
mathematics

Article

Availability Analysis of Software Systems with Rejuvenation
and Checkpointing

Junjun Zheng 1,* , Hiroyuki Okamura 2 and Tadashi Dohi 2

����������
�������

Citation: Zheng, J.; Okamura, H.;

Dohi, T. Availability Analysis of

Software Systems with Rejuvenation

and Checkpointing. Mathematics 2021,

9, 846. https://doi.org/10.3390/

math9080846

Academic Editor: Vassilis C.

Gerogiannis

Received: 15 March 2021

Accepted: 9 April 2021

Published: 13 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi,
Kusatsu 5258577, Japan

2 Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama,
Higashihiroshima 7398527, Japan; okamu@hiroshima-u.ac.jp (H.O.); dohi@hiroshima-u.ac.jp (T.D.)

* Correspondence: jzheng@asl.cs.ritsumei.ac.jp

Abstract: In software reliability engineering, software-rejuvenation and -checkpointing techniques
are widely used for enhancing system reliability and strengthening data protection. In this paper,
a stochastic framework composed of a composite stochastic Petri reward net and its resulting
non-Markovian availability model is presented to capture the dynamic behavior of an operational
software system in which time-based software rejuvenation and checkpointing are both aperiodically
conducted. In particular, apart from the software-aging problem that may cause the system to
fail, human-error factors (i.e., a system operator’s misoperations) during checkpointing are also
considered. To solve the stationary solution of the non-Markovian availability model, which is
derived on the basis of the reachability graph of stochastic Petri reward nets and is actually not
one of the trivial stochastic models such as the semi-Markov process and the Markov regenerative
process, the phase-expansion approach is considered. In numerical experiments, we illustrate
steady-state system availability and find optimal software-rejuvenation policies that maximize
steady-state system availability. The effects of human-error factors on both steady-state system
availability and the optimal software-rejuvenation trigger timing are also evaluated. Numerical
results showed that human errors during checkpointing both decreased system availability and
brought a significant effect on the optimal rejuvenation-trigger timing, so that it should not be
overlooked during system modeling.

Keywords: software rejuvenation; checkpointing; optimal rejuvenation-trigger timing; steady-state
system availability; phase expansion; human-error factors

1. Introduction

In software reliability engineering, various software fault-tolerance techniques such as
software rejuvenation and checkpointing are widely used for enhancing system reliability
and strengthening data protection. Software rejuvenation is a countermeasure against
software aging, which refers to the phenomenon that the performance or dependability
of software systems degrades with time, caused by aging-related bugs [1,2], eventually
resulting in system failures. In 1995, Huang et al. [3] first reported the aging phenomenon
in real telecommunication billing applications where the application experienced a crash
or a hang failure over time. The software-aging phenomenon exists in the real world
and is inevitable, but can nevertheless be controlled or even reversed [1,2,4]. Software
rejuvenation plays a central role in counteracting aging issues by refreshing the system’s
internal states. However, as pointed out by Alonso et al. [5], the software rejuvenation can
address aging issues well, but typically involves an overhead since the system becomes
unavailable during rejuvenation. That is to say, it is necessary and important to determine
an optimal rejuvenation schedule for achieving the best trade-off between target perfor-
mance or dependability and the associated overhead. To date, there are a number of works
devoted to solving such optimization problems [6–10]. For example, Vaidyanathan and

Mathematics 2021, 9, 846. https://doi.org/10.3390/math9080846 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5529-1429
https://orcid.org/0000-0001-6881-0593
https://orcid.org/0000-0003-2954-0388
https://doi.org/10.3390/math9080846
https://doi.org/10.3390/math9080846
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9080846
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9080846?type=check_update&version=1

Mathematics 2021, 9, 846 2 of 15

Trivedi [6] presented a semi-Markov reward model for a UNIX operating system, and used
this model to derive optimal software-rejuvenation schedules in terms of system availabil-
ity or downtime cost. Dohi et al. [9] considered two basic software-rejuvenation models
described by Markov regenerative processes (MRGPs), and provided transient solutions
using Laplace–Stieltjes transform (LST) and their numerical inversion. In [9], an optimal
software-rejuvenation policy that maximized interval system reliability was numerically
determined. Wang and Liu [10] recently offered a real-time decision method for optimal
software-rejuvenation timing through simulating and modeling the state-transition process
of software aging and constructing the rejuvenation decision function using an analytic
hierarchy process.

In the context of data protection, a typical technique is checkpointing, which is an
efficient method for saving re-execution time in the presence of faults [11] through saving
current data in the main memory to secondary storage. Checkpointing is easy to conduct
and has been widely studied for decades [12–16]. For example, Fukumoto et al. [12], and
Dohi et al. [13] introduced different checkpointing schemes for database systems, and
Ranganathan and Upadhyaya [14] considered the temporal behavior related to database
system states from a macroscopic viewpoint. Some of the literature also considered software
rejuvenation and checkpointing together [17–20]. Okamura and Dohi [17] focused on two
kinds of maintenance policies for a software system, and adopted a dynamic programming
approach to comprehensively evaluate aperiodic checkpointing and rejuvenation schemes
in the system. In [19], the authors introduced a stochastic reward Petri net (SRN) [21] to
model a software system of which the state moves to the execution process immediately
after a rollback recovery. In particular, according to SRN analysis, a non-Markovian state-
transition diagram was derived. More recently, a similar to but somewhat different system
from [19] was considered in [20], in which the system executes checkpointing immediately
after a rollback recovery in order to update the starting point of the recovery operation
from the past to the current time. In these previous works, the systems underwent both
aperiodic checkpointing and software rejuvenation, and their transition diagrams are not
one of the trivial stochastic models such as semi-Markov process (SMP) and MRGP. That
means that common approaches such as the LST and embedded Markov chain techniques
cannot be directly applied. To solve these complex non-Markovian transition diagrams,
the phase (PH) expansion approach [22,23], which is an approximation technique by using
phase-type (PH) distribution, was utilized and worked well in different contents. Moreover,
in [19,20], it was assumed that system failures are caused by only aging problems, but
in fact, human error is inescapable [24], and the system operator’s misoperations during
checkpointing cannot be ignored [25].

