
• Compulsory axioms for elements and operators;
• Optional properties of operations (axioms);
• Produce algebraic structures following the defined axioms.

There is a possibility to create such an algebra ad hoc with the help of properties
automated check. Such a check is not a hard task, we have to implement only simple
combinatorial procedure to prove axioms on all possible variations of the candidate al-
gebra. By a candidate algebra we mean a member consisting of n elements with defined
operation tables.

The simplest possible method consists in a ”brute force” (combinatorial) approach
which generates whole state space (the need to generate every candidate algebra and
its check against preferred properties). Such an approach is not suitable. Consider the
following example.

• Example: n elements, k binary operations, l axioms (m elements dependence):

– Nc = (n)k∗n∗n possible candidates;
– l axioms check - expression computations Nev = l ∗ (nm) for every candidate;
– number of axioms’ operations performed Nt = Nc ∗ Nev;
– axioms’ operation uses tens of simple (CPU level) instructions;
– current common computer processes about 109–1010 instructions per second.

• Fix k = 3, l = 10, m = 3 and observe the raw number of candidate algebras:

– n = 4, {0, a, b, 1}, Nc
.
= 7.9 ∗ 1028, Nt

.
= 5.1 ∗ 1031

– n = 5, {0, a, b, c, 1}, Nc
.
= 2.6 ∗ 1052, Nt

.
= 3.3 ∗ 1055

– n = 6, {0, a, b, c, d, 1}, Nc
.
= 1.0 ∗ 1084, Nt

.
= 2.4 ∗ 1087

– n = 7, {0, a, b, c, d, e, 1}, Nc
.
= 1.6 ∗ 10124, Nt

.
= 5.8 ∗ 10127
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– . . .

It is clear that even for minimal extent of the algebraic structures (limited number of
elements in algebra) the range of search state space is huge and leading to high number of
options (Figure 1). The superexponential complexity makes hard-computing algorithms for
exploration of state space unusable and there is natural possibility to employ evolutionary
techniques [5].

Figure 1. Superexponentiality of the problem (time—seconds vs. elements).

3. Genetic Algorithms

Genetic algorithms (GA) provide usual procedures for automated design of optimized
structures based on evolution-inspired methods [1,6]. Even though GA are relatively
simple to implement, it is very sensitive to suitable settings of basic parameters. It is also
important to choose best fitting types of crossover and mutation for usage of evolutionary
approach [7]. The paper [8,9] is an example of former research in this field. The algorithm
in the paper was based on the following steps:

• The fitness is defined as sum of all error rates across all fitness states for particular
operation (in some cases scaled).

• Method of generation for new members was tree-based GP technique
(ECJ implementation).

• Special mutation called fair-mutation—using PTC1 and PTC2 algorithms (mutants in
new subtree is guaranteed to not differ by more than predefined percentage).

• In some cases alternative selection methods were used, e.g., ECJ parsimony based
tournament [8].

The paper describes the very high level of mutation (in some cases over 0.5), which
shows problems with convergence of the process. We followed another approach using
straightforward GA and we will also try to compare our results with [8]. However, the
reader should consider our approach and objectives different with some similar impacts.

Main characteristics of Genetic Algorithms [2], Figure 2:

• Population member (candidate solution), fitness criterion (computes suitability based
on axioms);

• Population—member set, default population (randomly generated);
• Derived generation is based on previous generation by selection, crossover and muta-

tion operators;
• Generate new populations until the stop condition is fulfilled (fix number of iterations—

populations, chosen fitness value set as optimal, etc.).
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Initialize
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Evaluate fitness
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Yes Termination  
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Selection Crossover

MutationOutput results

Figure 2. Genetic algorithm flowchart.

Population of Members (GA)

• Candidate solution p (Population Member / PM) coded according to its properties
(usually stored in “chromosomes”—bit array, integer array etc.);

• Value of fitness function for candidate member f , f (x) ∈ 〈0, 1〉, x is PM—the most
complex computation with respect to time efficiency of the whole task (parallelism
should be considered as an optimization option);

• Population—fix or variable number of PM: Population member (possible algebra
structure), evaluated by the fitness function (algebra axioms fulfilment), Population—
sets of PMs, best PM, worst PM, median PM, Generation—particular populations in
sequence are called generations G0, . . . , Gr, where Gi = {pi,j|i, j ∈ N}, i is generation
index, j describes index of member in population,

• Starting Generation G0—it is generated as partial random population.

