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Abstract: How strongly are foreign exchange markets linked in terms of their similarities in long-run
fluctuations? Are they cointegrating? To analyze such “comovements,” we present a time-varying
cointegration model for the foreign exchange rates of the currencies of Canada, Japan, and the UK
vis-à-vis the U.S. dollar from May 1990 through July 2015. Unlike previous studies, we allow the
loading matrix in the vector error-correction (VEC) model to be varying over time. Because the
loading matrix in the VEC model is associated with the speed at which deviations from the long-run
relationship disappear, we propose a new degree of market comovement based on the time-varying
loading matrix to measure the strength or robustness of the long-run relationship over time. Since
exchange rates are determined by macrovariables, cointegration among exchange rates implies these
variables share common stochastic trends. Therefore, the proposed degree measures the degree of
market comovement. Our main finding is that the market comovement has become stronger over
the past quarter-century, but at a decreasing rate with two major turning points: one in 1995 and the
other one in 2008.

Keywords: foreign exchange markets; market comovement; time-varying vector error
correction model

1. Introduction

It is well understood among researchers that exchange rate dynamics are highly
complex, and there is little consensus on which econometrics model best describes the
time-series process of exchange rates. Although many exchange rates are known to have
unit roots, finding a cointegrating relationship among several exchange rates has attracted
relatively little interest, with some exceptions such as Baillie and Bollerslev [1]. Because
an exchange rate cointegrating with another exchange rate means they share a common
stochastic trend, discovering such cointegration is tantamount to discovering common
trends therein. As Baillie and Bollerslev [1] argue, many exchange rates are found to have
a unit root or stochastic trend. If those exchange rates are not cointegrating, then any shock
to an exchange rate has a permanent effect, irrespective of other exchange rates, thereby
diverging from them. This situation is somewhat awkward because it is hard to imagine
that interest rate differentials, one of the main determinants of exchange rate dynamics,
do not exhibit international comovement. Yet, a skeptical view on cointegrating exchange
rates is presented by, for example, Diebold et al. [2], who claim that the martingale model
is better at out-of-sample forecast than is the cointegrating model. They also find weaker
evidence of cointegration in exchange rates than do Baillie and Bollerslev [1]. As explained
in Engel et al. [3], an important implication of Engel and West [4] is that a large discount
factor could obscure the cointegrating relationship in exchange rates when the exchange
rates are generated by the present value model, even when they are indeed cointegrated.
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All in all, whether several exchange rates are cointegrated is an empirical question.
However, investigating whether the cointegrating relationship is stable over time is more
meaningful in economics because exchange rate dynamics might not be described by a
single model, or because an unstable relationship could reflect extraordinary events that
alter the global financial environment. It is also possible that the global financial markets are
constantly changing, and hence, the relationship between exchange rates too are constantly
changing. Therefore, our attempt in this paper is to estimate the extent to which exchange
rates move together in the long run, considering the possibility that the cointegrating
relationship may not be stable over time presumably owing to a time-varying market
environment. In this way, we can shed new light on the debate on whether cointegrating
relations exist in foreign exchange rates.

This idea of a time-varying market environment or market integration is in line with
Ito et al. [5], who show that the global stock markets were efficient (in the sense of Fama [6])
for sometimes, but inefficient for the rest of the post-World War II period. To reach this
conclusion, Ito et al. [5] define a time-varying degree of market efficiency and then they
use this degree to determine whether the markets were efficient. Employing the same idea
of time-varying nature of the global financial market, in this study, we propose a degree of
market comovement and then, we show that it has monotonically increased over time in
the past quarter-century. However, this increase is found to have occurred at a diminishing
rate, suggesting that the cointegrating relationship may have a ceiling that prevents it from
strengthening any further. There are some studies on foreign exchange market assuming
parameter values to be time-varying. Kapetanios et al. [7] and Clarida et al. [8] adopt the
STAR (smooth transition autoregressive) and the Markov-switching model, respectively.
Those models are believed to be more suited to the situation where the parameter value
moves within or toward several states. Our approach, on the other hand, allows parameter
values to move in any direction at each time, thereby giving the model great flexibility.

This paper is organized as follows. In Section 2, we present our error-correction model
that allows some key parameters to be time-varying. In the same section, we propose a new
measure for foreign exchange markets, namely the degree of market comovement. The
exchange rate data and preliminary unit root test results are given in Section 3. Section 4
provides the main results and a discussion of the time-varying nature of the global ex-
change market. Our conclusion is in Section 5. Detailed computations are provided in
Appendices A–D.