In this paper, we consider the different software systems from [19,20], where both
aperiodic checkpointing and software rejuvenation were executed, and system failure
occurred due to both software aging and human errors in checkpointing. A stochastic
framework composed of a composite SRN and its resulting non-Markovian availability
model is presented to capture the dynamics of the system from a macroscopic point of view.
More specifically, the non-Markovian availability model was derived from the reachability
graph of the composite SRN model. On the basis of the non-Markovian availability model,
which is also a nontrivial model including multiple competitive events as in [19,20], we
formulated the steady-state availability of the system by means of PH expansion, and
then determined the optimal software-rejuvenation schedule that maximized steady-state
system availability. The effects of human-error factors on both steady-state system avail-
ability and optimal software-rejuvenation schedule are investigated. The main differences
between this work and previous ones [19,20] are that we (i) consider both aging-related and
human-error-related system failures, of which the latter was overlooked in previous works;
and (ii) investigate the effect of human-error factors on system availability and software
rejuvenation. For brevity, the main contributions of this paper are summarized as twofold:

Mathematics 2021, 9, 846 3 of 15

• stochastic modeling of software systems that undergo both software rejuvenation
and checkpointing, and may fail due to both the aging problem and human errors in
checkpointing;

• investigation of the effects of human-error factors on both steady-state system avail-
ability and optimal software-rejuvenation trigger timing by the comparison of cases
where human-error-related system failures are considered or not.

The remainder of this paper is organized as follows. In Section 2, a stochastic frame-
work composed of a composite SRN and its corresponding non-Markovian state-transition
diagram for an operational software system with software rejuvenation and checkpointing
are introduced. In particular, a reachability graph was generated from the composite SRN,
and on its basis, a non-Markovian state-transition diagram was obtained. Section 3 first
defines continuous PH distribution and presents an approach to formulate the steady-state
system availability of the non-Markovian model by using the underlying approximate
CTMC of the non-Markovian model, which was derived by replacing all general distri-
butions with their corresponding PH distributions. In Section 4, we describe conducted
numerical experiments that evaluated system availability, determined the optimal software-
rejuvenation trigger timing, and quantified the effects of human-error factors. Lastly, in
Section 5, we conclude this paper with some remarks.

2. Macroscopic System Model

In this section, we first introduce the system assumptions and then present a stochastic
framework consisting of a composite SRN and its resulting non-Markovian transition
diagram to model operational software systems from a macroscopic point of view. More
specifically, the non-Markovian transition diagram was derived on the basis of a reachability
graph, which was generated from analysis of the composite SRN.

2.1. System Assumptions

Consider an operational software system that aperiodically executes checkpointing for
saving current data in the main memory in secondary storage. Without loss of generality,
it was assumed that the system suffers from software aging, so that it may fail due to
aging-related bugs, such as a memory leak and the accumulation of round-off errors. On
the other hand, system failure might also be caused by incorrect operation by the operator
during the execution of checkpointing. Once system failure occurred, a series of recovery
operations that include checkpointed data loading and rollback recovery were conducted
to recover the system. In addition, software rejuvenation was adopted to counteract the
aging problem. A few other assumptions:

• the checkpointing operation just saves the current data and does not refresh system ag-
ing;

• the clock of the rejuvenation trigger is not reset and continuously accumulates even
when the system executes the checkpointing;

• when a rejuvenation point is reached while the system is under checkpointing, the
rejuvenation waits until the checkpointing is completed;

• the system is regarded as good as new after either rollback recovery or rejuvenation.

2.2. Stochastic Reward Nets

On the basis of the above assumptions, the dynamics of the system are described
by a composite SRN as in Figures 1 and 2. Concretely, the composite SRN contains three
submodels: clock model for system aging (Figure 1a), clock model for software rejuvenation
(Figure 1b), and SRN model for system behavior (Figure 2). In these SRNs, transitions are
divided into three types: (i) immediate (IMM) transition (represented by a thin black bar),
which means the zero firing time transition; (ii) exponential (EXP) transition (represented
by a white rectangle), which refers to the exponentially distributed firing time transition;
and (iii) general (GEN) transition (represented by a thick black bar), which is generally
distributed firing time transition. The places are defined as follows:

Mathematics 2021, 9, 846 4 of 15

• Pf clock: software aging accumulates as time passes.
• Pf signal : it is time for an aging-related system failure to occur.
• Prclock: time is accumulated to trigger a rejuvenation.
• Prsignal : a rejuvenation point was reached.
• Pnormal : the system waits for checkpointing and rejuvenation in the normal execu-

tion process.
• Pcheckpointing: the system is under checkpointing.
• Prejuvenation: the system is under rejuvenation.
• Pf ailure: the system fails due to either aging-related bugs or human-error factors, and

checkpointed data are loaded for rollback recovery.
• Precovery: rollback recovery is executed to recover the failed system.
• Pcompleted: the system becomes as good as new after the completion of either rejuvena-

tion or rollback recovery.

(a) (b)

Figure 1. Clock models for (a) system aging and (b) software rejuvenation.

Figure 2. Stochastic (Petri) reward net (SRN) model for system behavior.

On the other hand, transitions Tcint, Ttrigger, and Tf ail1 correspond to the trigger in-
tervals of checkpointing and rejuvenation, and system lifetime, respectively. Transitions

Mathematics 2021, 9, 846 5 of 15

Tcheckpointing, Trejuvenation, Tload, and Trecovery separately represent the operations of check-
pointing, rejuvenation, loading of checkpointed data, and rollback recovery. Transitions
Tf ail2 and Tf ail3 are both EXP transitions, representing failures caused by incorrect opera-
tions by the operators. Once IMM transition trej fires with satisfied guard function Grej, the
system is immediately rejuvenated. If a token appears in place Pf signal , either transition
t f ail1 or transition t f ail2 fires due to the exhausted lifetime. Transitions t f reset and trreset
represent the reset of the clocks, and tnormal means that the system becomes normal again
at the same time as when clock reset. The details of guard functions are shown in Table 1.