Genetic operators (GA)

• Selection—provides tool for choosing parent members for further processing:

– Elitist—best m PM from Gi are used in next generation Gi+1,
– Crossover selection (CS)—selected PMs (parents) from Gi are set as source ele-

ments for generation of descendants (new generation) for Gi+1,
– CS should conform the selection criterion probCS(p) for PM p monotone with

respect to fitness function: f (p1) ≥ f (p2)⇒ probCS(p1) ≥ probCS(p2).

• Crossover—combination of several PMs to produce new descendant PMs for
new generation:

– Ordinary type—two parent PMs pold1, pold2 lead to two descendants, where the
first portion of chromosome is from pold1 and the second from pold2 and contrary,

– Exponential type—if we can distinguish several portions of a chromosome, we
can produce higher number of descendants than parents number (combinatorial
production of all variations).

• Mutation—new PMs have predefined probability to be mutated:

– Mutation rate—probability of selection PM for mutation;
– Point—single element of chromosome is altered;
– Interval—multiple parts of chromosome elements are mutated;
– Overall—whole chromosome is altered.
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4. EQ-Algebras

The task is to produce specific algebras—EQ-algebras. Research of EQ-Algebras is
aiming mainly in its potential to serve as truth value structure for new EQ-logics [10,11]. In-
stead of implication, the key operation is Fuzzy Equality. EQ-algebra has three essential op-
erations in total: Infimum ∧, Multiplication⊗, Fuzzy Equality∼ and dependent operations
(derivable)—Implication→, Negation ¬, and relational operator LessThanOrEqual ≤.

EQ-algebra E is algebra of type (2, 2, 2, 0), i.e.,

E = 〈E,∧,⊗,∼, 1〉 (1)

(E1) 〈E,∧, 1〉 is a commutative idempotent monoid (i.e.,∧-semilattice with top element 1).
We put a ≤ b iff a ∧ b = a, as usual.

(E2) 〈E,⊗, 1〉 is forms a monoid and ⊗ is isotonic w.r.t. ≤ .

(E3) a ∼ a = 1 (reflexivity axiom)

(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) ≤ c ∼ (d ∧ b) (substitution axiom)

(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d) (congruence axiom)

(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a (monotonicity of fuzzy equality axiom)

(E7) a⊗ b ≤ a ∼ b (axiom of boundedness)

Special EQ-algebras Let E be an EQ-algebra and a, b, c, d ∈ E. We say that E is:

• Separated if for all a ∈ E, a ∼ b = 1 implies a = b.
• Good if a ∼ 1 = a.
• Residuated if for all a, b, c ∈ E, (a⊗ b) ∧ c = a⊗ b iff a ∧ ((b ∧ c) ∼ b) = a.
• Involutive if for all a ∈ E, ¬¬a = a.
• Prelinear if for all a, b ∈ E, sup{a→ b, b→ a} = 1.
• Lattice EQ-algebra (`EQ-algebra) if it is a lattice and ((a ∨ b) ∼ c)⊗ (d ∼ a) ≤ (d ∨ b) ∼ c.
• Linear if for all a, b ∈ E ((a ∧ b) = a) or ((a ∧ b) = b).

Example EQ-algebra of the size 6 (generated by EQCreator)

∧ 0 a b c d 1

0
a
b
c
d
1



0 0 0 0 0 0
0 a b c d a
0 b b c b b
0 c c c c c
0 d b c d d
0 a b c d 1



⊗ 0 a b c d 1

0
a
b
c
d
1



0 0 0 0 0 0
0 a b c d a
0 b 0 0 0 b
0 0 0 0 0 c
0 d 0 0 d d
0 a b c d 1



∼ 0 a b c d 1

0
a
b
c
d
1



1 0 0 0 0 0
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 a a a a 1


5. EQ-Algebras Design by Specific Genetic Algorithms

During exploration of potential EQ-algebras automated generation for further research,
we used GA with specific options. The software application EQCreator is implemented
using OOP design (EQ-algebras as GA Population Members). GA Population is imple-
mented as list of PMs. The fitness function is based on relative fulfilment of mandatory
and optional axioms. Automatically generated EQ-algebras designed following all criteria
(axioms) are called Winners and they are stored as a result. The important element of the
procedure is detection of previously produced (identical) population members (removal).

