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Abstract: A subject of this study is the behavior of the tail of the binomial distribution in the case of
the Poisson approximation. The deviation from unit of the ratio of the tail of the binomial distribution
and that of the Poisson distribution, multiplied by the correction factor, is estimated. A new type
of approximation is introduced when the parameter of the approximating Poisson law depends on
the point at which the approximation is performed. Then the transition to the approximation by the
Poisson law with the parameter equal to the mathematical expectation of the approximated binomial
law is carried out. In both cases error estimates are obtained. A number of conjectures are made
about the refinement of the known estimates for the Kolmogorov distance between binomial and
Poisson distributions.

Keywords: binomial distribution; poisson approximation; esscher transformation

1. Introduction and Main Results

The subject of this study is upper and lower bounds for probabilities of the type

P
( n

∑
i=1

Xi ≥ nx
)
, where X1, . . . , Xn are independent equally distributed Bernoulli random

variables. In other words, we estimate tail probabilities for the binomial distribution. To this
end we use the Poisson approximation.

It should be noted that although the binomial distribution is very special from the
formal point of view it is of great concern in applications. Moreover, due to simplicity,
more exact bounds are attainable for the binomial distribution than in the general case.

Let us start with the known Hoeffding inequality. Assuming that the independent ran-
dom variables X1, . . . , Xn satisfy the condition 0 ≤ Xi ≤ 1, i = 1, . . . , n, W. Hoeffding [1]
deduced the inequality

P
( n

∑
i=1

Xi ≥ n(µ + t)
)
≤
( µ

µ + t

)n(µ+t)( 1− µ

1− µ− t

)n(1−µ−t)
, (1)

where µ = 1
n

n
∑

i=1
EXi, 0 < t < 1− µ. In the case of identically distributed random variables

Xj we have µ = EX1, and the inequality (1) remains the same. Making in (1) the change of
variable n(µ + t) = y we get

P
( n

∑
i=1

Xi ≥ y
)
≤
(nµ

y

)y( 1− µ

1− y/n

)n(1−y/n)
.

In turn this inequality can be written in the following form,

P
( n

∑
i=1

Xi ≥ y
)
≤ e−nH(y/n,µ), (2)
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where
H(t, p) = t ln

t
p
+ (1− t) ln

1− t
1− p

is the so-called relative entropy or Kullback–Leibler distance between two two-point
distributions (t, 1− t) and (p, 1− p) concentrated at the same pair of points.

Apparently, I. Sanov [2] was the first who stated probability inequalities in terms of

the function of the type
m
∑

j=1
tj ln

pj
tj

, where
m
∑

j=1
pj =

m
∑

j=1
tj = 1, pj, tj > 0, j = 1, . . . , m.

The starting point in proving (1) and many other probability inequalities for indepen-
dent random variables is the following bound.

Let there exist H0 > 0 such that
∫ ∞

−∞
eH0u dVj(u) < ∞, j = 1, . . . n, (3)

where Vj are the distribution functions of Xj, j = 1, . . . n. Then for every 0 < h ≤ H0,
we have

P
( n

∑
j=1

Xj ≥ y
)
≤ e−hy

n

∏
j=1

R(h; Vj),

where
R(h; Vj) :=

∫ ∞

−∞
ehu dVj(u), j = 1, . . . n. (4)

Thus,

P
( n

∑
j=1

Xj ≥ y
)
≤ min

h>0
e−hy

n

∏
j=1

R(h; Vj). (5)

In the case of i. i. d. random variables inequality (5) can be written in the follow-
ing form,

1− Gn(y) ≤ min
h>0

e−hyRn(h; G), (6)

where Gn(y) = P
(

∑n
j=1 Xj < y

)
, G is the distribution of X1. On the other hand, for each

0 < h ≤ H0 the following identity holds,

1− Gn(y) = Rn(h; G)
∫ ∞

y
e−hu dG(h)

n (u), (7)

where
G(h)

n (y) = R−n(h; G)
∫ y

−∞
ehu dGn(u) (8)

is the Esscher transformation of the distribution function Gn(y) (see [3]). Note that starting
with the classic work of Cramér [4], Esscher’s transform has been repeatedly used in the
theory of large deviations.

Let h0 be such that

h0y− n ln R(h0; G) = max
h>0

(
hy− n ln R(h; G)

)
, (9)

and denote
ωn(y; G) =

∫ ∞

y
e−h0u dG(h0)

n (u). (10)

It follows from (7) and (10) that

1− Gn(y) = Rn(h0; G)ωn(y; G). (11)

Notice, that although the method used in this work essentially coincides with the
method of our previous article on estimates of large deviations in the case of normal
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approximation [5], function ωn(y; G) differs from function ωn(y; G) from [5] by the ab-
sence of the factor eh0y. The nuance is that in this work we are dealing with one-way
distributions, and direct copying of the previous approach could make the reasoning
unnecessarily cumbersome.

Taking into account (9) it is easily seen that h0 satisfies the equality m(h0; G) = y
n , where

m(h; G) =
∫ ∞

−∞
u dG(h)(u) ≡ R−1(h; G)

∫ ∞

−∞
uehu dG(u).

For any nondegenerate random variable ξ we have P(ξ < Eξ) > 0. Therefore,
ωn(y; G) < 1. Estimating ωn(h0; G), we can sharpen the Hoeffding inequality.

Note that in the case EX1 = 0 the asymptotics of ωn(y; G) is found in [4] (p. 172)
under condition

∫ ∞
−∞ ehy dG(y) < ∞, 0 < h ≤ H0, namely,

ωn(y; G) ∼ e
y2

2nσ2
[
1−Φ

( y
σ
√

n

)]
≡ M

( y
σ
√

n

)
,

where σ2 = EX2
1 , the restriction y = o(n) being imposed (see also [6]), and

M(t) =
1−Φ(t)

ϕ(t)
(12)

is the so called Mills ratio (Φ(t) and ϕ(t) are the distribution function and density function,
respectively, of the standard normal law).

Let λ be an arbitrary positive number, Πλ(y) the distribution function of the Poisson
law with the mean λ. We will also use the notation πλ(j) = λj

j! e−λ. Note that we consider
distribution functions to be continious from left.