Table 1. Guard functions.

Guard Guard Function

Gnormal #(Pf clock) = 1 && #(Prclock) = 1
G f ail #(Pf signal) = 1
Grej #(Prsignal) = 1 && #(Pf signal) = 0
Gtrigger #(Pnormal) = 1 && #(Pcheckpointing) = 1
Greset #(Pcompleted) = 1

2.3. Reachability Graph

A Petri net’s reachability graph is also a directed graph composed of nodes and edges,
each of which representing a reachable marking and a transition between two reachable
markings, respectively. According to analysis of the composite SRN described in Section 2.2,
a reachability graph, starting with the initial marking {Pnormal : 1, Pf clock : 1, Prclock : 1}
(here no token places are not shown for brevity), is generated and depicted as in Figure 3.
The description of nodes in the graph are summarized in Table 2. For example, node GEN
(Tcint → enable Tf ail1 → enable Ttrigger → enable) is the initial marking and represents the
normal execution state of the system in which all transitions Tcint, Tf ail1, and Ttrigger are
enable. Both nodes GEN (Tcheckpointing → enable Tf ail1 → enable Ttrigger → enable) and
GEN (Tcheckpointing → enable Tf ail1 → enable) correspond to the checkpointing execution
states, and the difference between them is whether a rejuvenation point was reached. Node
GEN (Tload → enable) means that the system failed, and the loading of checkpointed data
is being executed. This graph shows that there exist two edges from either node GEN
(Tcheckpointing → enable Tf ail1 → enable Ttrigger → enable) or node GEN (Tcheckpointing →
enable Tf ail1 → enable) to node GEN (Tload → enable). This is explained by the fact that,
during checkpointing, the system may fail due to aging-rated bugs or human-error factors,
that is, among two edges, one represents the GEN transition Tf ail1 and another corresponds
to the EXP transition Tf ail3.

Table 2. Nodes in reachability graph.

Node Description

GEN (Tcint → enable Tf ail1 → enable Ttrigger → enable) Initial marking representing the normal execution state

GEN (Tcheckpointing → enable Tf ail1 → enable Ttrigger → enable) Marking representing checkpointing-execution state with disabled
rejuvenation

GEN (Tcheckpointing → enable Tf ail1 → enable) Marking representing checkpointing-execution state with enabled
rejuvenation

GEN (Tload → enable) Marking representing system-failure state
GEN (Trecovery → enable) Marking representing rollback-recovery state
GEN (Trejuvenation → enable) Marking representing rejuvenation-execution state

Mathematics 2021, 9, 846 6 of 15

GEN (Trejuvenation->enable)

GEN (Tcint->enable Tfail1->enable Ttrigger->enable)

GEN (Tload->enable)

GEN (Tcheckpointing->enable Tfail1->enable Ttrigger->enable)

GEN (Trecovery->enable)

GEN (Tcheckpointing->enable Tfail1->enable)

Figure 3. Reachability graph.

2.4. Non-Markovian State-Transition Diagram

From the reachability graph in Section 2.3, a non-Markovian state-transition dia-
gram was derived as shown in Figure 4. This model consisted of seven states: Normal,
Checkpointing, Checkpointing′, Rejuvenation, Failure1, Recovery, and Failure2. State Normal
is the initial state and represents that the system is in the normal execution process in the main
memory and waits for the checkpointing and rejuvenation. Once a checkpoint is reached
prior to the rejuvenation point, the system state becomes Checkpointing, in which data on
the main memory are saved in secondary storage. Since the checkpointing operation does
not reset the clock of the rejuvenation trigger, a rejuvenation point may be reached dur-
ing checkpointing. In such a case, the system enters state Checkpointing′, which rep-
resents the checkpoint execution with enabled rejuvenation. After the completion of
checkpointing, the system transitions from state Checkpointing′ to state Rejuvenation. If
a rejuvenation point is reached prior to the checkpoint, the system immediately exe-
cutes rejuvenation and enters state Rejuvenation from state Normal. As mentioned in
Section 2.1, system failure may occur due to aging-related bugs and human-error factors.
Thus, two failure states, Failure1 and Failure2, were defined to distinguish two kinds of sys-
tem failures. When the system fails, a series of recovery operations, including checkpointed
data loading and the rollback recovery, are conducted to recover the system from failure.
Lastly, the system becomes Normal again from state Recovery. Of course, the system may
fail before both checkpointing and rejuvenation. The details of state notation are given
in Table 3.

Table 4 summarizes the cumulative distribution functions (CDFs) of the corresponding
transitions in the state-transition diagram. In this table, GEN represents general distribu-
tion, and EXP means exponential distribution. The reasons for making such assumptions
of probability distributions can be found in [20]. The checkpoint interval was assumed
to follow general distribution Gintv(t), and the CDF of the time needed for checkpointing
is given by Gcp(t). The time for an aging-related failure to occur follows a general distri-
bution G f ail(t) with increasing failure rate (IFR), while the time distributions for failures
occurring during both rollback recovery and checkpointing due to incorrect operations
by operators are given by Ff ail1(t) and Ff ail2 with constant failure rates (CFRs) λ f ail1 and

Mathematics 2021, 9, 846 7 of 15

λ f ail2, respectively. Similarly, the rejuvenation-trigger interval distribution is described by
Gtrig(t), and its relevant overhead distribution is represented by Grej(t). The probability
distribution of loading time of checkpointed data and the time needed for rollback recovery
are given by Gload(t) and Grc(t), respectively.

Figure 4. Non-Markovian state-transition diagram.