Random (starting) population is partially built to fulfil simple properties (e.g., infimum
is commutative).

For every EQ-algebra operation (operator) we have to set the operation table (two-
dimensional array). It depends on the type of the algebra how many operators are gen-
erated. General EQ-algebras have three basic operations (infimum, multiplication and
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equality), but delta operator is further needed for the special type algebras (∆EQ-algebras).
Derived operators (implication, ordering, negation etc.) are not needed to be generated
since they are computed from three basic operators.

Fitness evaluation has two phases:

• Mandatory properties computation (axioms like boundedness property—
a⊗ b ≤ a ∼ b).

• Optional properties computation (e.g., Involutive—for all a ∈ E, ¬¬a = a).

In every generation, PMs are sorted in population according to fitness value. There is
also a need to determine stopping condition:

• Predefined number of steps performed.
• Predefined number of EQ-algebras with required properties.
• Manual (user) termination.

Algorithms are implemented in the form of software tool EQCreator—MS Windows
32-bit application with user interface [12]. The Graphical User Interface with GA and
algebra settings, algebra preview and generation utilities is demonstrated on Figure 3 with
sample general EQ-algebra of the size 5. Its main purpose is as follows:

• Predefine essential properties for algebras generation.
• Algebras production with EQ-algebras fulfilling specific properties.
• Properties (axioms) computation additionally required for generated structures.
• Saving of resulting optimal solutions for further processing.

Figure 3. EQCreator showing the generated EQ-algebra.
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The software is working according to basic settings—Algebra extent allow define
size from 2 to 28 elements, Population limit—max. number of algebras in the population,
Generation steps—max. number of generations permitted (or it can be terminated by
user) (0—unlimited) and Termination after desired number of EQ-algebras is found. The
application allows to set essential properties of genetic operators:

• Children ratio (0–100%)—crossover resulting descendant relative count (how large
portion of the new population to be new descendants, others are old members copied
from the previous generation);

• Cross ratio (0–100%)—portion of BEST members to have a possibility to be used for
crossover (it is not a crossover probability!);

• Mutation ratio (0–100%)—descendant population members probability to be altered
by mutation;

• Selection for crossover probability is set arbitrary (fixed)—in a descending order
(by fitness) population of size N, we set probability of member i pi = N−i

N∗(N+1)
2

for

i = 0, ..., N − 1, where f (i) ≥ f (i + 1) (fitness for members) e.g., for 5 members:
p0 = 5

15 , p1 = 4
15 , ..., p4 = 1

15 ;
• Selection of members for crossover is done by roulette type (fitness proportionate

selection) with above defined probability. The example scheme for 10 members
m[0]..m[9] sorted by fitness function from best to worst is demonstrated on Figure 4;

• Weight of optional properties—relative weight of special EQ-algebras requirements
(e.g., linear EQA, involutive EQA)—should be significantly lower than essential
axioms weight (from experiments its best setting is 15%);

• Notion of colorfulness—required distinct elements incidence in non-trivial positions as
operator function values (some combinations are trivial, e.g., a ∧ 0 = 0 in every EQA);

• Colorfulness assures non-trivial EQ-algebras to be generated, e.g., for fuzzy equality
when 3 out of 5 required—at least 3 different elements occur as functional values in
non-determined cases;

• colorfulness experimentally needed for Multiplication (⊗) and Fuzzy Equality (∼)—
higher means computationally harder!

Figure 4. Roulette type selection for sorted population members by fitness (n = 10) .

EQ-creator also enables to inspect properties of both candidate algebras and special
EQ-algebras when the user needs to adjust GA properties (Figure 5).
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Since genetic algorithms have many types of crossover and mutation mechanisms,
we have experimented with many of them (e.g.simple crossover, exponential crossover,
point mutation, interval mutation). Our presented results were attained with a suitable
combination of the exponential type of crossover with point mutation. Figure 6 illus-
trates our method, which depends on the production of 2k new population members by
recombination of every algebra operator separately (where k is the number of operators).