2. Model

This section presents our method of capturing the time-varying nature of foreign
exchange markets. The main building block of our model is a vector error-correction (VEC)
model, which supposes that there are cointegrating relationships or long-run relationships
among the variables in our model. In particular, our idea stems from the fact that the VEC
model elucidates the adjustment process to the long-run relationships. As the following
subsections explain, the crux of our model is that the adjustment process or the speed
of adjustment to the long-run relationships can vary over time, reflecting the changing
environment in the global foreign exchange markets.

2.1. Exchange Rate Dynamics and Cointegration

Let us suppose the natural log of the spot Japanese yen per U.S. dollar exchange rate
sJ

t and the natural log of the spot Canadian dollar per U.S. dollar sC
t are cointegrated. Then,

we have the following error-correction model representation:

∆sJ
t = µ1 + α1

(
sJ

t−1 − β1sC
t−1

)
+ γ1,1∆sJ

t−1 + γ1,2∆sC
t−1 + e1t

∆sC
t = µ2 + α2

(
sJ

t−1 − β1sC
t−1

)
+ γ2,1∆sJ

t−1 + γ2,2∆sC
t−1 + e2t,
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where µ1 and µ2 are drifts; β = (1, β1) is the cointegrating vector; and sJ
t−1 − β1sC

t−1 = 0
is the long-run relationship, which is stationary. The coefficients on the long-run relation-
ship, α1 and α2 are interpreted as the speed at which any deviations from the long-run
relationship disappear (More precisely, coefficient α1 or α2 is associated with the half-life
of the deviation from the cointegrating relationship). As we shall see in the following
subsections, it is possible that the speed of adjustment changes over time, perhaps because
the environment of the international financial markets is changing.

2.2. The Vector Error-Correction Model

Assuming there are some cointegrating relationships, let us consider a vector error-
correction (VEC) model for m-vector time-series Xt, as follows:

∆Xt = Γ1∆Xt−1 + · · ·+ Γk∆Xt−k + ΠkXt−k + µ + εt, (1)

where ∆Xt = Xt − Xt−1, µ is a vector of intercepts, and εt is a vector of error terms.
The VEC model (1) suggests that ∆Xt consists of a stationary part, Γ1∆Xt−1 + · · ·+

Γk∆Xt−k, and an error-correction term, ΠkXt−k, which is also a stationary process when
each variable in the vector Xt is an integrated process of order one (often denoted as
I(1)). Because we apply the VEC model to a set of variables whose first differences are
stationary, ΠkXt−k is a vector of stationary processes with a zero mean vector; and ΠkXt−k
includes some long-run relationships among the variables in Xt. Please note that the m×m
matrix Πk is a singular matrix, i.e., the rank of Πk is r, which is less than m. Hence, if we
decompose matrix Πk such that Πk = αβ′, then α is an m× r matrix; β′ is an r×m; and
both are rank-r matrices.

The long-run relationships among the variables in the system, or the cointegration
is described as β′Xt−k = 0, and hence, β is called the cointegrating matrix. We pay
special attention to α, which indicates how quickly the exchange rates in the system
restore the long-run relationships when deviations from such relationships occur. This is
because a rapid adjustment implies a strong or robust cointegrating relation. Thus, the
determinants of exchange rate dynamics such as interest rate differentials, risk premia,
and price level differentials should follow common stochastic trends. In this sense, the
quicker the adjustment, the stronger is the comovement. Furthermore, by allowing α to be
time-varying, we capture the time-varying nature of market comovement by estimating the
change in the matrix over time using the time-varying VEC model (Although cointegration
in foreign exchange rates does not mean that foreign exchange markets are efficient per se
(See Engel [9]), it is also possible to interpret α as the speed at which arbitrage occurs in
some cases. Suppose that there are arbitrage opportunities in the foreign exchange market
due to relatively large shocks. Consider a case where the cross (indirect) exchange rate
does not equal the bilateral (direct) exchange rate. We do not believe such opportunities to
appear often, nor do we believe them to be long lasting. However, under the assumption
that the long-run relationship or comovement are on the dynamic equilibrium path (or
efficient market), the speed at which market participants exploit the arbitrage opportunities
or the speed at which deviations from the long-run relationship are corrected is captured
by α. On the other hand, the fluctuations of an exchange rate due to such corrections also
appear in the corresponding element in ε) .

2.3. The Time-Varying VEC Model

It is not obvious whether the loading matrix α is, in fact, time-varying. As an assess-
ment, we apply the Hansen [10,11] parameter constancy test to the VEC model. We impose
the following parameter dynamics to the VEC model so that we can estimate the loading
matrix changes over time. For given constant β, we estimate Γ and α, assuming

Γt = Γt−1 + ut

αt = αt−1 + v1t
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Please note that simultaneous estimation of αt and βt for each t is infeasible owing to
an identification problem of a linear regression (See Appendices A–D for a more detailed
discussion). As explained in the appendix, one can estimate the time-varying VEC model
without using the Bayesian method (MCMC). Instead, we employ an GLS-based method
proposed by Ito et al. [12].

