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Abstract: This paper provides an in-depth review about parametric estimation methods for stationary
stochastic differential equations (SDEs) driven by Wiener noise with discrete time observations. The
short-term interest rate dynamics are commonly described by continuous-time diffusion processes,
whose parameters are subject to estimation bias, as data are highly persistent, and discretization bias,
as data are discretely sampled despite the continuous-time nature of the model. To assess the role
of persistence and the impact of sampling frequency on the estimation, we conducted a simulation
study under different settings to compare the performance of the procedures and illustrate the finite
sample behavior. To complete the survey, an application of the procedures to real data is provided.

Keywords: diffusion processes; continuous-time models; parametric estimation; stochastic differen-
tial equations; SDE

1. Introduction

Diffusion processes described by stochastic differential equations (SDE) are frequently
applied in physical, biological and financial fields to model dynamical systems with a
disturbance term. Its use in mathematical finance for modeling the evolution of important
economic variables, such as the interest rate, has been increasingly important over the
last decades. The need to develop the analysis of the term structure of interest rates in a
stochastic environment emerges as a consequence of market turbulence throughout the
seventies. New theories of the term structure of interest rate based on pricing models in
absence of arbitrage under stochastic environment were emerging: Merton [1] used the
interest rate in option pricing modeling it as a stochastic process. Subsequently, Black and
Scholes [2] had an important impact on arbitrage models of the term structure of interest
rates, as shown in [3-7]. In these models, the interest rate is the solution of the stochastic
differential equation, therefore we can use the framework of Markov processes theory
for its analytical treatment. The continuous time paradigm proves to be an especially
useful tool, but the continuous time nature of the model does complicate the estimation
of the parameters because available data are sampled in discrete time. Thus, parameter
estimates are subject to discretization bias together with estimation bias and this issues have
been addressed using different estimation methods. The finite sample bias is especially
acute when the process is highly persistent, such as time series of interest rates, and alters
the valuation of derivatives since short term interest rate models are used to price these
instruments [8].

We consider the SDE defined in a filtered probability space (Q, F AFt} >0, IP’), where
) is a nonempty set, F is a o-algebra of subsets of (2 and P is a probability measure,
P(Q)) = 1. We will focus on parametric time-homogeneous stochastic differential equations,
where X; is an Itd process,

dX; = m(Xt, 6) dt + O'(Xt, 6) dw;,

with XO = Xo, 0 S t S T, (1)

Mathematics 2021, 9, 859. https:/ /doi.org/10.3390 /math9080859

https://www.mdpi.com/journal /mathematics


https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6119-2582
https://orcid.org/0000-0002-9536-2973
https://orcid.org/0000-0002-3555-4623
https://doi.org/10.3390/math9080859
https://doi.org/10.3390/math9080859
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9080859
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9080859?type=check_update&version=1

Mathematics 2021, 9, 859

2 0f27

with X; € R, W; a {F} }+>0-adapted standard Wiener process and 6 an unknown parameter
vector such that 8 € ® C R with d a positive integer and ©® a compact set. We assume the
knowledge of the drift and diffusion functions parametric structure, m(-,0): Rx ©® — R
and o(-,0): R x ® — (0,00), respectively, where none is time dependent. Jump-diffusions
and fractional Brownian motion or Lévy-driven SDEs are out of the scope of this review.
A parametric specification of (1) that encloses different interest rate models is the
Chan—Karolyi-Longstaff-Sanders (CKLS) model proposed in [6], given by

dXt = K(‘u — Xt) dt + (7'X;Ly th,

which is a mean-reverting process that allows the conditional mean and variance to depend
on the interest rate level X. The drift parameter y is the long-term mean and « is the rate
of reversion, while the diffusion parameter ¢ is the volatility and < is the proportional
volatility exponent that measures the sensitivity of the volatility regarding the process
in time t. This model generalizes prior interest rate models by imposing restrictions on
the parameters. When v is 0 or 0.5—which yields the Vasicek [3] and CIR [5] model,
respectively—the process is tractable and admits an analytical solution.

In this article, we consider SDEs with deterministic volatility function, though current
option pricing literature withdraws the constant volatility assumption and adopts instead
a stochastic volatility framework. Nevertheless, the issues addressed here are inherited
by stochastic volatility models and the estimation methods can be extended to SDEs with
volatility described by a stochastic process. Furthermore, models based on the Vasicek
process are still used in the financial market (see, e.g., [9] or [10]) and new estimation
procedures are being proposed for jump-diffusions [11] or Lévy-driven processes [12].

Several studies of estimation methods for diffusion processes can be found in the
literature, see [13] for a theoretical comparison or [14] for a more practical approach. In [15],
a comparative study of different discretization methods and moment-based estimation is
carried out, while [16] focused on simulation-based approaches. The aim of this paper is
to complement these comparative studies extending the evaluation of the finite sample
performance to different settings—near unit-root time series, various degrees of persistence
without changes in the marginal density or different sampling intervals and observation
times—whose impact on estimation have been hinted at in the financial literature. The
methods here considered are maximum likelihood estimation, local linearization [17,18],
Hermite polynomial expansion [19], Kalman filter [20], Markov Chain Monte Carlo [21,22]
and generalized method of moments [6,23]. The procedures are provided in the companion
estsde R package [24], implemented in C and C++ for the sake of efficiency.

The sections are organized as follows: Section 2 provides an outline of the estimation
methods, Section 3 designs the Monte Carlo experiment and discusses the finite sample
performance of the procedures. Real data applications to interest rate series are presented
in Section 4 and conclusions are drawn in Section 5. Tabulated simulation results are
deferred to Appendix A.

2. Estimation Methods
The unique strong solution X; of the SDE in (1),
T T
X = Xy + / m(Xu, 0) dut + / 7(Xo, ) dW,,
0 0

exist under the assumptions that both drift m(-) and volatility o(-) functions satisfy global
Lipschitz continuous and growth conditions (see, e.g., [25]):

Assumption 1 (Global Lipschitz). For all x,y € R there exist a constant C; < oo independent
of 0 such that
m(x,8) —m(y,0)| +|(x,0) —(y,0)] < Cifx —y|.
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Assumption 2 (Linear growth). Forall x,y € R there exist a constant Cy < oo independent of
0 such that
m(x, 0)[ + |o(x,0)] < Co(1+ |x]).

Although the model is formulated in continuous time, data are registered in discrete
time points. In this regard, for the estimation of the continuous time model parameters
we should consider a discrete version of it. The observation scheme assumed is the fixed-A
scheme, in which the time step A between two consecutive observations is fixed and the
sample size n € N increases, as well as the time interval [0, T = nA]. One of the most
used approximation schemes is the Euler-Maruyama method [26]: given an Itd process
{Xt,0 < t < T}, solution of the SDE in (1) with initial value X;, = xg and the discretization
of the time interval [0, T],0 =ty < t; < - -- < t, = T, the Euler-Maruyama approximation
of X is a continuous stochastic process that satisfies the iterative scheme

Xiyy — Xp; = m(Xy, 0)(tig1 — t;) + 0(Xy,, 0) (Wi

withi =0,1,...,n -1, =iAand X;, = xo € R.

In the remainder of this section, we provide an outline of the procedures and their
implementation to estimate the unknown parameter vector 8. The methods described
fall into two categories: likelihood-based and method of moments. The method of mo-
ments provides estimates by matching population and sample moments and minimizing a
quadratic form, hence we assume that the moment conditions of X; are bounded:

i1 it1 Wfi)'

Assumption 3 (Bounded moments). Forall k > 0, all order k moments of the diffusion process
exist and are such that L
supE|X;|" < eo.
t

The maximum likelihood (ML) estimates are yielded by different methods: exact
and discrete (piecewise constant or linear approximations) ML, univariate Hermite ex-
pansion of the transition function, filtering algorithm (linear quadratic estimation) and
Bayesian approach.

2.1. Exact Maximum Likelihood

As X; is a Markov process, we can obtain the likelihood function £, (0) of the discrete
process using Bayes’ rule,

n

L4(8) =T Tro(A X, | Xii_y)pe(Xsy),
i=1
where pg(A, X;, | X, ,) denotes the transition density function associated to the parametric
diffusion model, with unknown parameter 6. If the parametric form of the model that
generates the observations {X;, }?:0 is known, we can use a maximum likelihood method,
so that the maximum likelihood estimator (MLE) of the true parameter is

6 =arg max £,(8),

where ¢,,(0) = log £,,(0) is the log-likelihood function. This estimation method can seldom
be used with diffusion processes, as few models have a closed-form solution, e.g., [2,3,5].
As a consequence, new procedures have been proposed in the ML framework based on
different approximations of the transition density function.

2.2. Discrete Maximum Likelihood

Discrete time likelihood (also known as pseudo-likelihood) methods emerge as an
alternative approach to approximate the unknown transition density of SDEs, where the
diffusion model is discretized with a certain numerical scheme, when exact maximum like-
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lihood is unfeasible. In some cases, analytical expressions for the parameters estimates can
be obtained, otherwise a numerical optimization routine is needed to maximize (minimize)
the (negative) log-likelihood. Several algorithms have been proposed to approximate SDEs
(see, e.g., [18,27,28]), here we briefly detail two of them.

2.2.1. Euler Method

To estimate the model we can use an approximation scheme, such as the Euler—
Maruyama [26] method. With this method we do not approximate the transition density
directly, instead the trajectory of the process is approximated so that we can use the
likelihood of the discretized version of the model, given by

Xi,,, — Xi, = m(Xy, 0)A + 0(Xy, 0)AY 2%, i=0,1,...,n—1, )

i+1
where ¢, areiid. N(0,1) and A = (t;;1 — t;). Therefore, the estimation with the Euler—
Maruyama method [29] proceeds as if the observations follow a Gaussian distribution,
with mean the drift function and standard deviation the diffusion function. Thus, the tran-
sition density is given by

B 1 1(y—x—m(x,0)A)?
pxo(By|x) = \/We)(p{_z Ac?(x,0) }

The implementation of this method is straightforward, however, Euler-type schemes
depend on the sampling interval A > 0 and introduce discretization bias in the estimates,
although they converge to exact ML estimates as A — 0. Departures from Gaussian distri-
bution can also increase bias since the Euler scheme increments are conditionally Gaussian.