Figure 5. EQCreator and properties of an EQ-algebra.
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Selected candidate algebra(parent 1) 
^   0 a b c d 1      * 0 a b c d 1      ~ 0 a b c d 1        
  -|------------     -|------------     -|------------       
  0|0 0 0 0 0 0      0|0 0 0 0 0 0      0|1 a a a a a   
  a|0 a b a a a      a|0 a b a 0 a      a|a 1 c 1 1 1   
  b|0 b b b b b      b|0 b b b 0 b      b|a c 1 a c a    
  c|0 a b c a c      c|0 b b c 0 c      c|a 1 a 1 1 1   
  d|0 a b a d d      d|0 d b d 0 d      d|a 1 c 1 1 1   
  1|0 a b c d 1      1|0 a b c d 1      1|a 1 a 1 1 1   

 
Selected candidate algebra(parent 2) 
^   0 a b c d 1      * 0 a b c d 1      ~ 0 a b c d 1        
  -|------------     -|------------     -|-----------       
  0|0 0 0 0 0 0      0|0 0 0 0 0 0      0|1 a a a a a   
  a|0 a b a a a      a|0 b b a 0 a      a|a 1 c 1 1 1   
  b|0 b b b b b      b|0 b b b 0 b      b|a c 1 a c a 
  c|0 a b c d c      c|0 b b c b c      c|a 1 a 1 1 1   
  d|0 a b d d d      d|0 d b d 0 d      d|a 1 c 1 1 1   
  1|0 a b c d 1      1|0 a b c d 1      1|a 1 a 1 1 1   

 
Child (infimum ^) 1/2 
^   0 a b c d 1      * 0 a b c d 1      ~ 0 a b c d 1        
  -|------------     -|------------     -|------------       
  0|0 0 0 0 0 0      0|0 0 0 0 0 0      0|1 a a a a a   
  a|0 a b a a a      a|0 a b a 0 a      a|a 1 c 1 1 1   
  b|0 b b b b b      b|0 b b b 0 b      b|a c 1 a c a    
  c|0 a b c a c      c|0 b b c 0 c      c|a 1 a 1 1 1   
  d|0 a b d d d      d|0 d b d 0 d      d|a 1 c 1 1 1   
  1|0 a b c d 1      1|0 a b c d 1      1|a 1 a 1 1 1   

 
Child (infimum ^) 2/1 
^   0 a b c d 1      * 0 a b c d 1      ~ 0 a b c d 1         
  -|------------     -|------------     -|-----------       
  0|0 0 0 0 0 0      0|0 0 0 0 0 0      0|1 a a a a a   
  a|0 a b a a a      a|0 b b a 0 a      a|a 1 c 1 1 1   
  b|0 b b b b b      b|0 b b b 0 b      b|a c 1 a c a 
  c|0 a b c d c      c|0 b b c b c      c|a 1 a 1 1 1   
  d|0 a b a d d      d|0 d b d 0 d      d|a 1 c 1 1 1   
  1|0 a b c d 1      1|0 a b c d 1      1|a 1 a 1 1 1   

 
Child (product *) 1/2 
^   0 a b c d 1      * 0 a b c d 1      ~ 0 a b c d 1        
  -|------------     -|------------     -|------------       
  0|0 0 0 0 0 0      0|0 0 0 0 0 0      0|1 a a a a a   
  a|0 a b a a a      a|0 a b a 0 a      a|a 1 c 1 1 1   
  b|0 b b b b b      b|0 b b b 0 b      b|a c 1 a c a    
  c|0 a b c a c      c|0 b b c b c      c|a 1 a 1 1 1   
  d|0 a b a d d      d|0 d b d 0 d      d|a 1 c 1 1 1   
  1|0 a b c d 1      1|0 a b c d 1      1|a 1 a 1 1 1   