Table 3. State notation in non-Markovian state-transition diagram.

State Description

Normal Normal execution process in the main memory
Checkpointing Checkpointing execution with a disabled rejuvenation
Checkpointing’ Checkpointing execution with an enabled rejuvenation
Failure1 Aging-related system failure
Failure2 Human-error-related system failure
Recovery Rollback recovery to recover from system failure
Rejuvenation Software-rejuvenation execution to refresh system’s internal states

Table 4. Cumulative distribution functions (CDFs) of transitions in state-transition diagram.

CDF Description Type

Gintv(t) CDF of checkpoint interval. GEN
G f ail(t) CDF of time for an aging-related failure to occur. GEN
Gcp(t) CDF of time needed for checkpointing. GEN

Gload(t) CDF of loading time of checkpointed data. GEN
Grc(t) CDF of time needed for rollback recovery. GEN

Gtrig(t) CDF of time required to trigger a rejuvenation. GEN
Grej(t) CDF of rejuvenation overhead. GEN

Ff ail1(t) CDF of time for failure to occur during rollback recovery. EXP

Ff ail2(t)
CDF of time for a human-error-related failure to occur
during checkpointing execution. EXP

Figure 4 shows states Normal and Checkpointing, highlighted by a dashed rectangle
with G f ail(t) and Gtrig(t), indicating that these GEN transitions regarding G f ail(t) and

Mathematics 2021, 9, 846 8 of 15

Gtrig(t) are enabled and could fire under either the Normal or the Checkpointing state.
In the same way, the dashed rectangle for Checkpointing and Checkpointing′ means the
possible firings of GEN and EXP transitions regarding G f ail(t), Gcp(t), and Ff ail2(t). This
implies that the non-Markovian state-transition diagram under consideration is neither the
SMP nor the MRGP, resulting in difficult numerical analysis. To cope with this issue, in
this paper we consider the PH expansion approach [22], which proved to be efficient for
solving such kind of non-Markovian state-transition models [19,20,26].

3. System Availability Analysis

This section first introduces the well-known continuous PH distribution [22] and then
derives the underlying approximate CTMC for the non-Markovian state-transition diagram
in Figure 4 via PH expansion approach, of which the essential idea is to replace general
distribution with its corresponding PH distribution at a high accuracy level. Lastly, the
stationary solution for the model in Figure 4 through CTMC analysis is presented. The mea-
sure of interest is steady-state system availability, which is defined as the probability that
the system is operational in the steady state.

3.1. Continuous PH Distribution

Continuous PH distribution is defined as the probability distribution of absorbing
time in a finite CTMC with absorbing states, and it is widely applied in various fields,
such as reliability assessment [26], queueing systems [27], and random telegraph noise
analysis [28]. Without loss of generality, we define Q as an infinitesimal generator matrix
of a CTMC that has m transient states and one absorbing state, and then partition Q into
four parts as below:

Q =

(
T ξ

0 0

)
. (1)

In the above, T and ξ represent transition rates among transient states and exit rates
from transient states to the absorbing state, respectively. Defining α as an initial probability
vector over the transient states, we have the CDF and probability density function (PDF)
for the continuous PH distribution:

FPH(t) = 1− α exp(Tt)1, fPH(t) = α expTt ξ, (2)

where 1 is a column vector of ones. Exit vector ξ is given by ξ = −T1. Transient states are
called phases in general.

Continuous PH distribution can be categorized into several subclasses according to
the structure of T [29]. When phase transition is acyclic, the corresponding PH distribution
is called acyclic PH distribution (APH). The APH is the widest class among mathematically
tractable PH distributions, and it can be converted into the canonical form (CF), which
is the minimal representation of APH with the smallest number of free parameters [30].
The APH and its CF are important from the viewpoint of practical applications because it
covers some well-known probability distributions, such as exponential distribution, Erlang
distribution, and their mixtures. In particular, canonical form 1 (CF1) is usually considered
and defined by

α =
(

α1 α2 · · · αm
)
, (3)

T =

−β1 β1 O

−β2 β2
.
−βm−1 βm−1

O −βm

, (4)

Mathematics 2021, 9, 846 9 of 15

ξ =

0
0
...
0

βm

, (5)

where αi ≥ 0, ∑i αi = 1 and 0 < β1 ≤ · · · ≤ βm for m phases.
In this paper, continuous PH distribution was applied to approximate all general

distributions in the non-Markovian state-transition diagram, that is, to determine PH
distribution with parameters (α, T , ξ), which can fit the target distribution well by means
of maximum likelihood estimation (MLE) approach [22].

3.2. PH-Expanded CTMC

According to the definition of PH distribution in Section 3.1, we define the general
distributions in Table 4 by PH distributions with appropriate phases as follows:

FPH
intv(t) = 1− αintv exp(Tintvt)1intv, f PH

intv(t) = αintv exp(Tintvt)ξ intv, (6)

FPH
f ail(t) = 1− α f ail exp(Tf ailt)1 f ail , f PH

f ail(t) = α f ail exp(Tf ailt)ξ f ail , (7)

FPH
cp (t) = 1− αcp exp(Tcpt)1cp, f PH

cp (t) = αcp exp(Tcpt)ξcp, (8)

FPH
load(t) = 1− αload exp(Tloadt)1load, f PH

load(t) = αload exp(Tloadt)ξ load, (9)

FPH
rc (t) = 1− αrc exp(Trct)1rc, f PH

rc (t) = αrc exp(Trct)ξrc, (10)

FPH
trig(t) = 1− αtrig exp(Ttrigt)1trig, f PH

trig(t) = αtrig exp(Ttrigt)ξtrig, (11)

FPH
rej (t) = 1− αrej exp(Trejt)1rej, f PH

rej (t) = αrej exp(Trejt)ξrej. (12)