2.2.2. Local Linearization

While the Euler-Maruyama approximation method restricts coefficients of the drift
and diffusion terms to be piecewise constant, the local linearization instead uses a linear
approximation. Considering the SDE

dX; = m(Xt, 6) dt + o dW;, (3)

where ¢ > 0 € R is assumed constant, the local linearization (LL) method developed
in [17,18] is an approximation method by which the drift function m(-, 8) is locally approx-
imated by a linear function of X; (no expansion is required for the diffusion function, as it
is constant). The numerical scheme is based on the local linearization of the SDE’s drift
coefficient by means of a truncated It6-Taylor expansion. The process discretized by the LL
method is

. (i+1)A .
Xis1)a = Xia + m(Xia, 6) (EAL:'A _ 1) + 0—/ eKinliHD)A—u] gy
Lia iA

where

and Ly = am(X;,0)/0X.

The linear function K; approximates the drift function m(-), with K; constant in the
interval [iA, (i 4+ 1)A). Given that the stochastic integral is a Gaussian random variable,
the transition density for X(; )5 given Xj is indeed Gaussian. Thus, we have that

(X(i +1)A | Xia) follows a normal distribution with mean and variance given by
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m(X;a, 0 )
E{X(i1)a | Xin} = Xia + (LZ'A )(eAL;A _1),
iA
2AK,‘A _1
2 e
Var{Xss | X} = ()

respectively, and therefore, maximum likelihood can be used to obtain the parameter
estimates. As the SDE in (3) has a constant diffusion function, if the parametric specification
we want to estimate is more intricate, a transformation is needed (e.g., standardizing the
diffusion term with the Lamperti transform, see Section 2.3). The LL approximation can
provide more accurate estimates than the Euler scheme (specially for nonlinear drifts),
though the implementation is more troublesome as a prior transformation of the process is
needed, as well as the derivative of the transformed process drift function (which can be
computed numerically or analytically, for higher efficiency).

2.3. Hermite Polynomial Expansion

Bayes’ rules combined with the Markovian nature of the diffusion process, inherited
by discrete data, implies that the log-likelihood is of the form

1 n
tu(0) = Eln{Px,e(A/ Xia | X(Fl)A)}/ 4
i—1

assuming that the process is observed in the time interval {iA | i = 0,...,n}, with fixed A.
Ait-Sahalia [19] proposed a maximum likelihood method for diffusion processes with
discrete samples, based on an approximation of the likelihood function using Hermite

polynomials. The author constructed a succession of approximations {pg(Kz, | K> 0} of the

transition density, such that (4) is a succession of approximations of KEIK).

We will need to standardize the diffusion coefficient of X, which is achieved using the
Lamperti transform,

X 1
Us = (X, 0) :/ e &

and using It6’s formula in the new process U;, we have the unitary diffusion

m(p~1(u,0);0) 190, )
diy = | ——F—= — = u,0);0) ) dt +dw;,
! (a(¢—1(u,6);9) 20x (v (1,0);0) '
provided that y~1(X;, 0) exists. This transformation allows the computation of the transi-
tion density px g from py ¢ through the Jacobian formula

P (8, x | x0;0) = o ((x,0);0) " 5 (A, 9 (x,0) | p(x0,6);6),
(J)

where the succession of explicit functions p;;’, based on Hermite expansions of the density
pu around a Gaussian density function up to order |, approximates py;. In ([19], Theorem 1)
it is proved that

pg(])(A,x | xO;B)]:)O px (A, x | x0; 0).

The coefficients of the density expansion terms can be calculated with a Taylor series

expansion in A, denoting p(u’K) as the order K Taylor series in A of pg). Usually, ] = 6

is taken, so the first seven Hermite coefficients (j =0, ..., 6) are used, along with Taylor
series up to order K = 3.
To obtain the MLE, the approximation of the log-likelihood function,
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1 n
= ; {ngg (A, Xia | X(i—l)A)}

(0

is maximized. Thus, we obtain an estimator 6,,
For stationary processes, the estimator satisfies

close to the exact 8, ([19], Theorem 2).

Vi (8, — 80) 15 N(0, i(89) 1),

where i(6p) is the Fisher information matrix.

The practical implementation of this procedure is limited to the existence of an explicit
inverse ¥ ! (X}, 0) and its complexity emerges from the analytically approximation of the
Hermite expansion coefficients, though in return the accuracy of the estimates is high.

2.4. Kalman Filter

The state-space model or dynamic linear model, introduced in [20], employs an order
one vector autoregression as a state equation and assumes that we do not observe the state
vector x; directly, but a linear transformation of it with noise added, y,. The state-space
representation of the dynamics of y, is given by the system of equations:

= dx;_1 + Yu; + wy, wy ~ iid N(0,Q), (5)
Y, = Apxy +Tup + vy, v ~ iid N(0,R), (6)

where the state vector x; is p x 1, the observed data vector y, is g x 1, the observation
matrix A;is g X p, uy is ar x 1 vector of inputs, Y is p X r, I is g X r and, for simplicity, we
assume that {w;} and {v;} are uncorrelated. Equation (5) is known as the state equation
and Equation (6) as observation equation.

Let x;;_1 = E{x: | y, 1} and P,y = E{(x — x;_1) (% — x4_1)'}, the Kalman
filter equations, with initial state xo ~ N (x|, Pop), are given by

X1 = Py g + Yuy, (7)
Py = ¢Pt71\t71q)/ +Q, (8)
Ki = Pt\t—lAg [AtPt\t—lA;& +R] 71/ )
Xy = X1 + Ke[y, — Arxypq — T, (10)
Py = [I— KiA¢| Py (11)

The Kalman filter is a recursive algorithm, Equations (7) and (8) are the time update
equations, where the state in time t is estimated with the information until time t — 1,
and Equations (9)—(11) are the measurement update equations, where the new information of
the estimation is incorporated and the mean squared error is minimized.

Let 0 = (®,Q,R,Y,T)’ be the vector of parameters, we can use maximum likelihood
under the assumption that the initial state is Gaussian and the errors {w;}_, and {v;}]_,
are uncorrelated Gaussian vectors. The Kalman filter can be set up to evaluate the likelihood
function, which can be computed with the innovations {sl} i1 Where &r =y, — Apxy_q —
T'u;, and because they are independent Gaussian random vectors with zero mean and
covariance matrix Xy = A¢Py; 4 A} + R, we can write the likelihood, Ly (0), as

In Ly (6 ): In|Z(0)] + % f £:(0)'Z:(0) er(6). (12)
t=1

The log-likelihood in (12) can be maximized by numerical search procedures to obtain
the estimation of 8, where the derivatives of (12) can be calculated numerically or analyti-
cally. The analytical derivatives can be obtained recursively by differentiating the Kalman
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Filter recursion, see [30]. Algorithms like the EM [31] or the Newton-Raphson can be used
to maximize the log-likelihood, as in [32,33], for an example of both approaches.

Under general conditions, let 0,, be the estimator of the true parameters 6y obtained
maximizing the innovation log-likelihood in (12). Subject to certain regularity conditions,
when n — oo

Vit(B, — 60) < N(0, i(60) 1),

where i(0)) is the asymptotic Fisher information matrix. The Kalman filter will generate
strongly consistent estimates of 8y when the parameters lie in a compact set. More details
on regularity conditions, convergence and asymptotic properties can be found in [30,34-37].
The Kalman filter can be used to estimate the parameters of the diffusion process (1) writing
in state-space form the discrete version given in (2),

7U(Xti,6) Et., (13)

\/E i

with Yy, = (X, — X4;)/A and g, are i.i.d. N (0,1) random variables. The discretized
model (13) is obtained by means of a Euler-Maruyama scheme, which makes the likelihood
function in (12) equivalent to the one obtained using the Euler method (see Section 2.2.1),
hence the parameter estimates for both methods will be close. The Kalman filter algorithm
provides a computationally efficient method for evaluating the log-likelihood. One of the
advantages of the state-space representation of the system (5) and (6) is that it allows latent
variables, which simplifies the extension to SDEs with stochastic volatility. Furthermore,
this framework does also admit the estimation of multidimensional models. Some ex-
tensions of the filter to nonlinear systems have been proposed in the literature, such as
the extended Kalman filter [38], which is close related to the local linearization method
introduced in Section 2.2.2, see [39].

Yt,' = m(Xt,.,(-)) +

2.5. Markov Chain Monte Carlo

The estimation of the parameters for the continuous time model by means of the
Markov Chain Monte Carlo (MCMC) procedure, given the discontinuous data, implies
finding the discrete version of the model. Discretizing the model with the Euler-Maruyama
approach, as in (2), we have

th. — Xti—l = Wl(Xt, B)A + O'(Xt, 9)(Wt’ — Wti—l ),

where (W, — W, ) isaii.d. N(0,A). This discrete time approximation of the SDE can be
too coarse to approximate the true transition density accurately (see [40] for the strong con-
vergence criterion for SDE). Elerian et al. [21] and Eraker [22] proposed MCMC approaches
involving data augmentation, where missing data between two neighbor observations is
treated as unknown parameters. Dividing the interval [0, T] into n = mT equidistant points
0=ty <t <---<ty_1 <ty =Timplies that T(m — 1) data points are missing, such that
Xy, = xZ,O’ xz-,l’ cery x;‘i,m_l, x;‘i,m = Xt,,,, as seen in Figure 1. The values of the unobserved
data, x; js are updated using the Metropolis—Hastings algorithm. The unobserved data
between two observations, Xy, and X}, ,, is updated in random sized blocks, where the
block size M follows a Poisson distribution with mean A, which leads to an average block
size of A + 1. Blocks of latent points, x;‘i,k, e, xZ,k M1/ preceded by the observation xZ,k_l

*

and followed by x have density conditioned on (x} 1, X} ;) given by

ti kM
k+M-—1 )

FO oo X onio | Y1 Xipias ) o L1 N[xfi,]-+m(xfi,]-,9)A,(7(x;‘i,]-,(-))A] (14)
j=k—1

Each block is sampled in sequence by the Metropolis—Hastings algorithm. Therefore,
new values for the unobserved block are drawn from the multivariate Gaussian distribution
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in (14), as suggested by [21]. The probability used to determine if the proposal value should
be taken as the next item of the chain is given by

) *(p) #(p) .
f(w] X k17 X kb M 0) q(xt,,k reer X kM1 | Xp k10 X5 ke Mi 0)

*(p) *(p) . .
f(xt,-,k e X kM1 | Xy k1 Xt e 0) q(w | Xy k1 X e 0)

a =minK{ 1,

7

(p)

* * * * . * : *
where w ~ q(xt]_’k, X M | Xp k10 Xp b i 0) and Xy i the current value of Xk
*(p—&-l) }k+M—1
ti,]

{x*(pﬂ) };(::471 = {x:gp) }HM*l with probability (1 — «).

at the end of the pth iteration. We then set w = {x with probability « and

j=k

ti/j ]:k

Figure 1. Augmented data in the discretization scheme: the observed data, X;, and X, ,, is aug-
mented by introducing (m — 1) unobserved data points.