2.4. The Degree of Market Comovement

When the loading matrix α is not stable for the whole sample period, then it is reason-
able to assume the speed of adjustment changes over time. Since the long-run relationship
in exchange rates is presumably due to comovement in interest rate differentials, risk
premia, or price level differentials, a rapid adjustment to the long-run relationship is as-
sociated with a strong comovement among those variables. For this, we propose a new
measure of international comovement, called the degree of market comovement, which
can be computed from the loading matrix α:

ζt =
√

max λ(αtα′t)

where max λ(A) is the largest eigenvalue of a matrix A. Please note that the degree
of market comovement is similar to the one proposed by Ito et al. [5], who examine
international stock market efficiency and quantify its time-varying nature. The greater the
degree of market comovement, the faster foreign exchange markets return to their long-run
relationship when deviations from the cointegrating relationship arise.

2.5. Confirming Our Assumption of Constant Cointegrating Vectors

Among the several assumptions we make about our model, we need to justify one
substantial assumption, namely that the cointegrating vectors are constant over time while
the loading matrix varies over time. It is conceivable that the fact that matrix Π is time-
varying, implies that the number of cointegrating vectors (as well as the cointegrating
vectors themselves) is time-varying. To confirm the stability of the cointegrating vectors,
we apply the state-of-the-art econometrics test proposed by Qu [13] to the exchange rate
data (As detailed in Juselius [14], there are several econometrics tests that investigate the
constancy of cointegrating vectors. In our view, however, the Qu [13] test is best suited for
our purpose because it considers a variety of test statistics and their asymptotic properties,
without assuming the timing of possible structural breaks). In essence, the Qu [13] test
allows a researcher to assess whether the number of cointegrating vectors has changed
in a subsample, say, the time between Ta and Tb, where neither Ta nor Tb is known to the
researcher. As the null hypothesis, the Qu [13] test states the number of cointegrating
vectors is constant for the whole sample. Hence, not being able to reject the null hypothesis
can be interpreted as justification of our assumption that the cointegrating vectors are
stable over time.

3. Data

We use average monthly nominal data on spot and forward exchange rates for three
developed countries (Canada, Japan, and UK) from May 1990 to July 2015, taken from the
Thomson Reuters Datastream.

We choose these three exchange rates because they trade frequently worldwide (or
they have high liquidity). In addition, they are the national currencies of three of the Group
of Seven (G7) countries, presumably related to large macroeconomic fundamentals. The
euro, however, has only existed since 1999. Hence, we exclude the euro, despite its high
liquidity and the large economic fundamentals behind it.

For the forward exchange rate data, we use a nearby (one month) contract month
following previous studies. We take the natural log of the spot and forward exchange rates
to obtain the level data, and we also take the first difference of the natural log of the level
data to compute the returns on the spot and forward exchange rates.
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Table 1 provides some descriptive statistics and the results of the ADF-GLS tests. For
the unit root tests, the ADF-GLS test of Elliott et al. [15] is applied. We employ the modified
Bayesian information criterion (MBIC) instead of the modified Akaike information criterion
(MAIC) to select the optimal lag length. This is because we are unable to find evidence of
size-distortions (see Elliott et al. [15]; Ng and Perron [16]) in the estimated coefficient of the
detrended series, ψ̂. It is widely known that the logarithmic spot and forward exchange
rates are both integrated of order one (or I(1) process), so that the differences are stationary
(or I(0) process) variables.

Table 1. Descriptive Statistics and Unit Root Tests.

Mean SD Min Max ADF-GLS Lags φ̂ N

Level
SCA 0.2175 0.1452 −0.0454 0.4697 −1.2364 1 0.9948

308

FCA 0.2180 0.1449 −0.0447 0.4699 −1.2470 1 0.9947
SJP 4.6918 0.1486 4.3396 5.0352 −1.6915 1 0.9902
FJP 4.6899 0.1483 4.3393 5.0344 −1.6844 1 0.9903
SUK −0.4965 0.0905 −0.7279 −0.3387 −2.9910 ** 1 0.9700
FUK −0.4953 0.0900 −0.7269 −0.3373 −2.9969 ** 1 0.9698