In connection with (12), note that in the present work we define and use the following
analogue of the Mills ratio for the Poisson distribution with an arbitrary parameter λ: for
every integer k ≥ 0

M(k; λ) :=
1−Πλ(k)

πλ(k)
≡ 1

πλ(k)

∞

∑
j=k

πλ(j) = 1 +
∞

∑
m=1

λm k!
(m + k)!

= 1 +
∞

∑
m=1

λm
m

∏
j=1

1
k + j

.
(13)

M. Talagrand [7] sharpened the Hoeffding inequalities for y < nσ2

Kb , where K is a
constant, regarding which is known only that it exists. The bounds obtained in [7] are
stated in terms of K as well.

Remark that Talagrand, like Hoeffding, considers the case of non-identically dis-
tributed random variables.

In the present work we estimate ωn(y; G) in the case of Bernoulli trials with explicit
values for constants, not laying any restriction on y.

In what follows we use the next notations: F the distribution function of the Bernoulli
random variable with parameter p, 0 < p ≤ 1

2 , Fn,p = F∗n the n-fold convolution of F.
Obviously,

R(h; F) = r(h) := q + peh. (14)

In what follows we will assume x to satisfy the following condition,

0 < p < x < 1. (15)
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It is not hard to verify that h0 satisfying (9) in the case G = F and y = nx has the
following form,

h0 = ln
qx

p(1− x)
. (16)

Notice that h0 > 0 under condition (15). In what follows h = h0.
We get from (14) and (16) that

r(h) =
q

1− x
. (17)

Hence, by (11),

1− Fn,p(nx) = rn(h)ωn(nx; F) =
( q

1− x

)n
ωn(nx; F), (18)

where
ωn(nx; F) =

∫ ∞

nx
e−hu dF(h)

n,p (u). (19)

Denote by Πλ(t) the distribution function of Poisson law with a parameter λ > 0.
If the variable x from (18) approaches 0, it is natural to take Πλ with λ = np as the
approximating distribution for Fn,p. Just this distribution is used in Theorem 2. However,
first we need another approximating Poisson distribution with the mean

λ1 = λ1(n, p, x) =
np(1− x)

q
, (20)

depending not only on the parameters n and p, but on the variable x from formula (15).
We shall call this distribution by the variable Poisson distribution.

Let us formulate the first statement about the connection between the behaviors of
tails 1− Fn,p(nx) and 1−Πλ1(nx). First introduce the function

A(x, n, p) =
(1− x

q

)−n
e−

n(x−p)
q . (21)

We have

A(x, n, p) =
(

1− x− p
q

)−n
e−

n(x−p)
q = e−n

[
ln
(

1− x−p
q

)
+

x−p
q

]
= e−n[ln(1−u)+u], (22)

where u = x−p
q . Function

[
− ln(1− u)− u

]
is presented as a series:

− ln(1− u)− u =
∞

∑
k=2

uk

k
=: Λ2(u).

Thus,
A(x, n, p) = enΛ2(u). (23)

Note that the series Λ2(u) converges since by condition (15), we have 0 < x−p
q < 1.

Proposition 1. If condition (15) is fulfilled, then

1− Fn,p(nx) =
[
1−Πλ1(nx)

]
A(x, n, p) + R1 =

[
1−Πλ1(nx)

]
enΛ2(u) + R1, (24)

where
|R1| ≤ 2e−nH(p,x) max

y≥nx

∣∣∣Fn,x(y)−Πnx(y)
∣∣∣ ≤ 2xe−nH(x,p). (25)
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The following theorem gives one more form of the dependence of the tails of the
binomial distribution on the tails 1−Πλ1(nx) of the variable Poisson distribution. It is a
consequence of Proposition 1, but by no means trivial, and requires the proof of a number
of additional statements, which are given in Section 3.

Theorem 1. If condition (15) is fulfilled, then

1− Fn,p(nx) =
[
1−Πλ1(nx)

]
A(x, n, p) (1 + r1)

=
[
1−Πλ1(nx)

]
enΛ2(u) (1 + r1(x)),

(26)

where u = x−p
q ,

|r1(x)| ≤ c1
√

nx3, c1 = 2e1/12
√

2π = 5.4489 . . . . (27)

Example 1. Let n = 500, p = 0.002, x = kp, k = 2, 5. Table 1 shows the corresponding values of
the function c1

√
nx3.

Table 1. Values of the function c1
√

nx3 for n = 500, p = 0.002, x = kp, k = 2, 5.

x 0.004 0.006 0.008 0.01

nx 2 3 4 5

c1
√

nx3 0.0308 0.0566 0.0871 0.1218

Table 1, in accordance with Theorem 1, shows that with increasing x the approximation
deteriorates.

Remark 1. It is known that the binomial distribution with parameters n, p is well approximated
by the Poisson one with the parameter np if p is small enough [8]. The Poisson distribution from
the equalities (24) and (26) has another parameter. However, we have λ1 = np(1−x)

q ≈ np, when
x is close to 0 and p < x. In the next claims we consider the Poisson approximation with the
parameter np. Note also that the Poisson distribution with parameter λ1 degenerates when x is
close to 1. See also Table 2.

Remark 2. A necessary condition for good approximation in (26) is the smallness of x, namely,
x < θn−1/3. This agrees with the result by Yu.V. Prokhorov [9], according to which in the case
x < θn−1/3 (θ = 0.637) Poisson approximation to the binomial distribution is more precise with
respect to the normal approximation. However, as x is close to 0, λ1

λ ≈ 1 (λ = np). In this case, λ

can be both large and small. This also applies to the values of nx. Note that d
dλ

(
1−Πλ(k)

)
> 0

for any k ≥ 1. Indeed, it is easy to see that d
dλ Πλ(k) = Πλ(k− 1)−Πλ(k) = −πλ(k− 1) < 0.

Therefore, d
dλ

(
1−Πλ(k)

)
> 0. This means that 1−Πλ1(k) < 1−Πλ(k) for all k ≥ 1.