The mean and covariance matrix of the multivariate Gaussian distribution are obtained
by a Newton-Raphson iterative procedure, where the mean is given by the mode of
Inf(-| xz,k—l' x;*’_,k 4 0) and the covariance matrix is the negative of the inverse Hessian
evaluated at the mode (see [21] for details regarding the gradient and Hessian matrix of
the target density).

To complete one cycle of the MCMC sampler, we need to sample 6 ~ (6 | X, X*)
conditioned on the augmented sample, both the observed states X and the simulated
auxiliary states X*. Assuming a non informative prior, the likelihood of the augmented
sample, under the Euler-Maruyama discretization scheme, is

M

n—1 x* . —x*‘—mx*»,BA2
E _ H H [ ti,j+1 ti,j ( ti,j ) ] } ) (15)
i=0

1
exp -
i=0 zan(x;;,j’ G)A { 20’2()(;;’]., B)A

This method shows accuracy and can be extended to multi-dimensional models—at
the cost of further computational demand—and to partially observed processes, such as
stochastic volatility models. The main drawbacks are related to its model-specific nature
and its more troublesome implementation. Moreover, determining the convergence of the
algorithm is not straightforward, nor is the number of parameter draws and the initial
iterations to be discarded.

2.6. Generalized Method of Moments

The generalized method of moments (GMM), introduced by Hansen [23], is a special
case of minimum distance estimation based in moment conditions. Let 8 be the vector of
parameters, we denote f;(6) as

fi(0) = ur @z, (16)
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where u; is an unobservable vector of disturbance terms, z; is a vector of instrumental
variables and “®” denotes the Kronecker product. We obtain the moment conditions
assuming that the error term is uncorrelated with the instrumental variables, thus we
have the orthogonality conditions E{ f;(0)} = 0. Replacing the theoretical moment condition
E{f:(6)} with its sample counterpart,

2l) =, L 11(0),

the GMM estimator is one that minimizes a squared Euclidean distance of sample moments
from their population counterpart of zero, given by the quadratic form

Qn(8) = gn(ﬂ)’Wn(G)gn(G), (17)

where W, (0) is a positive semi-definite weighting matrix. Choosing W, (8) = S~1(8),
where 5(0) = E{f;(8)f/(0)}, gives the GMM estimator of 8 with the smallest asymptotic
covariance matrix, see [23]. For a weighting matrix W, (0), the GMM estimator is

6= i 0).
arglggan( )

We assume that there are, at least, as many moment functions as parameters and that
on the compact parameter space ©,

E{f:(8)} =0 if and only if 6 = 6,

to achieve the identification condition for consistency of the GMM estimator. Consistency
results and conditions for asymptotic normality are given in ([41], Theorems 2.6 and 3.1).
When W(8) = S~1(8), we have that

V(0 —60) - N(0,V),

where V = (G'W(8)G) ', with G = dE{f:(6y)} /6.
To implement the GMM for the diffusion model in (1), we can consider the dis-
cretized process

Xt = Xp, + m(Xy, 0)A + ¢

i+1 i+1°
The error term can be defined as ¢,,, = Xy, , — E{X},,, | F,} = Xy, — Xi, —m(Xy, 0)A,
and the first and second moments under the time period A = t; 1 — t; are

E{StHl | ]:l‘i} =0, E{S%Hl | ]:fi} = U(Xti'6>2A/
respectively. Due to the independence of increments property of the Wiener process, we
can define (16) as the moments vector

1
Xt

1

€t

_E{‘SZ | ]:l‘i}

tit1

®

ff(e) = LZ ’
tit1

therefore, we have the orthogonality condition E[f;(0)] = 0 to construct the GMM estimator
of 6. In the rare cases that true moments are known, they should be used instead of their
discretized counterpart to avoid discretization bias.
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The GMM has a more flexible framework than maximum likelihood methods, as no
prior knowledge of the transition density of the SDE is assumed. The simple empirical
implementation of method-of-moments type estimators, along a rather low computational
cost, have motivated the development of related methods, for instance the GMM. However,
these procedures have poor finite sample properties and if moment conditions provide
weak parameter identification, which can happen with highly persistent time series, esti-
mates are subject to large finite sample bias. Besides, the occurrence of local minima in the
quadratic form (17) can likely lead to optimization problems.

3. Simulation Study

In this section, a simulation study is conducted to compare the performance of the
estimation methods described in this article. The different settings were designed to (i)
assess the role of persistence in estimation bias, (ii) compare the accuracy of the procedures,
(iii) confirm that T — oo plays the role of the discrete-time standard asymptotic of n — oo,
(iv) examine discretization bias and the impact of different sampling frequencies A, and (v)
study the effect of volatility on the estimators performance.

3.1. Experimental Design

We consider two models, one proposed by Vasicek [3] based in the Ornstein—Uhlenbeck [42]
process and the CKLS proposed by [6]. The latter lacks a tractable likelihood function, while the
former admits a closed-form expression for transition and marginal density, which allows us to
perform exact maximum likelihood estimation and avoid simulation errors sampling directly
from the continuous time model. The Vasicek model is given by

dXt = K(]/l — Xt) dt + U'th,

and the CKLS is
dX¢ = x(u — X;) dt + o X] dW;, (18)

where y, k¥ and ¢ are positive constants and X;, = xq is the initial condition. The parameter
i represents the long time mean, « is the speed of mean reversion, ¢ is the standard
deviation of volatility and v is the elasticity of variance.

The Monte Carlo setup consist in the Vasicek and CKLS models, for a low mean
reversion scenario (high persistent dependence) and a high mean reversion scenario (low
persistent dependence). As it is common to record X; annualized, we use weekly (A = 1/52)
and monthly (A = 1/12) frequency. For each case, we also consider two different volatility
scenarios, with increasing unconditional variance.

A thousand realizations of random sample paths {Xjs }"" ; are generated for n = 520,
2600, with A = 1/52, which corresponds to weekly data on an observation window of
T =10, 50 years,, respectively, along with sample paths with n = 520 and A = 1/12, which
corresponds to monthly data for, approximately, 43 years. With this design we can evaluate
the performance of the estimation methods with a larger sample size n and when the total
observation time T is increased, keeping the sample size constant. In addition, the different
values of A could give rise to discretization bias, which can appear jointly with estimation
bias in those methods that rely on discretization schemes.

Table 1 shows the eight simulated scenarios for the Vasicek model, along with uncondi-
tional and conditional mean and variance, as the analytical density is available. The first two
scenarios correspond to the low mean reversion, with increasing unconditional volatility,
and the third and fourth are the high mean reversion cases. For the high persistent depen-
dence scenarios (1 and 2) the parameter values are 8; = (y,«,02%) = (0.09,0.2,4x107°)/
and 6, = (0.09,0.2,4x107*)’, and for the low persistence (scenarios 3 and 4) the parameter
are 03 = (0.09,0.9,1.8x107*)" and 6, = (0.09,0.9,1.8x1073)". The marginal density was
kept unchanged while varying the speed of mean reversion, therefore scenarios 1 and 3 and
scenarios 2 and 4 have the same marginal density, as illustrated in Figure A1l. The settings
of scenarios 1 and 2 allow us to check the performance in a near unit-root case, as the
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regressive coefficient of E{X}, , | Xy, } is 0.996. Scenarios 5-8, although unrelated to real
interest rate processes, are limiting cases to quantify the impact of persistence separately
from changes in the marginal density. In scenarios 5 and 6 (7 and 8), the mean-reverting
force is increased by a factor of 25 (49) from scenarios 1 and 2 and ¢ is changed in the same
proportion to hold the marginal density fixed.

Table 1. Scenarios for the Monte Carlo study for the Vasicek, dX; = «(u — X;) dt + 0 dW;, and CKLS, dX; = x(p — X¢) dt +
oX; dW;, models with A = 1/52.

Vasicek Scenario 1 Scenario 2 Scenario 3 Scenario 4
(u,%,0%) (0.09,0.2,4x1075) (0.09,0.2,4x1074) (0.09,0.9,1.8x107%) (0.09,0.9,1.8x1073)
E{X;} 0.090 0.090 0.090 0.090
Var{X;} 1074 1073 1074 1073
E{X(i11)a | Xia} 34x107* +0.996X;  3.4x107% +0.996X; 0.002 + 0.98X; 0.002 + 0.98X;
Var{X 1)a | Xia} 7.6x1077 7.6x107° 3.4x107° 3.4x107°
Vasicek Scenario 5 Scenario 6 Scenario 7 Scenario 8

(4, x,02) (0.09,5,1073) (0.09,5,1072) (0.09,9.8,1.96x1073)  (0.09,9.8,1.96x1072)
E{X;} 0.090 0.090 0.090 0.090
Var{X;} 1074 1073 1074 1073
E{X(it1)a | Xia} 8.3x10734+0.908X;  8.3x1073 4 0.908X; 0.015 + 0.83X; 0.015 + 0.83X;
Var{X 1)a | Xia} 1.7x107° 1.7x107% 3.1x107° 3.1x107*
CKLS Scenario 1 Scenario 2 Scenario 3 Scenario 4

(1, %,02,7) (0.09,0.2,0.25,1.5) (0.09,0.2,1,1.5) (0.09,0.9,0.5,1.5) (0.09,0.9,2,1.5)

In regards to the scenarios for the CKLS model, a similar scheme was set, as shown
in Table 1, keeping for all scenarios the same parameters for the drift function as the Va-
sicek. First two scenarios correspond to high persistent dependence with parameter values
0, = (u,x,0%,7) = (0.09,0.2,0.25,1.5)" and 6, = (0.09,0.2,1,1.5)', and for the low persis-
tence (scenarios 3 and 4) the parameter are 83 = (0.09,0.9,0.5,1.5)" and 64 = (0.09,0.9,2,1.5)".
Figure A1 illustrates the stationary density for scenarios 1 and 2, where the parameter o> was
increased by a factor of 4, just like from scenario 3 to 4.