First Difference
∆SCA 0.0005 0.0167 −0.0626 0.1083 −11.8715 *** 0 0.3648

307

∆FCA 0.0005 0.0167 −0.0626 0.1077 −11.8337 *** 0 0.3676
∆SJP −0.0007 0.0261 −0.1095 0.0823 −11.5044 *** 0 0.3948
∆FJP −0.0007 0.0261 −0.1094 0.0831 −11.5039 *** 0 0.3948
∆SUK 0.0004 0.0228 −0.0583 0.1066 −12.2763 *** 0 0.3385
∆FUK 0.0004 0.0227 −0.0585 0.1080 −12.2221 *** 0 0.3424

Notes: (1) “ADF-GLS” denotes the ADF-GLS test statistics, “Lags” denotes the lag order selected by the MBIC,
and “φ̂” denotes the coefficients vector in the GLS detrended series (see Equation (6) in Ng and Perron [16]). (2)
In computing the ADF-GLS test, a model with a time trend and a constant is assumed. (3) “***” and “**” indicate
statistically significant at 1% and 5% level, respectively. (4) “N ” denotes the number of observations. (5) R version
4.0.5 was used to compute the statistics.

4. Empirical Results
4.1. Preliminaries

First we determine whether our data on exchange rates exhibit non-stationarity, and
more specifically, have a unit root. As shown in Table 1, the level data (upper panel) exhibit
non-stationarity because the ADF-GLS test uniformly fails to reject the null hypothesis of
the series possessing a unit root. However, the same test can reject the null hypothesis once
the first differences of each series are computed (lower panel).

Having confirmed that our data have unit roots, we proceed to investigate whether
the data have cointegrating relationships. To this end, we use the Johansen [17] maximum
eigenvalue test and the Johansen [18] trace test.

Here, we assess the number of cointegrating vectors in Table 2. The null hypotheses
for the two tests are presented in the first column of Table 2. From the first row, we can
conclude that the null hypothesis of no cointegrating vector is rejected at the 5% and
10% level of significance by both the maximal eigenvalue test and the trace test. Yet, it is
conclusive that there is no more than one cointegrating vector. This is because the maximal
eigenvalue test whose alternative in the second row is two cointegrating vectors, cannot
reject the null hypothesis, and neither can the trace test, whose alternative states that there
is more than one cointegrating vectors (We also test the number of cointegrating vectors
using the real exchange rates to check the robustness of our test results and obtain the
almost same results as in the case of the nominal exchange rates. Thus, we conclude that
there exists more than one cointegration vector in the VEC system).

We report the estimates of our VEC models in Table 3, where each column corresponds
to each equation in the VEC model, showing coefficients on the error-correction term in the
lower half of the table.
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Table 2. Johansen’s Cointegration Tests.

Eigenvalues Max Eigen Trace

None 0.1352 44.45 ** 100.19 *
At most 1 0.0826 26.39 55.74

Notes: (1) “Max Eigen” and “Trace” denote the Johansen [17] maximal eigenvalue test statistic and the
Johansen [18] trace test statistic, respectively. (2) “**” and “*” indicate statistically significant at 5% and 10% level
for each test, respectively. (3) R version 4.0.5 was used to compute the statistics.

Table 3. Time-Invariant VEC Model Estimations.

SCA FCA SJP FJP SUK FUK

Difference

SCA
−0.4209 −0.2370 6.0713 6.1933 2.0254 2.1560
[1.8453] [1.8414] [4.5597] [4.5475] [4.4885] [4.4183]

FCA
0.7703 0.5885 −6.0537 −6.1739 −1.6558 −1.7854
[1.8608] [1.8560] [4.5810] [4.5684] [4.4883] [4.4181]

SJP
1.6242 1.6664 −0.7974 −0.5514 1.0198 0.9973
[1.8997] [1.8902] [3.3395] [3.3475] [3.0337] [3.0269]

FJP
−1.6031 −1.6460 1.1054 0.8580 −0.9913 −0.9692
[1.9188] [1.9093] [3.3492] [3.3573] [3.0485] [3.0412]

SUK
0.1174 0.0667 −3.9585 −4.1291 −6.0241 −5.8113
[2.1271] [2.1253] [3.1513] [3.1505] [3.5704] [3.5750]

FUK
−0.1774 −0.1263 3.9517 4.1228 6.2729 6.0556
[2.1210] [2.1200] [3.1599] [3.1593] [3.6079] [3.6115]

Level

Constant −0.0334 −0.0334 0.2006 0.1995 0.1467 0.1452
[0.0470] [0.0468] [0.0680] [0.0680] [0.0470] [0.0467]

SCA
0.8047 0.9465 3.3757 3.3233 2.2904 2.2845
[1.1232] [1.1317] [2.6344] [2.6460] [2.2176] [2.2168]