Theorem 2. If condition (15) is fulfilled, then the following equality holds,

1− Fn,p(nx)
1−Πnp(nx)

=
M(nx; λ1)

M(nx; np)
e−nqΛ3

(
x−p

q

)
(1 + r1(x)), (28)

where

Λ3(u) =
∞

∑
k=2

uk

k(k− 1)
,

r1(x) is the function from Theorem 1.

Remark 3. It follows from Remark 2 that if in the representation (26) the difference 1−Πλ1(nx)
is replaced by 1− Πλ(nx), where λ = np, then instead of the function A(x, n, p), it will be
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necessary to insert another correction factor, which will be less than A(x, n, p). The form of this
factor is indicated in Theorem 2. In this connection, we note that the exponential function on the
right-hand side of (28) has a negative exponent, in contrast to the exponential function in (26).

The following table gives an idea of the relationship between tails of the approximating
distributions under consideration: Πλ1 and Πλ.

Table 2. Values of the ratio
1−Πλ1 (nx)
1−Πλ(nx) for n = 10, p = 0.1, x = kp, k = 2, 8.

x 0.2 0.3 0.4 0.5 0.6 0.7 0.8

nx 2 3 4 5 6 7 8

1−Πλ1(nx) 0.223 0.044 0.004 0.0002 7.32× 10−6 6.78×10−8 1.2×10−10

1−Πλ(nx) 0.264 0.08 0.018 0.003 0.0005 0.00008 0.00001
1−Πλ1

(nx)
1−Πλ(nx) 0.845 0.551 0.255 0.076 0.0123 0.0008 1.18×10−5

By θ we will denote quantities, maybe different in different places, satisfying the
bound |θ| ≤ 1.

Rewrite (28) in the form:

1− Fn,p(nx) =
(
1−Πnp(nx)

)
Ω1(x, n, p) e−nqΛ3

(
x−p

q

)
(1 + r1(x)), (29)

where Ω1(x, n, p) = M(nx;λ1)
M(nx;np) .

Let us give a table of values of the functions: M(nx; λ1), M(nx; np) and Ω1(x, n, p) ≡
M(nx;λ1)
M(nx;np) . Let n = 10, p = 0.1, x = k

n , k = 2, 10. Calculations arrive at the following table
(Table 3).

Table 3. Values of M(nx; λ1), M(nx; np) and Ω1(x, n, p) for n = 10, p = 0.1, x = k
n , k = 2, 9.

x nx λ1 M(nx; λ1) M(nx; np) Ω1(x, n, p)

0.2 2 0.88888 1.37583 1.43656 0.95772

0.3 3 0.77777 1.22909 1.30969 0.93846

0.4 4 0.66666 1.14969 1.23876 0.92809

0.5 5 0.55555 1.10048 1.19382 0.92181

0.6 6 0.44444 1.0672 1.16292 0.91769

0.7 7 0.33333 1.04326 1.14042 0.91481

0.8 8 0.22222 1.02525 1.12332 0.91269

0.9 9 0.11111 1.01167 1.10991 0.91148

Taking into account that Ω1(x, n, p) is not much different from 1 (see Table 3) write
up Ω1(x, n, p) (1 + r1(x)) = 1 + r2(x). We will use the elementary identity b(1 + a)− 1 =
a− (1− b)(1 + a). Putting a = r1(x), b = Ω1(x, n, p), we obtain

r2(x) ≡ Ω1(x, n, p) (1 + r1(x))− 1 = r1(x)−
(

1−Ω1(x, n, p)
)
(1 + r1(x)), (30)

and
1− Fn,p(nx) =

(
1−Πnp(nx)

)
e−nqΛ3

(
x−p

q

)
(1 + r2(x)). (31)

Note that Equality (31) is another form of Theorem 2.
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The following inequalities hold: 1−Ω1(x, n, p) > 0 and 1 + r1(x) > 0. Hence, by (30),
|r2(x)| ≥ |r1(x)| if r1(x) < 0, and r2(x) ≤ r1(x) if r1(x) > 0.

In the next theorem, the estimate of r2(x) is got.

Theorem 3. If condition (15) is fulfilled, then

1− Fn,p(nx)
1−Πnp(nx)

= e−nqΛ3

(
x−p

q

)
(1 + r2(x)), (32)

where
r2(x) = θ

(
c1
√

nx3 +
p
x

)
.

Remark 4.

1. The closeness of xn1/3 and p
x to 0 ensure the closeness of r2(x) to zero. Moreover, as it was said

in Remark 2, the closeness of xn1/3 to 0 agrees with [9].
2. Under the condition x = o(n−1/3) the quantity nx2 may not tend to zero.

Remark 5. Let us discuss the connection between x, n and p the function r(x) = c1
√

nx3 + p
x

approaching zero. Obviously, r(x) can tend to zero only if x → 0 and p
x → 0.

Let the parameters n and p be fixed. Find min
p<x<1

r(x). We write r(x) for brevity as

r(x) = ax3/2 + p
x . Obviously, dr(x)

dx = 3a
2 x1/2 − p

x2 . Therefore, the minimum of r(x) is at-

tained at the point x0 =
( 2p

3a
)2/5, and dr(x)

dx < 0 for 0 < x < x0, and dr(x)
dx > 0 for x > x0.

As a result of calculations, we make sure that p < x0 if p <
( 2

3c1

)2/3 n−1/3. This condition
can be considered fulfilled. From here,

min
p<x<1

r(x) = r(x0) = a2/5 p3/5
(
(2/3)3/5 + (2/3)−2/5

)
= (np3)1/5c2,

where c2 = c2/5
1 (5/2)(2/3)3/5 = 3.8619 . . . . Thus, min

p<x<1
r(x)→ 0 if and only if np3 → 0.

Indeed, let f (x) and g(x) be the left and right branches of the function r(x) with respect to
the line x = x0. In this case, the domain of f (x) is (0, x0], and g(x) is [x0, ∞). On the other hand,
for each ε > 0, you can specify an interval (x1, x2), containing x0 such that for x ∈ (x1, x2) the
inequality r(x)− r(x0) < ε will hold.