Tables 2 and 3 show the simulation study for the Vasicek model (along with Tables A1-A4,
deferred to Appendix A), Table 4 shows the computational performance of the methods, while
Tables 5 and 6 (and Tables A5 and A6) refer to the CKLS model. The mean of the parameter
estimates for the 1000 replications of the experiment is included, as well as standard deviation

(SD) and root mean squared error (RMSE) for the estimation methods in Section 2:

(1) Exact maximum likelihood (EML);
(ii) Euler method (DML);

(iii) Local linearization (LL);

(iv) Hermite polynomial expansion (HP);

V) Generalized Method of Moments (GMM);
(vi) Kalman Filter (KF);
(vii) Markov Chain Monte Carlo (MCMC).
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Table 2. Monte Carlo simulation for Vasicek model, (3, x,0) = (0.09,0.2,0.00632)’, scenario 1: low mean reversion and low

volatility. Boldfaces denote the best results in terms of bias, standard deviation and RMSE.

Scenario 1 A =1/52, n = 520 A =1/52, n = 2600 A =1/12, n = 520
Method & Mean SD RMSE Mean SD RMSE Mean SD RMSE
i 0.0915 0.0177 0.0178  0.0900  0.0046 0.0046  0.0902  0.0050 0.0050
EML & 06762  0.4579 0.6606 0.2865 0.1274 0.1540 0.2973 0.1377 0.1686
& 0.0063 1.98x107* 1.99x10~% 0.0063 8.30x10~° 8.33x10°° 0.0063 1.99x10°* 1.99x10*
i 0.0915 0.0180 0.0180 0.0900 0.0046 0.0046 0.0902 0.0050 0.0050
DML & 06703  0.4511 0.6517  0.2837  0.1262 0.1514  0.2923  0.1345 0.1632
& 0.0063 1.97x10~% 1.99x10~* 0.0063 829x10~> 837x10~° 0.0063 1.95x10~% 2.06x10~*
i 0.0915 0.0179 0.0180 0.0900 0.0046 0.0046 0.0902 0.0050 0.0050
LL ® 06696  0.4518 0.6517  0.2836 0.1261 0.1513 02924  0.1346 0.1633
& 0.0063 1.97x107* 1.98x10°% 0.0063 8.29x10°> 8.34x10°° 0.0063 1.95x10 % 2.03x10°*
i 0.0915 0.0177 0.0178 0.0900 0.0046 0.0046 0.0902 0.0050 0.0050
HP £ 0.6720  0.4548 0.6554 02864  0.1271 0.1537  0.2939 0.1349 0.1644
& 0.0063 1.98x107* 1.99x10~% 0.0063 831x107° 8.33x107° 0.0063 1.99x10~* 1.99x10~*
i 0.0915 0.0179 0.0180 0.0900 0.0046 0.0046 0.0902 0.0050 0.0050
KF & 0.6696  0.4518 0.6517  0.2836  0.1261 0.1513  0.2924 0.1346 0.1633
o 0.0063 1.97x10~% 1.98x10~% 0.0063 8.29x1075 8.34x10~° 0.0063 1.95x10~* 2.03x10~4
fi 0.0913  0.0148 0.0148  0.0900 0.0046 0.0046 0.0902 0.0050 0.0050
MCMC & 0.6789 0.4609 0.6647  0.2847  0.1270 0.1527  0.2978 0.1389 0.1698
& 0.0063 1.99x10°% 2.01x107% 0.0063 833x107° 8.36x107° 0.0063 1.98x10~% 1.99x10*
fi 00917  0.0178 0.0178 0.0900 0.0046 0.0046 0.0902 0.0051 0.0051
GMM & 0.6701 0.4518 0.6520 0.2837  0.1261 0.1513 0.2932 0.1347 0.1638
& 0.0063 2.04x107% 2.07x107% 0.0063 831x1075 841x107° 0.0063 2.05x10~% 2.15x10°*

3.2. Implementation Details

The simulated sample paths for the Vasicek model were constructed from the closed-
form transition density and for the CKLS model the Milstein scheme was used. To reduce
discretization bias, paths were generated with daily frequency (A = 1/364) and subsamples
were taken on a weekly (A = 1/52) or monthly (A = 1/12) basis. The initial condition X,
was set to be the average and the first 1000 data were discarded, as a burn-in period to
remove the dependence on the initial value.

As in the CKLS model a closed form expression for the transition density is not avail-
able, the exact maximum likelihood method is not included, as it is unfeasible. The GMM
was implemented with four moment conditions, where the first two identify the marginal
distribution and the higher order are nonlinear functions of the first two moments. As the
Vasicek model does have a closed form for the transition density, the true moments were
used. Regarding the MCMC setup, for the Vasicek model the algorithm is iterated 2500
times and the first 500 iterations were discarded. The iterations were increased for the CKLS
model as there is an additional parameter to sample, thus 5000 iterations were executed and
the first 1000 were discarded. For both models, m = 5 was fixed in the data augmentation
step. For all methods, 8 was jointly estimated. The drift parameter y is calculated indirectly,
as the drift specification was rewritten to estimate the intercept & = xp.

Regarding optimization, we chose to minimize the negative log-likelihood function
and use the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm [24], where the gradient
and Hessian matrix are calculated numerically in the optimization routine. As for the
choice of initial values, the approach is the following: we fit a linear regression, writing
the discrete version of the SDE as in Equation (13), to obtain a rough estimation of the
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parameters and set the starting values. For the CKLS diffusion parameter -y, we specified a
power variance function for the heteroscedasticity structure.

Table 3. Monte Carlo simulation for Vasicek model, (y,x, ) = (0.09,0.9,0.0134)’, scenario 3: high mean reversion and low
volatility. Boldfaces denote the best results in terms of bias, standard deviation and RMSE.

Scenario 3 A =1/52, n = 520 A =1/52, n = 2600 A =1/12, n = 520
Method 6 Mean SD RMSE Mean SD RMSE Mean SD RMSE
fi 0.0902  0.0049 0.0049  0.0900  0.0022 0.0022  0.0901  0.0023 0.0023
EML & 13193 0.6031 0.7346 0.9782 0.2116 0.2256 0.9851 0.2362 0.2511
& 00134 421x10~% 422x10~* 0.0134 1.77x10~* 1.78x10~% 0.0134 4.34x10~* 4.35x10~*
i 0.0902 0.0049 0.0049 0.0900 0.0022 0.0022 0.0901 0.0023 0.0023
DML % 1.2982  0.5884 0.7105 0.9637 0.2088 0.2183 0.9462 0.2182 0.2230
& 00133 4.14x10% 438x10™% 0.0133 1.75x10™% 2.08x10~% 0.0129 4.02x10"% 652x10*
i 0.0902 0.0049 0.0049 0.0900 0.0022 0.0022 0.0901 0.0023 0.0023
LL & 1.2984 0.5888 0.7110 0.9635  0.2085 0.2180 0.9465 0.2178 0.2227
& 0.0133 4.14x10°% 431x10~* 0.0133 1.75x10°% 2.05x107% 0.0129 4.03x10* 6.33x10°*
i 0.0902 0.0049 0.0049 0.0900 0.0022 0.0022 0.0901 0.0023 0.0023
HP & 13063 0.5893 0.7158 0.9737 0.2088 0.2215 0.9664 0.237 0.2461
& 00134 421x10~% 4.22x10~% 0.0134 1.77x10~* 1.77x10~% 0.0134 4.32x10~% 4.32x10~*
i 0.0902 0.0049 0.0049 0.0900 0.0022 0.0022 0.0901 0.0023 0.0023
KF £ 1.2984 0.5888 0.7110 0.9635 0.2085 0.2180 0.9465 0.2178 0.2227
& 00133 4.14x107% 431x10™% 0.0133 1.75x10™% 2.05x10~% 0.0129 4.03x10~% 6.33x107*
i 0.0902 0.0049 0.0049 0.0900 0.0022 0.0022 0.0901 0.0023 0.0023
MCMC & 1.3224 0.6077 0.7401 0.9724 0.2125 0.2245 0.9868 0.2358 0.2513
& 00135 421x1074 422x107% 00134 1.77x107% 1.77x10~% 0.0134 4.26x10~% 4.28x10*
i 0.0902 0.0051 0.0051 0.0900 0.0022 0.0022 0.0901 0.0025 0.0025
GMM & 13127 0.5937 0.7231 0.9646 0.2098 0.2195 0.9704 0.2365 0.2467
& 00133 447x10~* 4.60x10~* 0.0133 1.78x10~* 1.95x10~% 0.0132 4.95x10~* 5.53x10~*

Since some of the procedures are computationally expensive, we chose to integrate
C and C++ code [43] in the R routines. Table 4 shows run-times for each Monte Carlo
iteration, with sample size n = 2600, and evidences the computational cost of simulation-
based techniques, such as the MCMC. The Kalman filter benefits from using a lower-level
programming language like C and has low run-times, though the remainder of the methods
have a similar performance in base R, being the GMM the slowest.

Table 4. CPU time (in seconds) of the estimation methods per iteration, with n = 2600.

Time (Seconds) EML DML LL HP KF MCMC GMM
Vasicek 0.0534 0.0469 0.0424 0.4921 0.1097 50.8442 1.0108
CKLS - 0.0818 0.2011 1.9543 0.2017 140.5385 2.0237
Implementation: R R R R C C++ R/C++

3.3. Discussion

Tables 2 and 5 report the estimates for scenario 1, for both Vasicek and CKLS models,
which features low mean reversion and the unconditional volatility is very small, a quiet
process whose estimation can be challenging. The process is nearly unit-root, which can
increase the estimation bias in the drift parameter «, as reported in [44]. This large bias
in the estimation of the drift parameter x, which controls the speed of mean reversion, is
encountered in both tables with small sample size n through all estimation procedures,
with more than a 200% relative bias (see Figure 2). The RMSE in both models for x
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is similar, the other parameters estimates have small RMSE but the parameters in the
diffusion function incur in more bias in the CKLS model, as this model is relatively hard to
identify as it may yield similar volatility functions for different values of ¢ and -y, while
the Vasicek model has a simpler diffusion function. Both bias and RMSE decrease as n and
the total observation time T are increased, especially for x. As opposed to discrete time
series, where the sample size n controls the estimation error, is T who defines the bias and
variance of the estimations: the last two columns (weekly and monthly frequency) have
similar observation time T but different sample size 1, and RMSEs are close. Exact ML is
available for the Vasicek model, thus avoiding discretization bias, but nevertheless biases
are homogeneous for all methods, with GMM presenting a slightly higher RMSE.