FCA
−0.8390 −0.9808 −3.3467 −3.2952 −2.2552 −2.2494
[1.1254] [1.1337] [2.6427] [2.6543] [2.2191] [2.2181]

SJP
1.3304 1.2953 −1.0766 −0.9938 −1.5576 −1.5626
[1.0113] [1.0109] [1.3641] [1.3615] [1.1244] [1.1277]

FJP
−1.3189 −1.2837 1.0302 0.9477 1.5173 1.5226
[1.0135] [1.0131] [1.3695] [1.3668] [1.1194] [1.1226]

SUK
−2.0125 −2.0557 −1.4713 −1.4990 −1.8191 −1.7604
[1.5610] [1.5579] [2.2110] [2.2115] [2.3796] [2.3631]

FUK
2.0478 2.0910 1.4478 1.4764 1.7452 1.6862
[1.5691] [1.5658] [2.2266] [2.2271] [2.3855] [2.3688]

R̄2 0.0984 0.1005 0.1032 0.1026 0.1918 0.1900
LC 65.5233 ***

Notes: (1) “R̄2” denotes the adjusted R2, and “LC” denotes the Hansen [10,11] joint LC statistic with variance.
(2) Newey and West [19] robust standard errors are in brackets. (3) “***” indicates statistically significant at 1%
level. (4) R version 4.0.5 was used to compute the estimates and the statistics.

4.2. The Time-Varying Model

So far, we have assumed that the VEC model has time-invariant parameters. Let us
relax this assumption and use the time-varying parameter model, which presumably better
captures the dynamics of exchange rates, by taking into account a constantly changing
market environment. Therefore, how different a picture can we get once we apply the time-
varying VEC model? (Although we follow the results of Hansen’s test for modeling the
time-varying model, we do not provide the R-squared for this model because our approach
is based on GLS, and hence, the R-squared is not an appropriate measure of fit.) First,
we need to establish whether the cointegrating relationship, or the cointegrating vector,
is preserved for the entire sample period. Table 4 shows the results of the cointegration
order change test of Qu [13]. We can conclude that the number of cointegrating vectors
among the Japanese yen-U.S. dollar, Canadian dollar-U.S. dollar, and pound sterling-U.S.
dollar exchange rates is constant over time at the 1% level of significance (In addition to
the Qu [13] test, we also confirm the stability or robustness of the cointegrating vector
using the Hansen and Johansen [20] test, which rejects the null hypothesis of time-varying
parameters in the cointegrating vector at the 1% significance level).
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Table 4. Qu’s Cointegration Order Change Tests.

SupQ1 SupQ2 WQ SQ

Test Stats 8.55 *** 10.81 *** 8.55 *** 15.94 ***
Notes: (1) “SupQ1” and “SupQ2” denote the values allowing for one break and two breaks, respectively. (2) “WQ”
and “SQ” also denote consistent test stats when we suppose less than three breaks based on the maximum and
sum of SupQ1 and SupQ2, respectively. (3) “***” indicate statistically significant at 1 % level. (4) R version 4.0.5
was used to compute the statistics.

Instead of presenting detailed estimates about our time-varying VEC model (which
are available in Appendices A–D), we report the degree of adjustment speed ζt. As we
discuss in Section 2, the larger ζt is, the quicker the foreign exchange markets adjust to
their long-run relationship.

The left panel of Figure 1 shows the foreign exchange markets that are increasingly
rapidly restoring the long-run relationship when unanticipated shocks hit the markets (We
also estimate the time-varying degree of market comovement using the real exchange rates
to explore whether our results in the main document are robust or not. As a result, we
obtain almost the same results as the time-varying degree of market comovement in the
main document even if we use the real exchange rates. Therefore, we can consider that
our empirical results do not depend on the differences of data). The right panel provides a
close look at the time-varying nature of the speed of adjustment, specifically, the changes
in the speed of adjustment. It is interesting to observe that the speed at which the markets
restore the long-run relationship has been increasing over time, but its rate of increase has
diminished over the sample period.
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Figure 1. Time-Varying Degree of Market Comovement.

Notably, the changes in the rate of increase occurred at least twice, once in the vicinity
of 1995, and then in 2008. The second change seemingly coincides with the global financial
crisis, while the first time is likely associated with the Mexican peso crisis (An interesting
extension of this approach is to assess the forecasting power of the time-varying model,
relative to the time-invariant model. To formally evaluate the two models with different
numbers of parameters, one would need to employ a bootstrap approach (See Clark and
McCracken [21], for example)).