These functions are strictly monotone and therefore have inverse ones: f−1(·) and g−1(·),
respectively. Then the required interval has the form

(
f−1(ε), g−1(ε)

)
. Note that the domain of

these inverse functions is the same: [r(x0), ∞).

Example 2. Let n = 100, p = 4.75× 10−4. Then a = c1
√

n = 54.4893, x0 =
( 2p

3a
)2/5

=

0.00804853, r(x0) = 0.0983617. The graph of the function r(x) = ax3/2 + p
x is shown in Figure 1.

Take ε = 0.05 for example. Finding the roots of the equation r(x) − r(x0) = ε, we get:
x1 = 0.0034603, x2 = 0.0169604, x2 − x1 = 0.0135001. Note that ε can be chosen arbitrarily
small only if np3 is sufficiently close to 0.

The following table (Table 4) shows the behavior of the interval (x1, x2) ≡
(
( f−1(ε), g−1(ε)

)

with decreasing ε.

Table 4. Behavior of the interval (x1, x2) depending on ε.

ε 1/2 1/4 1/8 1/16 1/32 1/1024

x1 0.0007 0.001 0.002 0.003 0.004 0.007

x2 0.048 0.033 0.024 0.018 0.014 0.009

x2 − x1 0.048 0.032 0.021 0.015 0.01 0.001
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Figure 1. Graph of the function r(x) from Example 2. Points x1 = f−1(1/8) = 0.00218 and
x2 = g−1(1/8) = 0.024 are indicated.

Figure 1 illustrates the column “ε = 1
8 ” from Table 4.

Note that near the point x0 both functions ax3/2 and p
x that form r(x), make approximately the

same contribution to r(x). For instance, r(0.008) = 0.098 . . . , where ax3/2
∣∣
x=0.008 = 0.0389 . . . ,

p
x

∣∣
x=0.008 = 0.059 . . . .

Corollary 1. Let condition (15) be fulfilled and c1
√

nx3 < 1. Then

1− Fn,p(nx)
1−Πnp(nx)

= e−
n(x−p)2

2

[
1 + θ

(
5.74
√

nx3 +
p
x

)]
. (33)

Remark 6. Note that the behavior of the series nqΛ3
( x−p

q
)

is defined by the first summand in
contrast to the Cramér series in the case of Gaussian approximation [4].

2. Proof of Proposition 1

We will use one result from [8]. The latter is formulated as follows.

Let X1, . . . , Xn be independent Bernoulli random variables. We denote Sn =
n
∑

j=1
Xj,

FSn the distribution of the sum Sn, pj = P(Xj = 1), λ =
n
∑

j=1
pj, Πλ Poisson distribution

with parameter λ. In the paper [8], the following estimate for the total variation distance
dTV(FSn , Πλ) between FSn and Πλ is obtained,

dTV(FSn , Πλ) ≤ (1− e−λ)
1
λ

n

∑
j=1

p2
j . (34)

In the particular case when

p1 = p2 = . . . = pn = p, (35)

Figure 1. Graph of the function r(x) from Example 2. Points x1 = f−1(1/8) = 0.00218 and
x2 = g−1(1/8) = 0.024 are indicated.

Figure 1 illustrates the column “ε = 1
8 ” from Table 4.
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x that form r(x), make approximately the

same contribution to r(x). For instance, r(0.008) = 0.098 . . . , where ax3/2
∣∣
x=0.008 = 0.0389 . . . ,

p
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x=0.008 = 0.059 . . . .
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√

nx3 < 1. Then
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1−Πnp(nx)

= e−
n(x−p)2

2

[
1 + θ

(
5.74
√

nx3 +
p
x

)]
. (33)

Remark 6. Note that the behavior of the series nqΛ3
( x−p

q
)

is defined by the first summand in
contrast to the Cramér series in the case of Gaussian approximation [4].

2. Proof of Proposition 1

We will use one result from [8]. The latter is formulated as follows.

Let X1, . . . , Xn be independent Bernoulli random variables. We denote Sn =
n
∑

j=1
Xj,

FSn the distribution of the sum Sn, pj = P(Xj = 1), λ =
n
∑

j=1
pj, Πλ Poisson distribution

with parameter λ. In the paper [8], the following estimate for the total variation distance
dTV(FSn , Πλ) between FSn and Πλ is obtained,

dTV(FSn , Πλ) ≤ (1− e−λ)
1
λ

n

∑
j=1

p2
j . (34)

In the particular case when

p1 = p2 = . . . = pn = p, (35)
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we have λ = np. Then it follows from (34) that

dTV(FSn , Πλ) ≤ (1− e−λ) p, (36)

whence
dTV(FSn , Πλ) ≤ p. (37)

In the case (35) we will use the notation

dn,p = dK(FSn , Πλ),

where dK(FSn , Πλ) is the Kolmogorov distance between the distributions FSn and Πλ.
Since

dn,p ≤ dTV(FSn , Πλ), (38)

It follows from (37) that
dn,p ≤ p. (39)

In what follows, we will use the estimate (39), although there is reason to believe that
on the right-hand side of (39) the coefficient 1 in front of p can be replaced by a smaller
number, namely, e−1 − 1

4 ≈ 0.236 (see Section 6 Supplement).

Proof of Proposition 1. Note that F(h)(t) is the Bernoulli distribution function with the

parameter ph = p eh

r(h) , and F(h)
n,p (t) the binomial distribution function with the parameters n

and ph. It is easily seen that by (16),

ph = x, qh = 1− ph = 1− x. (40)

Therefore, instead of F(h)
n.p (t), we can write Fn,x(t).

The approximating Poisson distribution for F(h)
n,p has the parameter nx. Taking into

account this and (19), we have

ωn(nx, F) =
∫ ∞

nx
e−hy dF(h)

n,p (y) = I1 + I2, (41)

where
I1 =

∫ ∞

nx
e−hy dΠnx(y), I2 =

∫ ∞

nx
e−hy d

(
Fn,x(y)−Πnx(y)

)
.