Table 5. Monte Carlo simulation for CKLS model, (i, «x,o,v) = (0.09,0.2,0.5,1.5)’, scenario 1: low mean reversion and low

volatility. Boldfaces denote the best results in terms of bias, standard deviation and RMSE.

Scenario 1 A =1/52,n = 520 A =1/52, n = 2600 A =1/12,n = 520
Method (] Mean SD RMSE Mean SD RMSE Mean SD RMSE
il 0.0950 0.0420 0.0423 0.0912 0.0131 0.0131 0.0930 0.0145 0.0148
DML R 0.6596 0.4630 0.6524 0.2816 0.1356 0.1583 0.2844 0.1446 0.1674
o 0.5776 0.3783 0.3862 0.5015 0.0865 0.0865 0.4722 0.1690 0.1713
04 1.4904 0.2453 0.2455 1.4956 0.0701 0.0702 1.4543 0.1466 0.1535
fi 0.0953 0.0483 0.0486 0.0911 0.0131 0.0131 0.0929 0.0143 0.0146
LL e 0.6683 0.4766 0.6681 0.2829 0.1368 0.1599 0.2892 0.1497 0.1743
o 0.5985 0.3938 0.4060 0.5095 0.0875 0.0880 0.5055 0.1785 0.1786
07 1.5052 0.2459 0.2460 1.5025 0.0694 0.0695 1.4846 0.1434 0.1442
fi 0.0967 0.0547 0.0551 0.0912 0.0131 0.0131 0.0936 0.0236 0.0239
Hp s 0.6438 0.4649 0.6427 0.2828 0.1378 0.1608 0.2891 0.1516 0.1758
o 0.6331 0.4799 0.4980 0.5078 0.0885 0.0888 0.5043 0.1814 0.1815
07 1.5130 0.2588 0.2591 1.4997 0.0711 0.0711 1.4783 0.1466 0.1482
il 0.0956 0.0518 0.0522 0.0912 0.0131 0.0131 0.0930 0.0145 0.0148
KF R 0.6590 0.4615 0.6509 0.2820 0.1357 0.1586 0.2845 0.1448 0.1677
I 0.5774 0.3778 0.3857 0.5012 0.0863 0.0863 0.4722 0.1688 0.1711
¥ 1.4905 0.2446 0.2447 1.4954 0.0700 0.0702 1.4543 0.1464 0.1534
il 0.0963 0.0730 0.0733 0.0912 0.0131 0.0131 0.0930 0.0144 0.0147
MCMC ’ 0.6688 0.4729 0.6659 0.2828 0.1365 0.1597 0.2888 0.1492 0.1736
o 0.6860 0.5906 0.6192 0.5169 0.1078 0.1091 0.5395 0.2521 0.2552
g 1.4961 0.2913 0.2913 1.5004 0.0832 0.0832 1.4739 0.1702 0.1721
fi 0.1001 0.2047 0.2050 0.0904 0.0114 0.0114 0.0919 0.0153 0.0154
GMM 4 0.7208 0.4675 0.6998 0.3216 0.1353 0.1819 0.3248 0.1437 0.1904
o 0.5534 0.3965 0.4001 0.4972 0.1166 0.1167 0.4498 0.2068 0.2128
07 1.4605 0.2644 0.2673 1.4868 0.0954 0.0963 1.4196 0.1803 0.1974

When volatility is increased while keeping the same drift function (Tables A1 and A5,
in Appendix A), bias is moderately increased for x and standard deviation is higher than in
scenario 1 for the Vasicek model, while reducing for the diffusion parameters in the CKLS
model, specially . All biases shrink as the sample size and observation time increases.
The GMM method shows less efficiency, with a larger RMSE in the CKLS model.

The estimation bias of the drift parameter x increases when the diffusion process
has an absence of dynamics, which happens when « is small. Scenarios 1 and 2 have
a mean reversion parameter « closer to zero, while scenarios 3 (Tables 3 and 6) and 4
(Tables A2 and A6) show high mean reversion. For the low volatility case, scenario 3,
the finite sample bias of x is significantly smaller (close to 40%, see Figure 2) than the
high persistence dependence scenarios for both models and estimation bias and standard
deviation of y is also reduced. For the CKLS model, the estimation bias of ¢ is reduced and
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the estimation error of vy is similar to scenario 1. RMSE and bias diminish with increasing
n and T, with less RMSE in the weekly scenario for the CKLS model compared with the
monthly simulation, which may be due to the discretization error. The higher volatility
scenario shows a similar behavior, with smaller bias in the drift parameters than low
mean reversion scenarios, but moderately higher in p with respect to scenario 3, and the
estimation errors for the diffusion parameters of the CKLS model are inferior compared to
scenario 3.

Table 6. Monte Carlo simulation for CKLS model, (i, x,c,y)" = (0.09,0.9,0.707,1.5)’, scenario 3: high mean reversion and
low volatility. Boldfaces denote the best results in terms of bias, standard deviation and RMSE.

Scenario 3 A =1/52, n = 520 A = 1/52, n = 2600 A =1/12, n = 520
Method 0 Mean SD RMSE Mean SD RMSE Mean SD RMSE
fl 0.0908 0.0086 0.0087 0.0901 0.0032 0.0032 0.0902 0.0034 0.0034
DML s 1.2893 0.6072 0.7213 0.9623 0.2200 0.2287 0.9481 0.2304 0.2353
o 0.7701 0.4582 0.4625 0.6958 0.1523 0.1527 0.6411 0.3094 0.3163
¥ 1.4769 0.2277 0.2289 1.4863 0.0896 0.0907 1.4251 0.2005 0.2140
J2i 0.0908 0.0087 0.0087 0.0900 0.0032 0.0032 0.0901 0.0035 0.0035
IL e 1.3112 0.6277 0.7504 0.9777 0.2244 0.2375 0.9917 0.2514 0.2676
o 0.8260 0.4938 0.5080 0.7421 0.1564 0.1603 0.7908 0.3763 0.3855
0% 1.5073 0.2268 0.2270 1.5142 0.0868 0.0880 1.5156 0.1999 0.2005
i 0.0909 0.0089 0.0089 0.0902 0.0043 0.0043 0.0904 0.0043 0.0043
HP R 1.2927 0.6182 0.7324 0.9688 0.2268 0.2370 0.9738 0.2565 0.2669
o 0.9005 0.6338 0.6627 0.7396 0.2030 0.2056 0.8134 0.4269 0.4400
0 1.5281 0.2332 0.2349 1.5050 0.1007 0.1008 1.5052 0.2055 0.2055
il 0.0908 0.0086 0.0086 0.0901 0.0032 0.0032 0.0902 0.0034 0.0034
KF e 1.2882 0.6059 0.7197 0.9629 0.2209 0.2297 0.9481 0.2304 0.2354
o 0.7711 0.4605 0.4650 0.6948 0.1516 0.1521 0.6407 0.3089 0.3159
4 1.4773 0.2278 0.2289 1.4857 0.0895 0.0906 1.4249 0.2001 0.2137
fl 0.0909 0.0089 0.0090 0.0901 0.0032 0.0032 0.0903 0.0035 0.0035
MCMC s 1.3121 0.6274 0.7506 0.9717 0.2249 0.2361 0.9852 0.2498 0.2640
o 0.9479 0.8601 0.8932 0.7402 0.2014 0.2041 0.8705 0.5436 0.5676
¥ 1.4900 0.2805 0.2807 1.4985 0.1099 0.1099 1.4894 0.2406 0.2409
J2i 0.0905 0.0075 0.0075 0.0900 0.0032 0.0032 0.0902 0.0034 0.0034
GMM e 1.3760 0.6121 0.7755 1.0023 0.2400 0.2608 0.9759 0.2450 0.2565
o 0.7452 0.5017 0.5031 0.6837 0.1913 0.1928 0.5984 0.3535 0.3698
¥ 1.4486 0.2514 0.2566 1.4732 0.1128 0.1160 1.3820 0.2253 0.2544

Scenario 6 (Table A3) has a mean-reverting force five times higher than scenario 2
while keeping the same marginal distribution. In this setting, the estimation bias shrinks
substantially in all schemes, as we are departing from the unit-root case. However, the dis-
cretization bias starts arising, as shown in the estimations of DML and KF methods with
monthly frequency (note that scenario 5 is not included, as the results were very close and
so too were the conclusions drawn) . This is magnified in the limiting case of scenario 8
(Table A4), where the estimation bias is very small in all schemes, but the discretization
bias in DML, KF and, less so, in LL for x and ¢ is large, mostly in the coarser discretization
(monthly), noticeably underestimating both parameters (the performance of the methods
was analogous in scenario 7, therefore results are not reported). Figure 3 illustrates true
(black) and discretized (gray) log-likelihood for scenarios 1, 3, 6 and 8, where departures
from the true log-likelihood are larger for lower mean reversion scenarios, while scenarios
6 and 8 display discretization bias.
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Figure 2. Relative bias (in percentage) for the drift parameter x with weekly data (A = 1/52) and n = 2600.
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The analysis of the Monte Carlo evidence reveals the following insights:

The dynamic of the process is governed by the drift parameter x, which determines
the persistence of the process by controlling the reversion towards the unconditional
mean. As ¥ — 0, mean reversion goes to zero and correlation between observations
approaches one. This increases persistence, which introduces sample bias in para-
metric estimation [45]. Simulations show that increasing x lowered persistence and,
therefore, estimation bias was also diminished (see Figure 2). High persistence scenar-
ios, near unit-root cases, revealed significant estimation bias in the drift parameter «,
but almost negligible in the diffusion parameter o.

Increasing the volatility parameters had minor effect on the estimators performance.
In the Vasicek model, higher values in the volatility parameter slightly increased
RMSE in the estimation of 0. On the other hand, the estimation of the parameters in
the CKLS diffusion function benefit from richer volatility dynamics, reducing RMSE.
In discrete time series, the bias and variance of estimators is controlled by the sample
size 1, so that they reduce as n — oco. In continuous-time models sampled at discrete
time points, bias and variance in the estimation of the drift parameter x is dominated
by the total observation time T = nA. Under quite general conditions, the estimators
of the drift parameters are of order O(T 1), while the diffusion parameter ¢ is of order
n~1 [46]. The simulated scenarios corroborate this, as estimation bias with T = 50 and
43 years were close despite the different frequency (weekly and monthly, respectively)
and sample size n (2600 and 520, respectively).