 
Child (product *) 2/1 
^   0 a b c d 1      * 0 a b c d 1      ~ 0 a b c d 1        
  -|------------     -|------------     -|-----------       
  0|0 0 0 0 0 0      0|0 0 0 0 0 0      0|1 a a a a a   
  a|0 a b a a a      a|0 a b a 0 a      a|a 1 c 1 1 1   
  b|0 b b b b b      b|0 b b b 0 b      b|a c 1 a c a 
  c|0 a b c d c      c|0 b b c b c      c|a 1 a 1 1 1   
  d|0 a b d d d      d|0 d b d 0 d      d|a 1 c 1 1 1   
  1|0 a b c d 1      1|0 a b c d 1      1|a 1 a 1 1 1   
 
Child (fuzzy equality ~) 1/2 
^   0 a b c d 1      * 0 a b c d 1      ~ 0 a b c d 1        
  -|------------     -|------------     -|------------       
  0|0 0 0 0 0 0      0|0 0 0 0 0 0      0|1 a a a a a   
  a|0 a b a a a      a|0 a b a 0 a      a|a 1 c 1 1 1   
  b|0 b b b b b      b|0 b b b 0 b      b|a c 1 a c a    
  c|0 a b c a c      c|0 b b c 0 c      c|a 1 a 1 1 1   
  d|0 a b a d d      d|0 d b d 0 d      d|a 1 c 1 1 1   
  1|0 a b c d 1      1|0 a b c d 1      1|a 1 a 1 1 1   

 
Child (fuzzy equality ~) 2/1 
^   0 a b c d 1      * 0 a b c d 1      ~ 0 a b c d 1        
  -|------------     -|------------     -|-----------       
  0|0 0 0 0 0 0      0|0 0 0 0 0 0      0|1 a a a a a   
  a|0 a b a a a      a|0 b b a 0 a      a|a 1 c 1 1 1   
  b|0 b b b b b      b|0 b b b 0 b      b|a c 1 a c a 
  c|0 a b c d c      c|0 b b c b c      c|a 1 a 1 1 1   
  d|0 a b d d d      d|0 d b d 0 d      d|a 1 c 1 1 1   
  1|0 a b c d 1      1|0 a b c d 1      1|a 1 a 1 1 1    

Random crossover points 
(portion of candidate 1 and 2) 

 

Selected population 
members for crossover 

Figure 6. Specific exponential crossover by algebra operators.
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As it can be seen from the experimental usage of EQCreator application (Figure 7), the
time efficiency is far better than using the classical algorithmical approach. Superexponen-
tial classical approach has been reduced to something we can assume to be only exponential
time complexity, which is, for our extent of algebras (about n < 20), an acceptable time
complexity. We are now working on the possibility of paralelization of GA, in order to
produce larger EQ-algebras in a shorter time.

●

●

●

●

5 6 7 8 9 10

2
5

10
20

50
10

0
20

0
50

0
10

00

Elements

S
ec

on
ds

Figure 7. GA efficiency (time versus number of elements). Tested on Pentium 4—2.8 GHz.
Improvement—(no superexponentiality).

6. Experimental Evaluation and Optimization

Although the above described approach enabled the process of finite algebras genera-
tion to be feasible, it is also very important to tune the appropriate settings of the genetic
algorithm. The main problem discovered already in [8] is connected with the level of
mutation ratio—probability (the probability of a new population member to be mutated).
The high mutation ratio has been observed in the mentioned article (even over 0.5) and
it is also our experience during preliminary experiments. Since the mutation ratio affects
convergence of the GA, it has a significant impact on computational efficiency. Since muta-
tion probability is the most important part for successful genetic algorithms applications
together with suitable crossover implementations, we have been thoroughly experimenting
with this parameter.

We have created special version of EQCreator software for our experiments, capable
of automatic generation of statistically appropriate samples to test the measurement results
with statistical software NCSS.

6.1. Experiment No. 1

In this experiment we used EQCreator with parameters shown in Table 1 to determine
the relationship between runtime and mutation rate. The mutation rate was set from 10%
to 45% with 5% step.
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Table 1. Experiment no. 1.

Algebra Settings

Elements number n = 6
Colourfulness (⊗) 3
Colourfulness (∼) 3

No special algebra constraints

Analysis of variance

F-Ratio 1.25
Prob Level 0.279402

Analysis of variance for time vs. mutation rate shows no statistically significant
differences (Table 1), but the plot of the means shows a decrease in the measured time with
the best results in 30–35% and then the results show increase in computation time related
to the increase in mutation rate (Figures 8 and 9).