It is easily seen that

I1 =e−nx ∑
k≥nx

e−hk (nx)k

k!
= e−nx(1−e−h) ∑

k≥nx

(nxe−h)k

k!
e−nxe−h

=e−nx(1−e−h)
(

1−Πλ(h)(nx)
)

,

(42)

where λ(h) = nxe−h. It follows from (16) and (20) that

λ(h) = nx
(1− x)p

xq
= np

1− x
q

= λ1. (43)

Moreover, by (16),

nx(1− e−h) = nx
(

1− (1− x)p
xq

)
=

n(x− p)
q

.

Then we get from (42) that

I1 = e−
n(x−p)

q
(

1−Πλ1(nx)
)

. (44)
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Further, integrating by parts, we get

|I2| =
∣∣∣∣h
∫ ∞

nx
e−hy

(
Fn,x(y)−Πnx(y)

)
dy− e−hnx

(
Fn,x(nx)−Πnx(nx)

)∣∣∣∣ ≤

≤ 2e−nhx max
y≥nx

∣∣∣Fn,x(y)−Πnx(y)
∣∣∣.

(45)

It follows from (41), (44) and (45) that

ωn(nx; F) = e−
n(x−p)

q
(

1−Πλ1(nx)
)
+ R,

|R| ≤ 2e−nhx max
y≥nx

∣∣∣Fn,x(y)−Πnx(y)
∣∣∣.

(46)

Using (16) and the definition of H(t, p), we get

e−nhx
( q

1− x

)n
=
( qx

p(1− x)

)−nx( q
1− x

)n
=

=

(( x
p

)x(1− x
q

)1−x
)−n

= e−nH(x,p).
(47)

It follows from (18), (21) and(46) that

1− Fn,p(nx) =
(
1−Πλ1(nx)

)
A(x, n, p) +

( q
1− x

)n
R, (48)

where R satisfies the inequality in (46).
Now applying (39) and (46)–(48), one after the other, we obtain the statement

of Proposition 1.

3. Proof of Theorems 1 and 2

It is assumed in Section 3 condition (15) to be fulfilled.

Lemma 1. If the condition (15) is satisfied and nx is an integer, then

|I2|
I1
≤ 2
√

2πnx3 e1/(12nx)

M(nx; λ1)
≤ c1

√
nx3

M(nx; λ1)
. (49)

Proof. First of all, we write (44) as

I1 = M(nx; λ1) exp
{
− n(x− p)

q
− λ1

} λnx
1

(nx)!
.

In view of (43),
n(x− p)

q
+ λ1 =

nx− nxp
q

= nx.

Consequently,

I1 = M(nx; λ1) e−nx λnx
1

(nx)!
. (50)

By (39), (45) and (50),
|I2|
I1
≤ 2x(nx)! enx−nhx

M(nx; λ1) λnx
1

. (51)

In accordance to (16),

e−nhx =
( p(1− x)

qx

)nx
. (52)
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Further, by the Stirling formula,

(nx)! =
√

2πnx (nx)nx e−nx+θ , (53)

where 1
12nx+1 < θ < 1

12nx . Finally, according to (43),

λnx
1 = (nx)nx

( p(1− x)
qx

)nx
. (54)

Substituting the expressions (52)–(54) into the right-hand side of (51), we
obtain (49).

Proof of Theorem 1. It follows from (18), (41), and (49) that

1− Fn,p(nx) = I1 ·
(1− x

q

)−n
(1 + r1), (55)

where |r1| ≤ c1
√

nx3. Note that by (55), we have 1 + r1 > 0.
Taking into account (21) and (44), we get

I1 ·
(1− x

q

)−n
= A(x, n, p)

(
1−Πλ1(nx)

)
. (56)

Theorem 1 follows from (23), (55) and (56).

Proof of Theorem 2. Using (55) and (56), we obtain

1− Fn,p(nx) =
(

1−Πλ1(nx)
)

A(x, n, p)(1 + r1)

=
(

1−Πnp(nx)
) M(nx; λ1)πλ1(nx)

M(nx; np)πnp(nx)
A(x, n, p)(1 + r1).

(57)

We have
πλ1(nx)
πnp(nx)

= (1− u)nxenpu = enpu+nx ln(1−u),

where u = x−p
q . Hence, taking into account (22), we get

πλ1(nx)
πnp(nx)

A(x, n, p) = e−nq
(

1−x
q ln(1−u)+u

)
= e−nq

(
(1−u) ln(1−u)+u

)
.

Expanding ln(1− u) to the power of u, we have

u + (1− u) ln(1− u) = u− (1− u)
∞

∑
k=1

uk

k
= Λ3(u). (58)

Thus,
πλ1(nx)
πnp(nx)

A(x, n, p) = e−nqΛ3(u). (59)

The equality (28) follows from (57) and (59).

4. Proof of Theorem 3 and Corollary 1

Lemma 2. Let nx be an integer. Then

M(nx; λ1) ≤
1

1− p/x
.
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Proof. By formula (13),

M(nx; λ1) ≤ 1 +
∞

∑
m=1

(λ1

nx

)m
.

It follows from (15) that
λ1 ≤ np.

These inequalities imply Lemma 2.

Lemma 3. The following inequality holds,

1−Πλ1(nx)
1−Πnp(nx)

>
πλ1(nx)
πnp(nx)

(1− x−1 p).

Proof. Obviously,
1−Πλ1(nx)
1−Πnp(nx)

>
πλ1(nx)

1−Πnp(nx)
. (60)

Since for every k ≥ 0, λ > 0,

πλ(k + 1)
πλ(k)

=
λ

k + 1
,

then for k ≥ nx
πnp(k + 1)

πnp(k)
=

np
k + 1

<
p
x

and, consequently,

1−Πnp(nx) = πnp(nx)
∞

∑
k=0

πnp(nx + k)
πnp(nx)

< πnp(nx)
∞

∑
k=0

pk

xk = πnp(nx)
1

1− x−1 p
. (61)

The statement of the lemma follows from (60) and (61).

Lemma 4. The following inequality holds,

1−Πλ1(nx)
1−Πnp(nx)

≤ πλ1(nx)
πnp(nx)

.