Discretization bias arises in DML and KF methods in scenarios with low sampling fre-
quency and low persistence (see Figure 3), and correcting the DML estimates with local
linearization does not always correct the bias and both x and ¢ are underestimated.
There appears to be similar estimation bias in the drift parameters for both Vasicek
and CKLS models. However, the more flexible parametric form of the CKLS volatility
function makes estimation more challenging, and bias and RMSE for those parameters
are higher than for the Vasicek model.

Regarding efficiency, as exact ML is available for the Vasicek model, it can be regarded
as a benchmark. Overall, the estimations of the parameters are close to the EML per-
formance, being the GMM the less efficient. The estimations differ when discretization
bias arises.
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Figure 3. Vasicek model log-likelihood (¢) for the drift parameter x with known (¢g) and estimated (£,) parameters, where
Ko is the true value. The true density and its discretized version (A = 1/52) is illustrated, along with the estimate obtained
(kemr and kpppp, respectively). Note that scenarios with same x but different volatility parameter (scenarios 2,4, 5 and 7,
respectively) are not included, as the estimates were very close and figures very similar to the ones displayed.

Table 7 provides a summary of the properties and finite sample performance of
the methods. Regarding accuracy, differences among the methods are not always clear
and the context of application (e.g., the sampling interval) should be considered when
choosing the estimation procedure. The HP shows the best trade-off between efficiency
and speed—followed by the LL method—and MCMC exhibits good accuracy through
all scenarios, however, the inherent time consuming implementation (methodologically
and computationally) are major disadvantages. The performance of simpler discretization
schemes, like the ones used in DML and KEF, is conditioned on the sampling interval and
should be avoided for large A, otherwise, their efficiency is close to the other alternatives
(see Figure 2). The generalized method of moments was outperformed in the majority of
scenarios, notably with higher dimensions of the parameter vector 6.

Table 7. Summary of estimation procedures for SDE parameters.

Method Authors Asymptotic Properties Finite Sample Performance

DML Florens—Zmirou [29] Asymptotically normal and consistent Biased when A is large

LL Ozaki [17] As ML estimators Outperforms discrete ML
Shoji and Ozaki [18] and KF

HP Ait-Sahalia [19,47] Asymptotically normal and consistent [19] Outperforms LL

KF Kalman [20,48] Asymptotically normal and consistent [30,34] Similar to discrete ML

MCMC  Elerian et al. [21] Simulation based Efficient but the most compu-
Eraker [22] tationally intensive

GMM Hansen [23] Asymptotically normal and consistent [23,41] The least efficient and effi-

Chan et al. [6]

ciency depends on moments

4. Application to Euribor Series

In this section, we consider four data sets corresponding to four maturities (three, six,
nine and twelve months) of the Euribor (Euro Interbank Offered Rate) interest rate series.
This daily series expand from 15th October 2001 to 30th December 2005 (sample size of
n = 1077), see Figure 4. Numerous models have been proposed to capture the dynamics
of short-term interest rate, including those by [1,3-5,49]. As these models can be nested
within the unrestricted model

dX; = (6 — 6,X;) dt + 653X% dw,
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proposed by [6], we will estimate the parameters with the methods presented in the
previous section. We chose a different drift parametrization of the CKLS model in (18) to
provide standard errors for all estimates, so none of them are estimated indirectly.
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Figure 4. Euribor series. Daily evolution for the time period between 15th October 2001 and 30th December 2005. Sample
size for each data set is n = 1077. From left to right, Euribor 3, 6, 9 and 12 months, respectively.

The results of the parameter estimation for the CKLS model are shown in Table 8,
with the associated standard error in parentheses. The estimates obtained by the different
approaches are considerable close, where the generalized method of moments seem to
present the most noticeable disparity, mainly in the level effect parameter 64. This was
already noticed in [50], where different values of 64 where obtained using MLE and a
GMM estimator. It is important to note that the standard error associated to the GMM
estimation is larger than in the other approaches, which was already manifested in the
simulations (see Tables 5 and 6 and Tables A5 and A6). Regarding the estimated values for
the different maturities, for all time periods the series are persistent and the main variation
comes from the parameters of the volatility function: 03 increases with maturity and 6,
decreases. The parameter 64 controls the relationship between the interest rate and the
volatility, for all series we have ; > 1 which indicates that volatility tends to increase as
the rate rises. The estimation in the Euribor 12 months for 0, is close to 1, which would
correspond to the diffusion process proposed by Brennan and Schwartz [49].

As goodness-of-fit test for diffusion processes are available in the literature, we will
test the parametric form of the drift and diffusion functions estimated for the Euribor
series. Table 9 shows the p-values for the goodness-of-fit test suggested by Monsalve-
Cobis et al. [51]. The empirical p-value is significant for the drift function in every maturity.
Conversely, the p-value for the volatility function leads to a strong rejection of the null
hypothesis, implying that the model is inadequate to explain the volatility of the series,
for every maturity.

To further analyze the fitted CKLS model, we will use a resampling procedure in the
context of state space models (see Section 2.4) as it can provide insight into the validity
of the model. The bootstrap technique developed in [52] is easily implemented with
the innovations form of the Kalman filter and allows us to approximate the sampling
distributions of the parameter estimates. Inference in state space models estimated using
the Kalman filter is feasible because there exists an asymptotic theory, as seen in Section 2.4,
under general conditions, the parameter estimates of a state space model are consistent and
asymptotically normal. Focusing on the estimates for the Euribor 3 months, Table 10 shows
the standard errors obtained from B = 1000 bootstrap resamples, along with the asymptotic
standard errors and parameter estimates, and Figure 5 illustrates the bootstrap distribution
(histogram) and the asymptotic Gaussian distribution (dashed line) of 0;, withi € {1,2,3,4}.
Regarding the drift parameters (0; and 6,), the bootstrap and asymptotic distributions
are close, however, for the diffusion parameters (63 and @), both distributions differ.
This is consistent with the conclusions drawn from the goodness-of-fit test (see Table 9),
where the parametric form of the drift was not rejected, but the diffusion function lead
to a strong rejection. The bootstrap standard error of #3 and 8, is notable larger and the
histograms show a slightly skewed distribution. This implies that the CKLS diffusion
function specification is not able to explain the dynamics of the Euribor series, although the
linear drift with mean reversion seems to be adequate. A deterministic parametric form
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of the diffusion function might be incapable of capturing the volatility behavior and a
more intricate form, such as stochastic volatility, may be more suitable, which was already
pointed out in the econometric literature, that find data are more accurately represented by
a stochastic volatility model.

Table 8. Estimated parameters and standard errors (in parentheses) for the CKLS model, dX; = (61 — 6,X;) dt + 6'3Xt94 dW;,
fitted to Euribor series using six estimation methods.

Method (] 3 Months 6 Months 9 Months 12 Months
91 1.5063 (0.4510) 1.3956 (0.6671) 1.5620 (0.9484) 1.7607 (1.1623)
DML 6, 0.7097 (0.1974) 0.6323 (0.2828) 0.6713 (0.3920) 0.7232 (0.4668)
93 0.0297 (0.0031) 0.0667 (0.0068) 0.1141 (0.0117) 0.1613 (0.0169)
é4 1.8143 (0.1118) 1.3900 (0.1084) 1.1987 (0.1081) 1.0521 (0.1078)
91 1.5083 (0.4537) 1.4027 (0.6696) 1.5723 (0.9517) 1.7803 (1.1667)
IL 92 0.7109 (0.1989) 0.6352 (0.2842) 0.6763 (0.3940) 0.7311 (0.4695)
93 0.0286 (0.0030) 0.0653 (0.0067) 0.1109 (0.0114) 0.1560 (0.0164)
@4 1.8520 (0.1140) 14114 (0.1098) 1.2264 (0.1086) 1.0843 (0.1084)
91 1.5255 (0.4553) 1.4092 (0.6701) 1.5650 (0.9521) 1.7844 (1.1673)
HP 0, 0.7182 (0.1999) 0.6380 (0.2844) 0.6732 (0.3942) 0.7332 (0.4698)
ég, 0.0280 (0.0029) 0.0652 (0.0067) 0.1110 (0.0115) 0.1563 (0.0164)
94 1.8764 (0.1129) 1.4156 (0.1097) 1.2267 (0.1086) 1.0841 (0.1084)
91 1.4964 (0.4492) 1.3954 (0.6669) 1.5603 (0.9483) 1.9177 (1.1629)
KF éz 0.7049 (0.1964) 0.6321 (0.2826) 0.6711 (0.3920) 0.7827 (0.4672)
93 0.0303 (0.0031) 0.0670 (0.0068) 0.1141 (0.0117) 0.1609 (0.0168)
94 1.7899 (0.1121) 1.3861 (0.1088) 1.1985 (0.1079) 1.0547 (0.1078)
él 1.5256 (0.4536) 1.4058 (0.6657) 1.5398 (0.9508) 1.7899 (1.1700)
MCMC 92 0.7183 (0.2016) 0.6366 (0.2821) 0.6657 (0.3949) 0.7325 (0.4683)
93 0.0290 (0.0032) 0.0673 (0.0062) 0.1173 (0.0108) 0.1548 (0.0159)
94 1.8444 (0.1059) 1.3869 (0.1029) 1.1756 (0.1012) 1.0993 (0.1095)
@1 1.7081 (0.6782) 1.1439 (0.6100) 1.2429 (0.6646) 1.3074 (0.6633)
GMM 6, 0.7431 (0.2389) 0.5216 (0.2214) 0.5400 (0.2503) 0.5465 (0.2590)
93 0.0242 (0.0167) 0.0676 (0.0213) 0.1126 (0.0306) 0.1661 (0.0438)
é4 1.9562 (0.6262) 1.3704 (0.2735) 1.2068 (0.2230) 1.0227 (0.2118)

Table 9. p-values for the Monsalve-Cobis et al. [51] goodness-of-fit test for the CKLS parametric
form of the drift and diffusion functions.

Maturity: 3 Months 6 Months 9 Months 12 Months
p-value drift function 0.267 0.723 0911 0.950
p-value volatility function <0.001 <0.001 0.001 0.004

Table 10. Kalman filter estimates, asymptotic standard error and bootstrap standard error of the
CKLS model fitted to Euribor 3 months serie.