Our results are consistent with the findings of Baillie and Bollerslev [1], since we find
cointegrating relationships in foreign exchange rates, yet we allow such relationships to
be time-varying in this paper. Although it is not so simple to link the degree of market
comovement with the stochastic discount factor, a claim of Engel et al. [3]—cointegrating
relations obscured by a large stochastic discount factor—may be viewed as cointegration
with the time-varying loading matrix that we found. Yet, the degree of market comovement
is a new concept presented by this study. With it, we provide insight into a constantly
changing foreign exchange market environment that affects the fluctuations of foreign
exchange rates in the long run.
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5. Concluding Remarks

A novel model for exchange rates, taking into account the time-varying nature of
the market environment, is presented. Our approach enables us to use the cointegrating
relationship among exchange rates, with the loading matrix in the VEC model changing
over time. Since the loading matrix can be interpreted as the speed of adjustment or
the strength of the cointegrating relationship in exchange rates determined by various
macroeconomic variables sharing common stochastic trends, we call the new degree
derived from the loading matrix the “degree of market comovement.” With the new degree,
we find that market comovement has become stronger, but at a decreasing rate with large
turning points in 1995 and in 2008.

In summary, the contribution of this paper is as follows. First, we develop a multi-
variate time-varying parameter model that allows the loading matrix of the cointegrating
relationship to change over time. Secondly, we define the concept of the degree of market
comovement, using the estimated loading matrix. Third, we find that the degree of market
comovement has increased, albeit not monotonically, over time. Because of our novel ap-
proach, we can shed new light on the debate about the existence of cointegrating relations
in foreign exchange rates.

The time-varying degrees of comovement uncovered in this paper have, at least, the
following two implications. First, a multivariate approach is more appropriate when the
dynamics of foreign exchange rates are considered. Second, care must be taken if one wants
to quantify the persistence of a shock to the exchange rate using techniques such as the
standard impulse-response functions computed from a vector autoregressive model.

However, it is worth mentioning that the limitation of our study stems from the
assumption that cointegrating vectors remain unchanged over time. Therefore, as a new
direction of research, one may further the idea of time-varying cointegration by consid-
ering an exchange rate system that has a cointegration relation at a certain time, but
not for the whole sample period. Such models can assess whether the claim made by
Engel and West [4] is empirically valid.

Author Contributions: Conceptualization, M.I., A.N. and T.W.; methodology, M.I.; software, M.I.
and A.N.; validation, A.N. and T.W.; formal analysis, M.I.; investigation, A.N. and T.W.; resources,
A.N.; data curation, A.N.; writing—original draft preparation, T.W.; writing—review and editing,
M.I., A.N. and T.W.; visualization, A.N. and T.W.; supervision, M.I.; project administration, A.N.;
funding acquisition, M.I., A.N. and T.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Japan Society for the Promotion of Science Grant in Aid
for Scientific Research Nos. 17K03809, 19K13747, and 20K01775.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data was obtained
from the Thomson Reuters Datastream and are available from the authors with the permission of the
Thomson Reuters Datastream.

Acknowledgments: We would like to thank the editor, Makoto Yano, three anonymous referees,
Yoosoon Chang, Joon Park, Sadayuki Takii, and conference participants at the 91st and 92nd Annual
Conference of the Western Economic Association International and the 26th Annual Meeting of the
Midwest Econometrics Group for their helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2021, 9, 849 9 of 13

Abbreviations
The following abbreviations are used in this manuscript:

ADF Augmented Dickey-Fuller
GLS Generalized least squares
MAIC modified Akaike information criterion
MBIC Modified Bayesian information criterion
MCMC Markov chain Monte Carlo
OLS Ordinary least squares
STAR Smooth transition autoregressive
TV-VEC time-varying vector error correction
VEC Vector error correction

Appendix A. Vector Error-Correction Model

First, we present a framework of a vector error-correction (VEC) model to use simple
least square techniques. Please note that a standard VEC model is derived from the
following vector autoregression (VAR) equation for m-vector time-series Xt (t = 1, · · · , T).

Xt = Π1Xt−1 + · · ·+ ΠkXt−k + µ + εt, (A1)

where µ, Dt and εt denote a drift term, n exogenous vector (i.e., trend term) and a m
random vector, respectively. Thus, Φ is m× n matrix; each Πj’s are m×m square matrices.
Through tedious algebra, we obtain the following VEC equation from provides

∆Xt = Γ1∆Xt−1 + · · ·+ Γk∆Xt−k+1 + ΠkXt−k + µ + εt. (A2)

This equation suggests that the change of the time-series, ∆Xt, is a sum of a stationary
part, Γ1∆Xt−1 + · · ·+ Γk∆Xt−k+1 + εt, and an error correction ΠkXt−k, which is stationary
process when each component of Xt is an integrated process.