Here, PH parameters (αx, Tx, ξx), x ∈ {intv, f ail, cp, load, rc, trig, rej} were estimated
on the basis of MLE using an expectation–maximization (EM) algorithm [22,31]. Using
the above-estimated PH distributions to replace general distributions, the non-Markovian
transition diagram was expanded into an approximate CTMC, alternatively called PH-
expanded CTMC, of which the infinitesimal generator matrix is given by

Q =

Tintv⊕Tf ail⊕Ttrig (ξ intvαcp)⊗I⊗I (1intv⊗1 f ail⊗ξ trig)αrej (1intv⊗ξ f ail⊗1trig)αload

(ξcpαintv)⊗I⊗I Tcp⊕Tf ail⊕Ttrig⊕(−λ f ail2) I⊗I⊗ξ trig (1cp⊗1trig⊗ξ f ail)αload (1cp⊗1trig⊗1 f ail⊗λ f ail2)αload

Tf ail⊕Tcp⊕(−λ f ail2) (1 f ail⊗ξcp)αrej (ξ f ail⊗1cp)αload (1 f ail⊗1cp⊗λ f ail2)αload

ξrej(αintv⊗α f ail⊗αtrig) Trej

Tload ξ loadαrc
ξrc(αintv⊗α f ail⊗αtrig) (λ f ail1⊗1rc)αload (−λ f ail1)⊕Trc

ξ loadαrc Tload

. (13)

The infinitesimal generator matrix is derived on the basis of the Kronecker represen-
tation [23], and the order of states is {Normal, Checkpointing, Checkpointing’, Rejuvenation,
Failure1, Recovery, Failure2}. In Equation (13), ⊕ and ⊗ are the Kronecker product and
sum [32], I is an identity matrix, and 1/λ f ail1 and 1/λ f ail2 are the mean values of EXP
distributions Ff ail1(t) and Ff ail2(t), say the mean times to failure during rollback recovery
and checkpointing, respectively.

Entry (ξ intvαcp ⊗ I ⊗ I) shows that the clock of the rejuvenation trigger is not reset
and continuously accumulates, even when the system executes the checkpointing. Since
the checkpointing operation just saves the current data and does not refresh system ag-
ing, entry (ξcpαintv)⊗ I ⊗ I indicates that only the clock of checkpointing trigger is reset.
When a rejuvenation point is reached while the system is under checkpointing, rejuve-
nation waits until checkpointing is completed; in such a case, the system transits from
Checkpointing to Checkpointing′ with entry I ⊗ I ⊗ ξtrig. Entries (1intv ⊗ ξ f ail1trig)αload,
(1cp ⊗ 1trig ⊗ ξ f ail)αload, and (ξ f ail ⊗ 1cp)αload indicate aging-related failures in both nor-
mal and checkpointing states, while entries (1cp ⊗ 1trig ⊗ 1 f ail ⊗ λ f ail2)αload and (1 f ail ⊗
1cp ⊗ λ f ail2)αload represent human-error-related failures during checkpointing. In addition,
the system is regarded to be as good as new after either rollback recovery or rejuvenation,

Mathematics 2021, 9, 846 10 of 15

so the corresponding transitions are represented by entries ξrej(αintv ⊗ α f ail ⊗ αtrig), and
ξrc(αintv⊗ α f ail⊗ αtrig), where (αintv⊗ α f ail⊗ αtrig) implies that the clocks of checkpointing
trigger, system aging, and rejuvenation trigger are refreshed at the same time.

3.3. Steady-State System Availability

Steady-state system availability gives the probability that the system is operational in
the steady state, so that it provides a significant insight into the long-term performance
of a repairable system. Let Ass define the steady-state system availability. Then, we can
obtain it by

Ass = πssr, (14)

where πss is the steady-state probability vector of the PH-expanded CTMC, Q, and can be
computed by solving the following linear equation [33]:

πssQ = 1, πss1 = 1, (15)

and r is the reward (column) vector of the PH-expanded CTMC and given by

r =

1⊗ 1intv ⊗ 1 f ail ⊗ 1trig
0⊗ 1cp ⊗ 1 f ail ⊗ 1trig

0⊗ 1 f ail ⊗ 1cp
0⊗ 1rej

0⊗ 1load
0⊗ 1rc

0⊗ 1load

. (16)

It is clear that the system is only available in the normal execution process state. In
this paper, one problem of interest is to determine optimal software-rejuvenation timing
that maximizes steady-state system availability.

4. Numerical Illustration

This section is devoted to the numerical illustration of the presented model in Figure 4
by means of phase expansion. Model parameters are summarized in Table 5, where all
values are given according to the related literature [13,20,34]. All general distributions were
accurately approximated by PH distributions with appropriate phases, that is, 100 phases
for Gintv(t), Gcp(t), Gload(t), Grc(t), Gtrig(t), and Grej(t) and 10 phases for G f ail(t) (see [20]
for more details); eventually, we obtained a large approximate CTMC consisting of 201,400
PH-expanded states. Similar to [20], in order to evaluate the effects of the checkpoint
interval and the rejuvenation-trigger interval on system availability, the mean checkpoint
interval (MCI) was varied from 1 to 10 h, and the mean rejuvenation-trigger interval (MRTI)
was changed from 5 to 35 h. In addition, human-error-related system failures both were
and were not considered, aiming at quantifying the effects of human-error factors on both
system availability and optimal software-rejuvenation timing.

Mathematics 2021, 9, 846 11 of 15

Table 5. Model parameters.

CDF Distribution Mean (h) CV

Gintv(t) Lognormal 1–10 0.2
G f ail(t) Weilbull 10 0.5
Gcp(t) Lognormal 0.05 0.2

Gload(t) Lognormal 0.5 0.2
Grc(t) Lognormal 0.5 0.2

Gtrig(t) Lognormal 5–35 0.1
Grej(t) Lognormal 0.5 0.2

Ff ail1(t) Exponential 16.67 1
Ff ail2(t) Exponential 1.5 1

4.1. Steady-State System Availability

Here, we show the steady-state availabilities of a system that may fail due to human
error in checkpointing under different cases of MRTI and MCI. The corresponding results
are given in Table 6, which shows that steady-state system availability increased as the
value of MCI increased under each MRTI case. This means that too-frequent checkpointing
decreases system availability because the system becomes unavailable during checkpoint-
ing. The effect of MRTI on system availability is now examined. For each MCI, steady-state
system availability increases at the beginning and subsequently decreases with increasing
MRTI, implying that an optimal MRTI might exist for maximizing steady-state system
availability.