Proof. We have
1−Πλ1(nx)
1−Πnp(nx)

≤ max
k≥nx

πλ1(k)
πnp(k)

=
πλ1(nx)
πnp(nx)

.

The last equality is true because of

πλ1(k)
πnp(k)

=
λk

1
(np)k e−λ1+np (62)

and, by (43),
λ1

np
=

1− x
q

< 1. (63)

Lemma 5. The following equality holds,

1−Πλ1(nx)
1−Πnp(nx)

=
πλ1(nx)
πnp(nx)

(1− r3),
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where
r3 = θ1

p
x

, 0 < θ1 < 1.

Proof. By Lemmas 3 and 4,

πλ1(nx)
πnp(nx)

(1− x−1 p) <
1−Πλ1(nx)
1−Πnp(nx)

≤ πλ1(nx)
πnp(nx)

.

This implies the statement of Lemma 5.

Proof of Theorem 3. Using (55) and (56) and Lemma 5, we have

1− Fn,p(nx) =
(

1−Πnp(nx)
)

e−n
(

u+ln(1−u)
)

πλ1(nx)
πnp(nx)

(1 + r1)(1− r3). (64)

By (62) and (63),

πλ1(nx)
πnp(nx)

= (1− u)nxenpu = enpu+nx ln(1−u). (65)

It follows from (64), (65) that

1− Fn,p(nx) =
(

1−Πnp(nx)
)

e−n
(

uq+(1−x) ln(1−u)
)
(1 + r1)(1− r3). (66)

Taking into account that 1− x = q(1− u) and expanding ln(1− u) to the power of u,
we have

uq + (1− x) ln(1− u) =q
[
u + (1− u) ln(1− u)

]

=q
[
u− (1− u)

∞

∑
k=1

uk

k

]
= qΛ3(u).

(67)

The statement of the theorem follows from (66), (67) and the inequality

|r1 − r3 − r1r3| = |r1(1− r3)− r3| ≤ |r1|(1− r3) + r3 < |r1|+ r3,

which holds because 0 < r3 < 1.

Proof of Corollary 1. As before, we use the notation u = x−p
q . Write up

nqΛ3(u) = nq
(u2

2
+

∞

∑
k=3

uk

k(k− 1)

)
= A + B, (68)

where A = n (x−p)2

2q , B = nq
∞
∑

k=3

uk

k(k−1) . Firstly,

A =
n(x− p)2

2
+

n(x− p)2

2

(1
q
− 1
)
=

n(x− p)2

2
+ θ1

nx3

2(1− x)
, (69)

where 0 < θ1 < 1. Now let us estimate B. We have

B = nq
( x− p

q

)3 ∞

∑
k=3

uk−3

k(k− 1)
. (70)
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Using (58) we can write up

∞

∑
k=3

uk−3

k(k− 1)
=

1
u3

(
Λ3(u)−

u2

2

)
=

1
u3

(
(1− u) ln(1− u) + u− u2

2

)
=: g(u). (71)

The condition c1
√

nx3 < 1 implies that x < n−1/3c−2/3
1 ≤ c−2/3

1 . Hence,

u <
x

1− x
<

x
1− x

∣∣∣
x=c−2/3

1

< 0.477. (72)

Then
∞

∑
k=3

uk−3

k(k− 1)
< g(0.477) < 0.224. (73)

By (70) and (73),

B < nq
( x− p

q

)3
0.224 <

0.224 nx3

(1− x)2 .

Thus,

B =
θ2 0.224 nx3

(1− x)2 , (74)

where 0 < θ2 < 1.
Collecting (68), (69) and (74), we arrive at

nqΛ3

( x− p
q

)
=

n(x− p)2

2
+

θ1nx3

2(1− x)
+

θ2 0.224 nx3

(1− x)2

=
n(x− p)2

2
+

θ3 0.724 nx3

(1− x)2 ,
(75)

where 0 < θ3 < 1. Hence,

e−nqΛ3

(
x−p

q

)
= e
−n (x−p)2

2 −θ3 0.724 nx3

(1−x)2 = e−n (x−p)2
2 (1− r4), (76)

where r4 = θ4 0.724 nx3

(1−x)2 , 0 < θ4 < 1. Using the condition c1
√

nx3 < 1 again, we obtain

√
nx3

(1− x)2 <
1

c1(1− c−2/3
1 )2

< 0.4004.

Since 0.724 · 0.4004 < 0.29 ≡ c3, we have

r4 = θ5 · c3
√

nx3, (77)

where 0 < θ5 < 1.
From (76) we obtain

e−nqΛ3

(
x−p

q

)
(1 + r) = e−n (x−p)2

2 (1− r4)(1 + r). (78)

Write up
(1− r4)(1 + r) = 1 + r5,

where
r5 = r− r4 − rr4.

Denote for brevity a1 =
√

nx3, a2 = p
x . Then r = θ(c1a1 + a2), |θ| < 1, r4 = θ5c3a1,

0 < θ5 < 1.
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Let us consider two cases: r ≥ 0 and r < 0. Consider the case r ≥ 0. Then

|r5| ≤ max{r, r4 + rr4}.

Note that r < 2. Since

r ≤ c1a1 + a2, r4 + rr4 < 3r4 ≤ 3c3a1, c1a1 + a2 > 3c3a1,

then
|r5| ≤ c1a1 + a2.

If r < 0, then
|r5| ≤ max{|r|+ r4, |r| r4}.

Since

|r|+ r4 ≤ a1(c1 + c3) + a2, |r| r4 ≤ 2c3a1, a1(c1 + c3) + a2 > 2c3a1,

then
|r5| ≤ (c1 + c3)a1 + a2.

Taking into account that c1 + c3 < 5.74 we can conclude that Corollary 1 is proved.

5. Numerical Experiments

Further we will use the following Tables 5 and 6.