Figure 8. Exp. no. 1—Box Plot.
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Figure 9. Exp. 1—Computing time means.

Fisher’s LSD Multiple-Comparison Test shows statistically significant (0.05) difference
between level 35 percent and 25 percent.

6.2. Experiment No. 2

An analysis of variance for time vs. fuzzy equality colorfulness shows no statistically
significant differences. There is a natural increase in the computation time with respect to
higher requirements on colorfulness of fuzzy equality (Figures 10 and 11). The last value
shows a slight decrease, but not statistically significant (Table 2).

Table 2. Experiment no. 2.

Algebra Settings

Elements number n = 6
Colourfulness (∼) from 2 to 5
Mutation 30%
No special algebra constraints

Analysis of variance

F-Ratio 1.92
Prob Level 0.134016
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Figure 10. Exp. no. 2—Box Plot.

Figure 11. Exp. 2—Computing time means.

6.3. Experiment No. 3

An analysis of variance for time vs. population limit shows statistically significant
differences (Table 3). It seem to be more efficient to work with smaller populations up to
250 members to attain optimal performance (Figures 12 and 13).
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Table 3. Experiment no. 3.

Algebra Settings

Elements number n = 6
Initial population limit 100
Final population limit 500
Population step 50
Colourfulness (⊗) 3
Colourfulness (∼) 3
Mutation 30%
No special algebra constraints

Analysis of variance

F-Ratio 2.14
Prob Level 0.034365

Figure 12. Exp. no. 3—Box Plot.

Figure 13. Exp. 3—Computing time means.
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6.4. Experiment No. 4

The analysis of variance for time vs. multiplication colorfulness shows statistically
significant differences. The results show that the best efficiency is for smaller colorfulness
of multiplication in contrast to fuzzy equality results. (Table 4). Computing times are
presented in Figures 14 and 15.

Our experiments with mutation rate showed the need to adjust the rate to relatively
high values. Nevertheless ANOVA results proved that around 30% there is a typical area
of best mutation rate settings for our GA optimization method.

Another important finding relates to colorfulness and its impact to computing time.
Medium values of colorfulness for fuzzy equality and multiplication are harder to compute
necessary EQ-algebras.

Table 4. Experiment no. 4.

Algebra Settings

Elements number n = 6
Colourfulness (⊗) from 2 to 5
Mutation 30%
No special algebra constraints

Analysis of variance

F-Ratio 8.20
Prob Level 0.0997917

Figure 14. Exp. no. 4—Box Plot.



Mathematics 2021, 9, 861 16 of 19

Figure 15. Exp. 4—Computing time means.

7. Examples and Application

The presented algorithm and its produced EQ-algebras were used as potential truth
valued structures for EQ-logics by team of researchers of Institute for Research and Ap-
plications of Fuzzy Modeling, University of Ostrava [10]. We present some interesting
examples of special algebras produced for use as a truth value structures of EQ-logics.

7.1. Good EQ-Algebra—a ∼ 1 = a

Good EQ-algebras have special requirement for fuzzy equality: a ∼ 1 = a. Table 5
presents EQCreator settings for such an algebra and the resulting sample algebra follows.
Figure 16 presents GA iteration progress for this particular case.

Table 5. EQCreator settings for good algebra.

Algebra Settings

Elements number n = 6
Colourfulness (⊗) 3
Colourfulness (∼) 3
Mutation 30%
Special requirements Good EQ-algebra

∧ 0 a b c d 1

0
a
b
c
d
1



0 0 0 0 0 0
0 a b c a a
0 b b b b b
0 c b c c c
0 a b c d d
0 a b c d 1



⊗ 0 a b c d 1

0
a
b
c
d
1



0 0 0 0 0 0
0 0 0 0 0 a
0 0 0 0 0 b
0 0 0 0 0 c
0 a 0 c d d
0 a b c d 1



∼ 0 a b c d 1

0
a
b
c
d
1



1 0 0 0 0 0
0 1 b c a a
0 b 1 c b b
0 c c 1 c c
0 a b c 1 d
0 a b c d 1
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Figure 16. EQCreator computation for special algebra—good.