Table 6. Steady-state system availability (with human-error-related system failures). Note: MCI,
mean checkpoint interval; MRTI, mean rejuvenation-trigger interval.

MCI (h) MRTI = 5 h MRTI = 7 h MRTI = 10 h MRTI = 13 h MRTI = 15 h

1 0.83333 0.84600 0.85168 0.85226 0.85194
2 0.86380 0.87684 0.88245 0.88259 0.88192
3 0.87494 0.88747 0.89309 0.89305 0.89227
4 0.87897 0.89335 0.89846 0.89836 0.89752
5 0.88327 0.89598 0.90182 0.90155 0.90069
6 0.88679 0.89801 0.90404 0.90369 0.90278
7 0.88849 0.90022 0.90531 0.90529 0.90430
8 0.88908 0.90204 0.90635 0.90637 0.90546
9 0.88925 0.90318 0.90740 0.90714 0.90630

10 0.88929 0.90377 0.90838 0.90779 0.90694

Moreover, by comparing results in Tables 6 and 7, the latter of which gives the steady-
state system availability without considering human-error-related system failures, it is
reasonable to say that human-error factors significantly decreased system availability,
especially in the case where the value of MCI was small. In other words, although frequent
checkpointing can save data in a timely manner, it also brings a higher risk of system failure,
caused by incorrect operations. Therefore, it is crucial to determine a suitable frequency of
executing checkpointing to satisfy target system availability. For example, given a target
steady-state system availability of 0.9 and an MRTI of 10 h, an MCI equal to or larger than
5 h is a good choice.

Mathematics 2021, 9, 846 12 of 15

Table 7. Steady-state system availability (without human-error-related system failures).

MCI (h) MRTI = 5 h MRTI = 7 h MRTI = 10 h MRTI = 13 h MRTI = 15 h

1 0.84850 0.86206 0.86796 0.86821 0.86758
2 0.87067 0.88438 0.89024 0.89025 0.88942
3 0.87876 0.89200 0.89788 0.89779 0.89692
4 0.88154 0.89626 0.90174 0.90162 0.90073
5 0.88469 0.89810 0.90415 0.90393 0.90303
6 0.88735 0.89954 0.90576 0.90548 0.90456
7 0.88867 0.90117 0.90666 0.90665 0.90567
8 0.88913 0.90254 0.90741 0.90744 0.90652
9 0.88926 0.90341 0.90818 0.90800 0.90714

10 0.88929 0.90387 0.90892 0.90849 0.90761

4.2. Optimal Rejuvenation-Trigger Timing

This subsection discusses optimal software-rejuvenation timing maximizing steady-
state system availability. Figure 5 illustrates the sensitivity of steady-state system availabil-
ity with respect to the mean rejuvenation-trigger interval in the cases of MCI = 2, 4, 6, 8
and 10. The figure plots unimodal curves of the steady-state system availabilities, which
reveals the existence of optimal rejuvenation-trigger timing maximizing steady-state sys-
tem availability in each case. Specifically, the overhead incurred by frequent rejuvenation
(i.e., short MRTI) largely affects system availability. Conversely, downtime due to system
failures caused by a less frequent execution of rejuvenation smoothly decreases system
availability.

 0.87

 0.875

 0.88

 0.885

 0.89

 0.895

 0.9

 0.905

 0.91

 5 10 15 20 25 30 35

S
te

a
d

y
-s

ta
te

 s
y
s
te

m
 a

v
a

ila
b

ili
ty

Mean rejuvenation trigger interval (hrs.)

MCI = 2
MCI = 4
MCI = 6
MCI = 8

MCI = 10

Figure 5. Sensitivity of steady-state system availability with respect to mean rejuvenation-trigger
timing.

Optimal rejuvenation-trigger timings and their corresponding maximal steady-state
system availabilities in all cases are presented in Table 8. We present all optimal rejuvenation
timings for the system regardless of considering human-error-related system failures.
Optimal MRTIs for all cases of MCI were very similar, which means that the optimal
rejuvenation-trigger timing is not very sensitive to checkpoint interval. Optimal MRTIs
in the case where human-error-related system failures were not considered were slightly
smaller than those in the case with human-error-related failure when the value of MCI was
small, and vice versa when the MCI had a large value, for example, MCI = 9, 10.

Mathematics 2021, 9, 846 13 of 15

Table 8. Optimal rejuvenation-trigger timings.

MCI (h) with Human-Error-Related Failures without Human-Error-Related Failures

MRTI (h) Ass MRTI (h) Ass

1 12.3 0.85230 11.6 0.86841
2 11.5 0.88283 11.3 0.89059
3 11.3 0.89339 11.2 0.89819
4 11.2 0.89878 11.2 0.90206
5 11.0 0.90196 11.1 0.90435
6 10.9 0.90428 11.0 0.90603
7 11.3 0.90572 11.3 0.90708
8 11.4 0.90668 11.4 0.90777
9 11.0 0.90753 11.1 0.90838
10 10.5 0.90842 10.7 0.90902

5. Conclusions

In this paper, we presented a composite stochastic Petri reward net and its resulting
non-Markovian availability model for operational software systems where both check-
pointing and software rejuvenation are adopted to protect data and to enhance the system
availability, and the system may fail due to both the aging problem and human errors
during checkpointing. More specifically, the non-Markovian availability model was de-
rived on the basis of a reachability graph that was generated from the original SRNs. In
particular, the PH expansion approach was applied to solve the stationary solution of the
non-Markovian availability model since the model was not one of the trivial stochastic
models such as SMP and MRGP, so that common approaches such as LST and embedded
Markov chain techniques do not work. Numerical results showed that human-error fac-
tors both decreased steady-state system availability and brought a significant effect on
optimal rejuvenation-trigger timing, which means that human-error factors during system
modeling should not be overlooked.