Table 5. Values of dn,p = dK(FSn , Πnp) for p = 1/k, k = 2, 10, n = 1, 20.

n dn,1/2 dn,1/3 dn,1/4 dn,1/5 dn,1/6 dn,1/7 dn,1/8 dn,1/9 dn,1/10

1 0.10653 0.0498 0.0288 0.01873 0.0131 0.00973 0.00749 0.00595 0.0048

2 0.11787 0.06897 0.044 0.03022 0.022 0.01678 0.01317 0.01061 0.0087

3 0.09813 0.07158 0.050 0.03681 0.0278 0.0217 0.01736 0.01419 0.011

4 0.0935 0.06606 0.05147 0.03972 0.031 0.02494 0.02034 0.01688 0.0142

5 0.09979 0.05718 0.049 0.04019 0.0327 0.02687 0.02235 0.01882 0.016

6 0.08977 0.05483 0.045 0.03905 0.03298 0.02780 0.02357 0.02014 0.0173

7 0.09428 0.05986 0.040 0.03688 0.032 0.02796 0.02416 0.02096 0.0182

8 0.09357 0.05968 0.0389 0.03412 0.031 0.02754 0.02427 0.02136 0.0188

9 0.08838 0.05608 0.042 0.03108 0.029 0.02671 0.02399 0.02144 0.0191

10 0.09315 0.05363 0.043 0.03019 0.027 0.02559 0.02342 0.02124 0.0192

11 0.08841 0.057 0.0426 0.03244 0.025 0.02426 0.0226 0.02084 0.0191

12 0.0912 0.05698 0.04076 0.03356 0.02467 0.02282 0.0217 0.02028 0.0187

13 0.09024 0.05447 0.03808 0.03373 0.026 0.02131 0.02067 0.01959 0.0183

14 0.08873 0.05376 0.0397 0.03316 0.02727 0.02085 0.0195 0.01882 0.0178

15 0.09055 0.05578 0.04098 0.03202 0.02767 0.02208 0.0184 0.01798 0.0172

16 0.08617 0.05536 0.04099 0.03046 0.02760 0.02290 0.01807 0.01711 0.0165

17 0.09002 0.05309 0.04008 0.03011 0.02714 0.02335 0.0190 0.01621 0.0152

18 0.08783 0.05398 0.03827 0.03140 0.02636 0.02348 0.0197 0.01594 0.0159

19 0.08902 0.05497 0.03879 0.03200 0.025 0.02333 0.0201 0.01670 0.0144

20 0.08863 0.05411 0.0398 0.03201 0.024 0.02296 0.02034 0.01727 0.0137

∞ 0.08303 0.04888 0.03474 0.02696 0.02204 0.01864 0.0161 0.01424 0.0127
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Table 6. Values of product k dn,1/k for k = 2, 10, n = 1, 20.

n 2dn,1/2 3dn,1/3 4dn,1/4 5dn,1/5 6dn,1/6 7dn,1/7 8dn,1/8 9dn,1/9 10dn,1/10

1 0.21306 0.14959 0.11520 0.09365 0.07889 0.06814 0.05997 0.05355 0.0483

2 0.23575 0.20691 0.17612 0.1516 0.13252 0.11748 0.10540 0.09552 0.087

3 0.19626 0.21474 0.20196 0.18405 0.16696 0.1519 0.13893 0.12779 0.11

4 0.18701 0.19819 0.20589 0.19864 0.18698 0.17460 0.16279 0.15196 0.142

5 0.19959 0.17156 0.1968 0.20099 0.19632 0.18814 0.17882 0.16942 0.16

6 0.17954 0.16452 0.18060 0.19525 0.19788 0.19462 0.18857 0.18132 0.173

7 0.18856 0.17959 0.16116 0.18440 0.19392 0.19573 0.19332 0.18867 0.182

8 0.18714 0.17904 0.15570 0.17062 0.18617 0.19284 0.19416 0.19231 0.88

9 0.17677 0.16824 0.16883 0.15540 0.17594 0.18702 0.19195 0.1929 0.191

10 0.18630 0.16090 0.17308 0.15098 0.1642 0.17914 0.18743 0.19122 0.1920

11 0.17683 0.17102 0.17052 0.16223 0.15175 0.16988 0.18118 0.18760 0.1906

12 0.18241 0.17094 0.16306 0.16781 0.14803 0.15977 0.17370 0.18253 0.187

13 0.18049 0.16343 0.15234 0.16869 0.15779 0.14922 0.16537 0.1763 0.183

14 0.17746 0.16130 0.15887 0.16583 0.16362 0.14603 0.15651 0.16940 0.178

15 0.18111 0.16735 0.16392 0.16011 0.16605 0.15461 0.14736 0.16188 0.172

16 0.17235 0.16609 0.16396 0.15231 0.16562 0.16031 0.14456 0.15401 0.165

17 0.18005 0.15928 0.16003 0.15058 0.16284 0.16345 0.15221 0.14595 0.1529

18 0.17567 0.16195 0.15309 0.15702 0.15820 0.16436 0.15766 0.14346 0.1520

19 0.17804 0.16492 0.15517 0.16003 0.15213 0.16337 0.16111 0.15034 0.144

20 0.17726 0.16234 0.15947 0.16009 0.1450 0.16077 0.16279 0.1555 0.137

∞ 0.166 0.14666 0.13898 0.13484 0.13225 0.13048 0.12919 0.12821 0.1274

Let us represent r1(x) from the equality (26) in Theorem 1 in the form

r1(x) = g(x, n, p)
√

nx3.

In view of (27) the following estimate holds,

|g(x, n, p)| ≤ c1 = 5.4489 . . . . (79)

The question arises: how accurate is this estimate? In other words, we need to find

c0 = inf{c : |g(x, n, p)| ≤ c, n ≥ 1, 0 < p < x < 1}

and check how much c1 differs from c0.
Let us rewrite (26) as

1− Fn,p(nx)
1−Πλ1(nx)

(
A(x, n, p)

)−1
= 1 + g(x, n, p)

√
nx3, (80)
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where the parameter λ1 is defined by formula (43), and A(x, n, p) by formula (21). It
follows from (80) that

g(x, n, p) =
1√
nx3

[ 1− Fn,p(nx)
1−Πλ1(nx)

(
A(x, n, p)

)−1 − 1
]
.

Let us carry out numerical experiments to get closer to understanding the answer to
the question posed.