Supposing T sample periods, we can rewrite Equation (A2) in an extended linear
regression form. For example,

[
∆X1 · · · ∆XT

]
=

[
µ Γ1 · · · Γk Π

]


1 · · · 1
∆X0 · · · ∆XT−1

...
. . .

...
∆X−k+1 · · · ∆XT−k+1

X1−k · · · XT−k

 +
[
ε1 · · · εT

]
.

Technically speaking, we can break down the above linear system to the following
three cases according to what type of long-run relations are supposed.

Case 1: Error Correction Terms without Drift

The first case corresponds to the long-run equilibrium equations without constant terms.

[
∆X1 · · · ∆XT

]
=
[
µ Γ1 · · · Γk

]


1 · · · 1
∆X0 · · · ∆XT−1

...
. . .

...
∆X−k+1 · · · ∆XT−k+1


+ Πn

[
X1−k · · · XT−k

]
+
[
ε1 · · · εT

]
. (A3)
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Case 2: Error Correction Terms with Drift

The second case corresponds to the long-run equilibrium equations with constant terms.

[
∆X1 · · · ∆XT

]
=
[
Γ1 · · · Γk

] ∆X0 · · · ∆XT−1
...

. . .
...

∆X−k+1 · · · ∆XT−k+1


+ Πc

[
X1−k · · · XT−k

1 · · · 1

]
+
[
ε1 · · · εT

]
. (A4)

Case 3: Error Correction Terms with Linear Time Trend

The third case corresponds to the long-run equilibrium equations with linear time trend.

[
∆X1 · · · ∆XT

]
=
[
µ Γ1 · · · Γk

]


1 · · · 1
∆X0 · · · ∆XT−1

...
. . .

...
∆X−k+1 · · · ∆XT−k+1


+ Πt

[
X1−k · · · XT−k

1 · · · T

]
+
[
ε1 · · · εT

]
, (A5)

where the last row of the second term in (A5) presents a time trend (1, 2, · · · , T).
Notice that the dimension of the Πn matrix for the third case differs from the other two

cases. It is m×m whereas the others are m× (m + 1). Because a VEC model is algebraically
derived from a certain VAR model, a linear stochastic system, it is also such a system. Thus,
we can estimate parameters µ, Γi’s and Π using some regression techniques, say, OLS or
GLS. Let Z0a, Z1a and Zka, (a = n, c, t) denote appropriate data matrices representing for
Equations (A3)–(A5). Furthermore, e denotes a matrix of exogenous shock vectors, i.e.,

Z′0 = ΓnZ′1n + ΠnZ′kn + ε, (A6)

where
Z′0 =

[
∆X1 · · · ∆XT

]
,

Z′1n =


1 · · · 1

∆X0 · · · ∆XT−1
...

. . .
...

∆X−k+1 · · · ∆XT−k+1

,

Z′kn =
[
X1−k · · · XT−k

]
,

Γn =
[
µ Γ1 · · · Γk

]
,

and
ε =

[
ε1 · · · εT

]
.

Similarly, as for (A4), its expression is as follows:

Z′0 = ΓcZ′1c + ΠcZ′kc + ε, (A7)

where

Z′1c =

 ∆X0 · · · ∆XT−1
...

. . .
...

∆X−k+1 · · · ∆XT−k+1

,
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Z′kc =

[
1 · · · 1

X1−k · · · XT−k

]
,

and
Γc =

[
Γ1 · · · Γk

]
.

Finally, as for (A4), its expression is as follows:

Z′0 = ΓtZ′1t + ΠtZ′kt + ε, (A8)

where
Z′1t = Z′1n,

Z′kt =
[

X1−k · · · XT−k
1 · · · T

]
,

and
Γn = Γt.

The three matrices, Γn, Γc and Γt might include µ as well as Γ1, · · · , Γk. They provide
us with information about stationary aspect of the time-series Xt. On the other hand, the
three matrices, Πn, Πc and Πt, take a crucial role in a VEC model. They are decomposed
into the loading matrix and the cointegration matrix such that Π = αβ′ (Three identifier,
“n”, “c” and “t”, for the above three options are omitted here). In particular, β′Z′k signi-
fies some long-run relationship among the observation. One can select the lag order k
using usual information criteria such as SBIC for each linear model above; it is easy to
compute them.

Given some cointegration order r, we can decompose the estimated Π in the above
linear models with respect to Z0, Z1 and ZK such that Π = αβ′, where α and β are called
the loading and cointegration matrices, respectively. The cointegration order r is usually
selected through well-known the Johansen [17,18] test. Johansen’s procedure on the rank
helps ones to obtain all the estimates and statistics for applied econometrician.