Parameters: 61 0> 03 04
Estimation 1.4964 0.7049 0.0303 1.7899
Asymptotic standard error 0.4492 0.1964 0.0031 0.1121

Bootstrap standard error 0.4794 0.2105 0.0653 0.4110
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Figure 5. Bootstrap histogram of éi, with i € {1,2,3,4}, and asymptotic Gaussian distribution for the
CKLS model, dX; = (61 — 6, X;) dt + 93Xt94 dW;, fitted to Euribor 3 months series.

5. Conclusions

We reviewed parametric estimation methods for univariate time-homogeneous SDEs.
Interest rate time series are highly persistent and this strong correlation through time
challenges estimation, as its discretized counterpart corresponds to a near unit-root model.
To address the problem of estimation and discretization bias, a comparative study of es-
timation methods was discussed under different settings. Based on the analysis of the
simulation results, the following conclusions can be reached. First, estimation bias is large
for the drift parameter x, which controls the speed of mean-reversion, though smaller
for the diffusion parameters. Lack of dynamics, that emerges when « is small, increases
this bias. Discretization bias was discerned in very low persistence scenarios with coarse
discretization frequency. Second, the parameter of the diffusion function was accurately
estimated in the Vasicek model, but the performance in the CKLS model was worse. In-
creasing the observation time T did reduce the bias, as expected, and increasing conditional
volatility resulted in more accurate estimates. Third, estimation bias and variance is re-
duced as T = nA — oo, rather than when only the sample size  is increased. This was
illustrated in the simulations, where scenarios with different sample size n but similar T
had comparable performances. Finally, regarding the parameter estimators, the GMM is the
least efficient, while discrete maximum likelihood methods performed similarly, with LL
and HP improving discretization bias over DML and KF. The MCMC method also provides
efficient estimates; however, the more ad hoc implementation, highly model-dependent,
makes its use more intricate than the other methods. All the procedures reviewed in this
article are provided in the companion estsde R package.
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Appendix A

The appendix contains the tabulated results of the simulation study for the Vasicek
and CKLS models. The Vasicek scenarios included here are 2, 4, 6 and 8 (see Table 1), which
all of them have the same marginal distribution (see Figure A1), and scenarios 2 and 4 of
the CKLS model.
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Figure Al. (a) Marginal density for Vasicek model, scenario 1 (3, 5 and 7) and 2 (4, 6 and 8) and
(b) Marginal density for CKLS model, scenario 1 and 2.
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Table A1. Monte Carlo simulation for Vasicek model with (y,x, o) = (0.09,0.2,0.02)’. Boldfaces denote the best results in
terms of bias, standard deviation and RMSE.

Scenario 2 A =1/52, n = 520 A =1/52, n = 2600 A =1/12, n = 520
Method 0 Mean SD RMSE Mean SD RMSE Mean SD RMSE
i 0.0938  0.0363 0.0365  0.0900  0.0145 0.0145  0.0906  0.0158 0.0158
EML % 0.6900 0.4817 0.6871 0.2862 0.1283 0.1546 0.2972 0.1388 0.1695
& 0.0200 6.27x107% 6.28x107% 0.0200 2.63x10~% 2.63x10~% 0.0200 6.28x10~% 6.29x10*
fi 0.0938 0.0366 0.0368 0.0899 0.0146 0.0146 0.0906 0.0158 0.0158
DML & 0.6812  0.4715 0.6737 0.2838 0.1262 0.1515 0.2925 0.1345 0.1632
& 00199 6.22x107% 6.29%x10~* 0.0200 2.62x10~% 2.65x10~% 0.0198 6.17x10~% 6.51x10~*
il 0.0943 0.0412 0.0415 0.0897 0.0206 0.0206 0.0892 0.0235 0.0235
LL & 0.6781 0.4758 0.6745 0.2796  0.1302 0.1526  0.2856  0.1436 0.1672
o 0.0199 6.18x107% 6.23x107% 0.0200 2.62x107% 2.64x107* 0.0198 6.21x10~* 6.56x10°*
fi 0.0938 0.0363 0.0365 0.0900 0.0145 0.0145 0.0906 0.0158 0.0158
HP & 0.6875 0.4784 0.6830 0.2858 0.1277 0.1538 0.2972 0.139 0.1696
& 0.0200 6.27x10~% 6.28x10~* 0.0200 2.63x10~% 2.63x10~% 0.0200 6.28x10~% 6.29x10~*
i 0.0939 0.0370 0.0372 0.0900 0.0146 0.0146 0.0906 0.0158 0.0158
KF & 0.6804 0.4719 0.6733 0.2836  0.1261 0.1513  0.2924 0.1346 0.1633
o 0.0199 6.18x10°% 6.21x10~% 0.0200 2.62x10°% 2.64x10~* 0.0198 6.15x10°¢ 6.38x10°*
i 0.0941 0.0424 0.0426 0.0899 0.0146 0.0146 0.0906 0.0158 0.0158
MCMC & 0.6899 0.482 0.6873 0.2848 0.1271 0.1528 0.2977 0.1389 0.1699
& 0.0201 6.28x107% 6.33x10~% 0.0200 2.64x10~%* 2.65x10~* 0.0201 6.24x10~% 6.26x10~%
fi 0.0960 0.0578 0.0581 0.0900 0.0146 0.0146 0.0906 0.0172 0.0172
GMM & 0.7161 0.5101 0.7257 0.2856 0.1275 0.1536 0.3081 0.1462 0.1818
& 00199 7.14x107% 7.22x107% 0.0200 2.67x10~% 2.68x10~% 0.0199 7.09x10~% 7.20x10~*

Table A2. Monte Carlo simulation for Vasicek model with (y,x, )’ = (0.09,0.9,0.0424)’.

Scenario 4 A =1/52, n = 520 A =1/52, n = 2600 A =1/12, n = 520
Method 0 Mean SD RMSE Mean SD RMSE Mean SD RMSE
i 0.0907 0.0155 0.0155  0.0900  0.0068 0.0068  0.0903  0.0074 0.0074
EML # 13214 0.6079 0.7397  0.9757 0.2141 0.2271 0.9877 0.2383 0.2539
o 0.0425 1.33x1073 1.34x1073 0.0425 5.59x10~% 5.61x10~% 0.0425 1.37x10°3 1.37x103
fi 0.0906 0.0155 0.0155 0.0900 0.0068 0.0068  0.0903 0.0074 0.0074
DML & 12997  0.5882 0.7112  0.9631 0.2085 0.2178  0.9465 0.2178 0.2227
& 00420 131x1073 1.39x1073 0.0421 5.52x10~% 6.57x10~% 0.0408 1.27x10~3 2.06x1073
fi 0.0888 0.0190 0.0190  0.0876 0.0106 0.0109 0.0884 0.0107 0.0109
LL £ 12717  0.6329 0.7340  0.8910  0.2752 02754 09157  0.2766 0.2770
o 0.0419 1.31x10°3 1.40x1073 0.0420 5.56x10~% 6.84x10~% 0.0406 1.28x10~3 221x103
fi 0.0907 0.0155 0.0155 0.0900 0.0068 0.0068  0.0903 0.0074 0.0074
HP £ 1.3207 0.6077 0.7391 0.9739 0.2131 0.2256  0.9886 0.2382 0.2542
& 00425 1.33x1073 1.33x1073 0.0425 5.60x10~% 561x10~% 0.0425 1.37x10~3 1.37x1073
i 0.0907 0.0155 0.0155 0.0900 0.0068 0.0068  0.0903 0.0074 0.0074
KF £ 1.2992 0.5886 0.7112  0.9635 0.2085 0.2180  0.9465 0.2178 0.2227
& 00420 131x1073 1.39x10~3 0.0421 552x107% 6.49x10~% 0.0408 1.27x10~3 2.06x1073
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Table A2. Cont.
Scenario 4 A =1/52, n = 520 A =1/52, n = 2600 A =1/12, n = 520

Method & Mean SD RMSE Mean SD RMSE Mean SD RMSE

i 0.0906 0.0154 0.0155 0.0900 0.0068 0.0068 0.0903 0.0074 0.0074

MCMC & 1.3239 0.6069 0.7403 0.9722 0.2120 0.2240 0.9867 0.2358 0.2513
o 0.0425 1.32x1073 1.33x10°% 0.0424 557x107% 5.57x10% 0.0423 1.34x1073 1.35x1073

a - 0.0907 0.0179 0.0179 0.0900 0.0069 0.0069 0.0904 0.0090 0.0091

GMM & 1.4695 0.7586 0.9486 0.9716 0.2144 0.2260 1.0457 0.3062 0.3390
o 0.0423 1.64x1073 1.65x1073 0.0423 5.72x107* 5.97x10~* 0.0424 1.77x107% 1.77x1073

Table A3. Monte Carlo simulation for Vasicek model with (¢, x, o)’ = (0.09,5,0.1)".
Scenario 6 A =1/52, n = 520 A =1/52, n = 2600 A =1/12, n = 520

Method ] Mean SD RMSE Mean SD RMSE Mean SD RMSE

il 0.0902 0.0065 0.0065 0.0900 0.0029 0.0029 0.0901 0.0031 0.0031

EML e 5.3788 1.1529 1.2136 5.0732 0.4992 0.5045 5.0939 0.6115 0.6186

o 0.1002 0.0033 0.0033 0.1001 0.0014 0.0014 0.1001 0.0038 0.0038

fi 0.0902 0.0065 0.0065 0.0900 0.0029 0.0029 0.0901 0.0031 0.0031

DML R 5.0997 1.0319 1.0367 4.8317 0.4518 0.4822 4.1421 0.3959 0.9448

o 0.0952 0.0030 0.0056 0.0954 0.0013 0.0048 0.0822 0.0026 0.0180

il 0.0892 0.0074 0.0074 0.0889 0.0034 0.0036 0.0891 0.0033 0.0035

LL R 5.0206 1.2585 1.2587 4.6468 0.6269 0.7195 4.6304 0.6236 0.7249

o 0.0946 0.0030 0.0061 0.0948 0.0013 0.0053 0.0810 0.0025 0.0192

il 0.0902 0.0065 0.0065 0.0900 0.0029 0.0029 0.0899 0.0033 0.0033

HP R 5.3814 1.1493 1.2109 5.0743 0.4977 0.5032 5.1696 0.7052 0.7253

o 0.1002 0.0033 0.0033 0.1001 0.0014 0.0014 0.0996 0.0041 0.0041

fi 0.0902 0.0065 0.0065 0.0900 0.0029 0.0029 0.0901 0.0031 0.0031

KF K 5.1001 1.0318 1.0367 4.8322 0.4516 0.4818 4.1418 0.3957 0.9450

o 0.0952 0.0030 0.0056 0.0954 0.0013 0.0048 0.0822 0.0026 0.0180

fi 0.0902 0.0065 0.0065 0.0900 0.0029 0.0029 0.0901 0.0031 0.0031

MCMC s 5.3614 1.1402 1.1961 5.0311 0.4889 0.4899 4.9286 0.5693 0.5737

o 0.0995 0.0032 0.0032 0.0992 0.0014 0.0016 0.0965 0.0034 0.0049

il 0.0904 0.0084 0.0084 0.0900 0.0029 0.0029 0.0901 0.0041 0.0041

GMM R 5.6980 1.5548 1.7043 4.9583 0.4878 0.4895 5.0970 0.7941 0.8000

o 0.1000 0.0043 0.0043 0.1000 0.0014 0.0014 0.0997 0.0047 0.0047
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Table A4. Monte Carlo simulation for Vasicek model with (3, «, )" = (0.09,9.8,0.14)".