The model presented in this paper was based on a macroscopic view, providing a fun-
damental idea of how to model such a software system that undergoes both checkpointing
and software rejuvenation, and in which the system behaves with multiple competitive
events. The system’s actual behavior is very complex, and more possible events need to be
considered, for example, software environment upgrades and time-scope limitations of
used versions of libraries. Although this improvement may vastly increase difficulty in
numerical analysis, it is significant to take a microscopic look at system behavior, which will
be one of our future directions. This paper only considered both aperiodic checkpointing
and software rejuvenation, but to the best of our knowledge, there exist various kinds of
checkpointing [35] and rejuvenation techniques [8]. In the future, we aim to extend this
work to solve more complicated software systems considering different rejuvenation and
checkpointing schemes.

Author Contributions: Conceptualization, J.Z., H.O. and T.D.; methodology, J.Z., H.O. and T.D.;
formal analysis, J.Z.; investigation, J.Z.; writing—original draft preparation, J.Z.; writing—review
and editing, H.O. and T.D.; supervision, H.O. and T.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2021, 9, 846 14 of 15

Abbreviations
The following abbreviations are used in this manuscript:

MRGP Markov regenerative process
LST Laplace–Stieltjes transform
SRN Stochastic (Petri) reward net
PH Phase or phase-type
CTMC Continuous-time Markov chain
IMM Immediate
EXP Exponential
GEN General
APH Acyclic PH distribution
CF Canonical form
MLE Maximum-likelihood estimation
MCI Mean checkpoint interval
MRTI Mean rejuvenation-trigger interval

References
1. Grottke, M.; Trivedi, K.S. Fighting bugs: remove, retry, replicate, and rejuvenate. IEEE Comput. 2007, 40, 107–109. [CrossRef]
2. Dohi, T.; Trivedi, K.S.; Avritzer, A. Handbook of Software Aging and Rejuvenation: Fundamentals, Methods, Applications, and Future

Directions; World Scientific: Singapore, 2020.
3. Huang, Y.; Kintala, C.; Kolettis, N.; Funton, N.D. Software rejuvenation: Analysis, module and applications. In Proceedings of the

25th IEEE International Symposium on Fault Tolerant Computing (FTC’95), Pasadena, CA, USA, 27–30 June 1995; pp. 381–390.
4. Trivedi, K.S.; Vaidyanathan, K. Software aging and rejuvenation. In Wiley Encyclopedia of Computer Science and Engineering;

John Wiley and Sons: Hoboken, NJ, USA, 2007; pp. 1–8.
5. Alonso, J.; Matias, R.; Vicente, E.; Maria, A.; Trivedi, K.S. A comparative experimental study of software rejuvenation overhead.

Perform. Eval. 2013, 70, 231–250. [CrossRef]
6. Vaidyanathan, K.; Trivedi, K.S. A comprehensive model for software rejuvenation. IEEE Trans. Depend. Secur. Comput. 2005, 2,

124–137. [CrossRef]
7. Ning, G.; Zhao, J.; Lou, Y.; Alonso, J.; Matias, R.; Trivedi, K.S.; Yin, B.B.; Cai, K.Y. Optimization of two-granularity software

rejuvenation policy based on the Markov regenerative process. IEEE Trans. Reliab. 2016, 65, 1630–1646. [CrossRef]
8. Zheng, J.; Okamura, H.; Li, L.; Dohi, T. A comprehensive evaluation of software rejuvenation policies for transaction systems

with Markovian arrivals. IEEE Trans. Reliab. 2017, 66, 1157–1177. [CrossRef]
9. Dohi, T.; Zheng, J.; Okamura, H.; Trivedi, K.S. Optimal periodic software rejuvenation policies based on interval reliability criteria.

Reliab. Eng. Syst. Saf. 2018, 180, 463–475. [CrossRef]
10. Wang, S.; Liu, J. HARRD: Real-time software rejuvenation decision based on hierarchical analysis under weibull distribution.

In Proceedings of the 20th IEEE International Conference on Software Quality, Reliability and Security (QRS’20), Macau, China,
11–14 December 2020; pp. 83–90.

11. Zhang, Y.; Chakrabarty, K. Fault recovery based on checkpointing for hard real-time embedded systems. In Proceedings of the
18th IEEE Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’03), Boston, MA, USA, 5 November 2003; pp. 320–327.

12. Fukumoto, S.; Kaio, N.; Osaki, S. Optimal checkpointing policies using the checkpointing density. J. Inf. Process. 1992, 15, 87–92.
13. Dohi, T.; Osajima, S.; Kaio, N.; Osaki, S. On the effects of checkpoint institution methods for a macroscopic database model.

Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 2000, 83, 23–33. [CrossRef]
14. Ranganathan, A.; Upadhyaya, S.J. Performance evaluation of rollback-recovery techniques in computer programs. IEEE Trans.

Reliab. 1993, 42, 220–226. [CrossRef]
15. Bajunaid, N.; Menascé, D.A. Efficient modeling and optimizing of checkpointing in concurrent component-based software

systems. J. Syst. Softw. 2018, 139, 1–13. [CrossRef]
16. Sigdel, P.; Tzeng, N.F. Coalescing and deduplicating incremental checkpoint files for restore-express multi-level checkpointing.

IEEE Trans. Parallel Distrib. Syst. 2018, 29, 2713–2727. [CrossRef]
17. Okamura, H.; Dohi, T. Comprehensive evaluation of aperiodic checkpointing and rejuvenation schemes in operational software

system. J. Syst. Softw. 2010, 83, 1591–1604. [CrossRef]
18. Levitin, G.; Xing, L.; Luo, L. Joint optimal checkpointing and rejuvenation policy for real-time computing tasks. Reliab. Eng. Syst.