Appendix B. Parameter Constancy Test

Since we can regard a VEC model as a simultaneous linear regression system, (A6),
(A7) or (A8), we can examine the possibility of parameter constancy on Π and Γ using
the Hansen [10] parameter constancy test. Its null hypothesis is that parameters are time-
invariant; the alternative hypothesis is that they are martingale.

There are several stochastic processes that are martingale. Thus, when the null hy-
pothesis is rejected, we must choose one of such processes that would be followed by
the time-varying parameters in our model. Because we are interested in gradual changes
in speed of adjustment to a certain long-run equilibrium for a VEC model, we choose
a parameter dynamics in which the parameters follow random walk. The next section
presents our estimation method for a VEC model with random walk parameters.

Appendix C. Time-Varying VEC Model

As Lütkepohl [22] exactly points, the essential aim of VEC models is to decompose a
multivariate time-series into a pair of stationary and non-stationary time-series. It is very
similar to that of the Beveridge and Nelson [23] decomposition for a univariate time-series.
Roughly speaking, we can consider that the matrices Γi’s for i = 1, · · · , k represents the
stationary structure of the time-series to be analyzed; the matrix Π or matrices α and
β represent its non-stationary structure, the so-called cointegrated relationship among
variables of the time-series.

Although we start from a VAR model (A1), its corresponding VEC model provides
more information. When we consider a time-varying nature of some multivariate time-
series using VEC model, we should specify to what structure we focus: that represented by
Γ, that of Π or α and β or both. We show some options for time-varying VEC (TV-VEC)
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model. Regarding a VEC model as a simple linear regression model, we just consider one
of (A6) through (A8). Thus, we write down it for convenience as follows.

Z′0 = ΓZ′1 + ΠZ′k + ε. (A9)

We can suppose following combinations of the parameter dynamics with the above
linear model of VEC (A9). First, we estimate Γ and Π as time-varying parameters without
considering the decomposition of Π into α and β.

Γt = Γt−1 + ut, (A10)

Πt = Πt−1 + vt, (A11)

To this case, we can simply apply the Ito et al. [5] method to estimate a linear regression
model (See their online appendix which is available at http://at-noda.com/appendix/
inter_market_appendix.pdf (accessed on 10 April 2021)).

Second, we estimate Γ and α with regarding β as time-invariant and given.

Γt = Γt−1 + ut, (A12)

αt = αt−1 + v1t. (A13)

To this case, we first build a r-dimensional time-series Y = Zkβ. Then, we apply
Ito et al.’s method again to a new time linear regression

Z′0 = ΓZ′1 + αY′ + ε, (A14)

considering (A12) and (A13).
Third, we estimate Γ and β with regarding α as time-invariant and given.

Γt = Γt−1 + ut (A15)

βt = βt−1 + v2t (A16)

Considering Π = αβ′, we first rewrite (A9) as follows.

vec(Z0) = (α⊗ Zk)vec(β) + (I ⊗ Z1)vec(Γ′) + vec(ε′), (A17)

where ⊗ is the Kronecker product and vec operator transforms a matrix into a vector by
stacking the columns. Please note that α⊗ Zk can be regarded as a data matrix because
α is given. Considering this equation as a linear regression model whose parameters are
supposed time-varying, we apply again the Ito et al. [5] method estimate the parameters to
be varying over time.

Please note that both αt and βt for each t cannot be estimated. In particular, since
Πt = αtβ

′
t for each t and Πt is not of full rank, a decomposition of Πt into α and β is not

unique. Thus, either αt or βt is supposed time-invariant for the most general case of both
Πt and Γt supposed time-varying.

Appendix D. Degree of Market Comovement

We regard β′Z′k = 0 as long-run equilibrium relations with respect to the multiple
time-series. The loading matrix α, representing a speed of adjustment, is time-varying when
we employ a TV-VEC model to analyze market comovement. Thus, we pay our attention to
the time-varying loading matrix αt, which provides information about dynamics of market
comovement. The larger the absolute value of its components, the more significant their
contribution to ameliorate deviation from the long-run equilibrium. Thus, we propose an
index of market comovement based on the loading matrix. Then, we applied the index for
the time-varying loading matrix αt to investigate how degree of market comovement varies.

http://at-noda.com/appendix/inter_market_appendix.pdf
http://at-noda.com/appendix/inter_market_appendix.pdf
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We derive the index ζt from αt following Ito et al. [5]. In particular,

ζt =
√

max λ(αtα′t). (A18)

That is, ζt is the square root of the largest eigen value of αtα
′
t, which is a non-negative

semi definite matrix, for each t. Notice that the more the index the faster the adjustment of
markets to the long-run equilibrium.
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