Scenario 8 AN =1/52, n = 520 A =1/52, n = 2600 A =1/12, n = 520
Method i} Mean SD RMSE Mean SD RMSE Mean SD RMSE
i 0.0902 0.0046 0.0046 0.0900 0.0021 0.0021 0.0901 0.0023 0.0023
EML s 10.1822 1.6165 1.6610 9.8776 0.7359 0.7400 9.9341 1.0861 1.0943
o 0.1402 0.0048 0.0048 0.1401 0.0021 0.0021 0.1403 0.0064 0.0064
fl 0.0902 0.0046 0.0046 0.0900 0.0021 0.0021 0.0901 0.0023 0.0023
DML s 9.2274 1.3166 1.4357 8.9929 0.6049 1.0086 6.7332 0.4699 3.1026
o 0.1275 0.0040 0.0131 0.1278 0.0017 0.0123 0.0981 0.0030 0.0421
fi 0.0892 0.0050 0.0051 0.0890 0.0023 0.0025 0.0890 0.0024 0.0026
LL e 9.4201 1.7549 1.7955 9.0671 0.8327 1.1093 8.7862 1.0441 1.4553
o 0.1263 0.0039 0.0143 0.1265 0.0017 0.0136 0.0966 0.0031 0.0435
fl 0.0901 0.0047 0.0047 0.0900 0.0021 0.0021 0.0898 0.0027 0.0027
HP s 10.1842 1.6113 1.6564 9.8722 0.7334 0.7369 9.5056 1.2285 1.2632
o 0.1401 0.0049 0.0049 0.1401 0.0021 0.0021 0.1339 0.0075 0.0097
fl 0.0902 0.0046 0.0046 0.0900 0.0021 0.0021 0.0901 0.0023 0.0023
KF s 9.2281 1.3174 1.4362 8.9941 0.6060 1.0083 6.7348 0.4690 3.1009
o 0.1275 0.0040 0.0131 0.1278 0.0017 0.0123 0.0981 0.0030 0.0421
fl 0.0902 0.0046 0.0046 0.0900 0.0021 0.0021 0.0901 0.0023 0.0023
MCMC R 10.0552 1.5661 1.5867 9.7084 0.7076 0.7135 9.2813 0.9545 1.0864
o 0.1381 0.0046 0.0050 0.1376 0.0020 0.0031 0.1303 0.0053 0.0110
fi 0.0903 0.0064 0.0064 0.0900 0.0021 0.0021 0.0901 0.0030 0.0030
GMM s 10.4527 2.1184 2.2167 9.4325 0.7327 0.8197 9.6680 1.4521 1.4581
o 0.1399 0.0062 0.0062 0.1395 0.0021 0.0021 0.1384 0.0079 0.0081

Table A5. Monte Carlo simulation for CKLS model with (i, x,0,v)" = (0.09,0.2,1,1.5)".

Scenario 2 A =1/52, n = 520 A =1/52, n = 2600 A =1/12, n = 520
Method i} Mean SD RMSE Mean SD RMSE Mean SD RMSE
fl 0.0984 0.0933 0.0937 0.1002 0.0687 0.0695 0.1086 0.0974 0.0991
DML s 0.6577 0.4887 0.6696 0.2807 0.1567 0.1762 0.2860 0.1679 0.1887
o 1.0244 0.3720 0.3728 0.9944 0.1044 0.1045 0.9690 0.2392 0.2412
q 1.4873 0.1372 0.1378 1.4956 0.0407 0.0409 1.4771 0.0958 0.0985
2 0.0977 0.0926 0.0929 0.0994 0.0605 0.0612 0.1102 0.1213 0.1229
LL s 0.6650 0.4984 0.6816 0.2819 0.1580 0.1780 0.2916 0.1734 0.1961
o 1.0638 0.3859 0.3911 1.0074 0.1034 0.1037 1.0247 0.2361 0.2374
0% 1.5038 0.1350 0.1351 1.5019 0.0395 0.0396 1.5057 0.0871 0.0873
fi 0.0988 0.1091 0.1095 0.0997 0.0616 0.0623 0.1133 0.1425 0.1444
HP s 0.6608 0.4932 0.6750 0.2812 0.1575 0.1772 0.2890 0.1724 0.1941
o 1.0706 0.4013 0.4075 1.0061 0.1040 0.1042 1.0223 0.2437 0.2447
0% 1.5032 0.1327 0.1328 1.4999 0.0399 0.0399 1.4977 0.0899 0.0899
0.0980 0.0904 0.0908 0.1003 0.0692 0.0699 0.1088 0.0992 0.1010
KF 0.6579 0.4888 0.6698 0.2805 0.1566 0.1761 0.2861 0.1680 0.1888

1.0241 0.3719 0.3726 0.9943 0.1042 0.1044 0.9688 0.2394 0.2414
1.4872 0.1372 0.1378 1.4956 0.0406 0.0408 1.4770 0.0959 0.0986

S S
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Table A5. Cont.

Scenario 2 A =1/52, n = 520 A =1/52, n = 2600 A =1/12, n = 520
Method 0 Mean SD RMSE Mean SD RMSE Mean SD RMSE
il 0.0988 0.1054 0.1057 0.1003 0.0689 0.0697 0.1109 0.1198 0.1216
MCMC R 0.6651 0.4972 0.6808 0.2813 0.1576 0.1773 0.2888 0.1721 0.1936
o 1.1357 0.5257 0.5429 1.0122 0.1140 0.1146 1.0606 0.2895 0.2957
07 1.4998 0.1595 0.1595 1.5002 0.0430 0.0430 1.4999 0.0999 0.0999
il 0.1003 0.1872 0.1875 0.0882 0.0218 0.0219 0.0890 0.0232 0.0233
CMM s 0.8836 0.4953 0.8442 0.4766 0.1604 0.3198 0.4813 0.1579 0.3226
o 0.9625 0.4548 0.4563 0.9631 0.1923 0.1958 0.8381 0.3223 0.3606
¥ 1.4440 0.1787 0.1873 1.4690 0.0889 0.0942 1.3820 0.1609 0.1995

Table A6. Monte Carlo simulation for CKLS model with (y,«, o, )" = (0.09,0.9,1.414,1.5)".

Scenario 4 A =1/52, n = 520 A =1/52, n = 2600 A =1/12, n = 520
Method ] Mean SD RMSE Mean SD RMSE Mean SD RMSE
fi 0.0965 0.0625 0.0628 0.0907 0.0078 0.0079 0.0909 0.0080 0.0081
DML /e 1.2752 0.6674 0.7657 0.9594 0.2535 0.2604 0.9493 0.2692 0.2737
o 1.3874 0.4298 0.4307 1.3765 0.1661 0.1703 1.2486 0.3849 0.4190
0% 1.4762 0.1241 0.1263 1.4876 0.0488 0.0503 1.4382 0.1245 0.1390
il 0.0953 0.0421 0.0424 0.0904 0.0078 0.0078 0.0902 0.0078 0.0078
L s 1.2993 0.6905 0.7976 0.9759 0.2601 0.2709 1.0009 0.2939 0.3107
o 1.4853 0.4496 0.4552 1.4397 0.1668 0.1688 1.4915 0.3856 0.3933
0% 1.5076 0.1184 0.1187 1.5085 0.0468 0.0476 1.5265 0.1048 0.1081
i 0.0955 0.0441 0.0444 0.0912 0.0150 0.0150 0.0925 0.0452 0.0453
HP e 1.2912 0.6911 0.7941 0.9664 0.2584 0.2668 0.9838 0.2968 0.3084
o 1.4823 0.4685 0.4734 1.4308 0.1770 0.1778 1.4720 0.4144 0.4185
g 1.4998 0.1209 0.1209 1.5010 0.0494 0.0494 1.4989 0.1126 0.1126
fl 0.0963 0.0576 0.0580 0.0907 0.0078 0.0079 0.0909 0.0080 0.0081
KF e 1.2743 0.6663 0.7643 0.9600 0.2537 0.2607 0.9493 0.2694 0.2738
o 1.3874 0.4299 0.4308 1.3757 0.1659 0.1704 1.2482 0.3846 0.4189
0% 1.4762 0.1240 0.1263 1.4874 0.0488 0.0504 1.4381 0.1245 0.1390
fl 0.0961 0.0494 0.0498 0.0907 0.0078 0.0079 0.0911 0.0081 0.0082
MCMC e 1.2958 0.6871 0.7930 0.9665 0.2570 0.2654 0.9799 0.2891 0.3000
o 1.5353 0.5573 0.5703 1.4465 0.1839 0.1867 1.5296 0.4573 0.4717
0% 1.4944 0.1345 0.1347 1.5036 0.0512 0.0513 1.5040 0.1198 0.1199
i 0.0952 0.1351 0.1352 0.0899 0.0076 0.0076 0.0903 0.0078 0.0078
GMM s 1.6327 0.6541 0.9822 1.1897 0.2754 0.3998 1.1551 0.2834 0.3812
o 1.2845 0.5483 0.5635 1.3012 0.2754 0.2977 0.9994 0.3995 0.5759
0% 1.4259 0.1689 0.1845 1.4541 0.0905 0.1015 1.3218 0.1594 0.2391
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