7.2. Involutive EQ-Algebra—For All a ∈ E, ¬¬a = a

Involutive EQ-algebras have special requirement for negation, which is derivable
from implication operation (derived operation defined as a→ b = (a ∧ b) ∼ a): a ∼ 1 = a).
Then, negation is defined as ¬a = a ∼ 0, a ∈ E. Involutive algebra must conform to for all
a ∈ E, ¬¬a = a. Table 6 presents EQCreator settings for such an algebra and the resulting
sample algebra follows. Figure 17 presents GA iteration progress for this particular case.

Table 6. EQCreator settings for involutive algebra.

Algebra Settings

Elements number n = 6
Colourfulness (⊗) 3
Colourfulness (∼) 3
Mutation 30%
Special requirements Involutive EQ-algebra

∧ 0 a b c d 1

0
a
b
c
d
1



0 0 0 0 0 0
0 a a a d a
0 a b b d b
0 a b c d c
0 d d d d d
0 a b c d 1



⊗ 0 a b c d 1

0
a
b
c
d
1



0 0 0 0 0 0
0 0 0 0 0 a
0 0 d a 0 b
0 0 d a 0 c
0 0 0 0 0 d
0 a b c d 1



∼ 0 a b c d 1

0
a
b
c
d
1



1 b a d c 0
b 1 b a b a
a b 1 b a b
d a b 1 d c
c b a d 1 d
0 a b c d 1



Figure 17. EQCreator computation for special algebra—involutive.

7.3. Non-Commutative Good EQ-Algebra—Multiplication ⊗ Is Non-Commutative Operation

Non-commutative EQ-algebras have the multiplication operation which is not com-
mutative operation. They would be also interesting for EQ-logic creators (e.g., [10]). Table 7
presents EQCreator settings for such an algebra and the resulting sample algebra follows.
Figure 18 presents GA iteration progress for this particular case.

Table 7. EQCreator settings for non-commutative multiplication algebra

Algebra Settings

Elements number n = 6
Colourfulness (⊗) 3
Colourfulness (∼) 3
Mutation 30%
Special requirements Non-commutative (⊗) and good EQ-algebra
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∧ 0 a b c d 1

0
a
b
c
d
1



0 0 0 0 0 0
0 a b c d a
0 b b c b b
0 c c c c c
0 d b c d d
0 a b c d 1



⊗ 0 a b c d 1

0
a
b
c
d
1



0 0 0 0 0 0
0 a b 0 0 a
0 0 0 0 0 b
0 0 0 0 0 c
0 0 0 0 0 d
0 a b c d 1



∼ 0 a b c d 1

0
a
b
c
d
1



1 0 d d b 0
0 1 b c d a
d b 1 d d b
d c d 1 b c
b d d b 1 d
0 a b c d 1



Figure 18. EQCreator computation for special algebra—non-commutative.

8. Conclusions

The main aim of this paper is to introduce an optimized solution for producing pure
EQ-algebras. In the introductory section was proved that use of hard-computing approach
is not suitable due to its superexponential time complexity. We utilized powerful Genetic
Algorithms for production of pure EQ-algebras with optimized properties. The resulting
structures were used by colleagues from Institute for Research and Application of Fuzzy
Modeling for design of new equality based fuzzy logic. We can summarize the observed
specific GA properties:

• Elitism is necessary at least for several parent members (5% was acceptable—despite
it may negatively the convergence of the process for high elitism ratio).

• High mutation ratio must be set in contrast with traditional use of GA (best results
with 25–35%).

• Optional axioms fulfilment increases computing time significantly (from experiments
15% is optimal setting).

• Optional properties negatively affect convergence.
• Colorfulness was defined to prevent trivial solutions (evolution tends to the simplest

way of achieving results).

We implemented above mentioned methods into computer software EQ Creator—
application for EQ-algebras only. The actual version of EQCreator can be downloaded
from pages of Institute for Research and Application of Fuzzy Modeling (IRAFM). This
approach is not only suitable for specific algebras, but we are currently working on an idea
of general generator of algebras with user defined axioms (properties). We would also like
to work especially on constrained EQ-algebras since the evolution of these algebras is even
more a computationally hard task.
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