Saf. 2019, 182, 63–72. [CrossRef]
19. Zheng, J.; Okamura, H.; Dohi, T. A phase expansion for non-Markovian availability models with time-based aperiodic rejuvenation

and checkpointing. Commun. Stat-Theory Methods 2020, 49, 3712–3729. [CrossRef]
20. Zheng, J.; Okamura, H.; Dohi, T. Optimal rejuvenation policies for non-Markovian availability models with aperiodic checkpoint-

ing. IEICE Trans. Inf. Syst. 2020, E103-D, 2133–2142. [CrossRef]
21. Bolch, G.; Greiner, S.; De Meer, H.; Trivedi, K.S. Queueing Networks and Markov Chains: Modeling and Performance Evaluation with

Computer Science Applications, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2006.

http://doi.org/10.1109/MC.2007.55
http://dx.doi.org/10.1016/j.peva.2012.09.002
http://dx.doi.org/10.1109/TDSC.2005.15
http://dx.doi.org/10.1109/TR.2016.2570539
http://dx.doi.org/10.1109/TR.2017.2741526
http://dx.doi.org/10.1016/j.ress.2018.08.009
http://dx.doi.org/10.1002/(SICI)1520-6440(200009)83:9<23::AID-ECJC3>3.0.CO;2-
http://dx.doi.org/10.1109/24.229490
http://dx.doi.org/10.1016/j.jss.2018.01.032
http://dx.doi.org/10.1109/TPDS.2018.2844210
http://dx.doi.org/10.1016/j.jss.2009.06.058
http://dx.doi.org/10.1016/j.ress.2018.10.006
http://dx.doi.org/10.1080/03610926.2019.1708400
http://dx.doi.org/10.1587/transinf.2019EDP7321

Mathematics 2021, 9, 846 15 of 15

22. Okamura, H.; Dohi, T. Fitting phase-type distributions and Markovian arrival processes: Algorithms and tools. In Principles
of Performance and Reliability Modeling and Evaluation; Lance, F., Antonio, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 49–75.

23. Trivedi, K.S.; Bobbio, A. Reliability and Availability Engineering: Modeling, Analysis, and Applications; Cambridge University Press:
Cambridge, UK, 2017.

24. Brown, A. An Overview of Human Error. CS294-4 ROC Semin. 1990, 54. Available online: http://roc.cs.berkeley.edu/294fall01/
slides/human-error.pdf (accessed on 10 December 2020).

25. Yanagihara, M.; Odagiri, M.; Osaki, S.; Kaio, N. Optimal checkpointing procedures taking into account system failure caused by
checkpointing. Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 1995, 78, 69–79. [CrossRef]

26. Zheng, J.; Okamura, H.; Dohi, T. A transient interval reliability analysis for software rejuvenation models with phase expansion.
Softw. Qual. J. 2020, 28, 173–194. [CrossRef]

27. Yang, X.; Alfa, A.S. A class of multi-server queueing system with server failures. Comput. Ind. Eng. 2009, 56, 33–43. [CrossRef]
28. Ruiz-Castro, J.E.; Acal, C.; Aguilera, A.M.; Roldán, J.B. A complex model via phase-type distributions to study random telegraph

noise in resistive memories. Mathematics 2021, 9, 390. [CrossRef]
29. Kemper, P.; Müller, D.; Thümmler, A. Combining response surface methodology with numerical methods for optimization of

Markovian models. IEEE Trans. Depend. Secur. Comput. 2006, 3, 259–269. [CrossRef]
30. Cumani, A. On the canonical representation of homogeneous Markov processes modelling failure-time distributions. Microelectron.

Reliab. 1982, 22, 583–602. [CrossRef]
31. Okamura, H.; Dohi, T.; Trivedi, K.S. Improvement of EM algorithm for phase-type distributions with grouped and truncated data.

Appl. Stoch. Model. Bus. Ind. 2013, 29, 141–156. [CrossRef]
32. Dayar, T. Analyzing Markov Chains Using Kronecker Products: Theory and Applications; Springer Science and Business Media:

New York, NY, USA, 2012.
33. Trivedi, K.S. Probability and Statistics with Reliability, Queuing, and Computer Science Applications, 2nd ed.; John Wiley and Sons:

Hoboken, NJ, USA, 2001.
34. Leung, C.H.C.; Currie, E. The effect of failures on the performance of long-duration database transactions. Comput. J. 1995, 38,

471–478. [CrossRef]
35. Tantawi, A.N.; Ruschitzka, M. Performance analysis of checkpointing strategies. ACM Trans. Comput. Syst. 1984, 2, 123–144.

[CrossRef]

http://roc.cs.berkeley.edu/294fall01/slides/human-error.pdf
http://roc.cs.berkeley.edu/294fall01/slides/human-error.pdf
http://dx.doi.org/10.1002/ecjc.4430781008
http://dx.doi.org/10.1007/s11219-019-09458-1
http://dx.doi.org/10.1016/j.cie.2008.03.010
http://dx.doi.org/10.3390/math9040390
http://dx.doi.org/10.1109/TDSC.2006.28
http://dx.doi.org/10.1016/0026-2714(82)90033-6
http://dx.doi.org/10.1002/asmb.1919
http://dx.doi.org/10.1093/comjnl/38.6.471
http://dx.doi.org/10.1145/190.357398

	Introduction
	Macroscopic System Model
	System Assumptions
	Stochastic Reward Nets
	Reachability Graph
	Non-Markovian State-Transition Diagram

	System Availability Analysis
	Continuous PH Distribution
	PH-Expanded CTMC
	Steady-State System Availability

	Numerical Illustration
	Steady-State System Availability
	Optimal Rejuvenation-Trigger Timing

	Conclusions
	References