Note that if x = j/n, where j = 0, 1, . . . , (n− 1), then λ1 = p
q (n− j).

5.1. Illustration to Theorem 1

Let n = 10, p = 0.1. Table 7 contains values of the function g(x, n, p), found for x = j
n ,

j = 2, 9, as well as intermediate results.
On the last row, the maximum value is shown in bold.

Table 7. Values of the function g(x, n, p) for n = 10, p = 0.1 and x =
j
n , j = 2, 9.

x 0.2 0.3 0.4 0.5

nx 2 3 4 5
1− Fn,p(nx) 0.263 0.07 0.012 0.001
1−Πλ1(nx) 0.223 0.044 0.004 0.0002

1−Fn,p(nx)
1−Πλ1

(nx) 1.181 1.585 2.633 5.871
1

A(x,n,p) 0.935 0.747 0.486 0.238
1−Fn,p(nx)(

1−Πλ1
(nx)
)

A(x,n,p)
1.104 1.185 1.28 1.400

1−Fn,p(nx)(
1−Πλ1

(nx)
)

A(x,n,p)
− 1 0.104 0.185 0.28 0.4002

√
nx3 0.282 0.519 0.8 1.118

g(x, n, p) 0.3704 0.356 0.3503 0.358

x 0.6 0.7 0.8 0.9

nx 6 7 8 9
1− Fn,p(nx) 0.00014 9.12× 10−6 3.7×10−7 9.1× 10−9

1−Πλ1(nx) 7.3× 10−6 6.78× 10−8 1.21×10−10 6.4×10−15

1−Fn,p(nx)
1−Πλ1

(nx) 20.05 134.5 3085.37 1.4× 106

1
A(x,n,p) 0.0777 0.0133 0.0007 2× 10−6

1−Fn,p(nx)(
1−Πλ1

(nx)
)

A(x,n,p)
1.56 1.789 2.16 2.9

1−Fn,p(nx)(
1−Πλ1

(nx)
)

A(x,n,p)
− 1 0.56 0.789 1.16 1.9

√
nx3 1.469 1.852 2.262 2.7

g(x, n, p) 0.38 0.426 0.51 0.718

The third row from bottom in Table 7 shows a real value of the remainder in (26) for
various x. These values are acceptable for x ≤ 0.6, taking into account small value of the
parameter n. The last line contains the values of the coefficient at

√
nx3 in r1 = r1(x), for

which the latter coincides with the real remainder for the given value of x. For example,
for x = 0.2, the coefficient for

√
nx3 must be equal to 0.26764 (column “x = 0.2”, last line),

i.e., r1(0.2) = 0.26764
√

0.08 = 0.0757. If for dK(F10,1/5, Π2) to take the bound 0.150981x,
where x = 0.2, which is found with the help of Table 6 (column “5 dn,1/5”, line “n = 10”),
we obtain 0.822685 ≡ 0.150981c1 as the coefficient at

√
nx3 in r1(0.2). The latter is more

than two times the number 0.370456 from Table 7. Accordingly, we obtain for r1(0.2) the
estimate 0.822681

√
0.08 = 0.232689. At the same time, the real value of r1(0.2) is 0.104781

(see Table 7 or Table 8).
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We observe that the product
(
1−Πλ1(nx)

)
A(x, n, p) approximates 1− Fn,p by excess,

which is compensated by multiplying by 1 + r1(0.2).

5.2. Illustration to Theorems 2 and 3

Denote

V(x, n, p) =
1− Fn,p(nx)
1−Πnp(nx)

enqΛ3

(
x−p

q

)
, Ω2(x, n, p) =

M(nx; np)
M(nx; λ1)

≡ 1
Ω1(x, n, p)

.

Put n = 10, p = 0.1. Using Table 8 we can compare the remainders r1(x) and r2(x).

Table 8. Values of the remainders r2(x) = V(x, n, p)− 1 (see (31)) and r1(x) = Ω2(x, n, p)V(x, n, p)−
1 (Theorems 1 and 2) for n = 10, p = 0.1 and x =

j
10 , j = 2, 9.

x 0.2 0.3 0.4 0.5

nx 2 3 4 5

r2(x) = V(x, n, p)− 1 0.05807 0.11207 0.18822 0.29078

r1(x) = Ω2(x, n, p)V(x, n, p)− 1 0.10478 0.185 0.28029 0.4002

Let us do more detailed calculations. We calculate for x = j
n , j = 2, 9:

V(x, n, p)− 1,
V(x, n, p)− 1√

nx3
,

Ω2(x, n, p)V(x, n, p)− 1,
Ω2(x, n, p)V(x, n, p)− 1√

nx3
.

(81)

Table 9 is similar to Table 7. The difference is that in Table 9 the tail 1− Fn,p(nx) is

compared with two products: M(nx;λ1)
M(nx;np)

(
1 − Πnp(nx)

)
e−nqΛ3

(
x−p

q

)
and

(
1 − Πnp(nx)

)

e−nqΛ3

(
x−p

q

)
. It turns out that the second of them more accurately approximates 1− Fn,p(nx)

(compare the sixth and second rows from the bottom in Table 9; see also Table 8).
To compare the remainders r2(x) (see (31)) and r1(x) (Theorems 1 and 2), we can select

in Table 9 the rows “V(x, n, p)− 1” and “Ω2(x, n, p)V(x, n, p)− 1”.

Table 9. Values of the functions from (81) for n = 10, p = 0.1.

x 0.2 0.3 0.4 0.5

nx 2 3 4 5
1− Fn,p(nx) 0.2639 0.07019 0.01279 0.0016
1−Πnp(nx) 0.2642 0.0803 0.01898 0.0036

1−Fn,p(nx)
1−Πnp(nx) 0.9987 0.87409 0.6738 0.4467

x−p
q 0.1111 0.2222 0.3333 0.4444

Λ3
( x−p

q
)

0.0064 0.0267 0.063 0.1178

nqΛ3
( x−p

q
)

0.0577 0.24079 0.5672 1.061

enqΛ3

(
x−p

q

)
1.0594 1.2722 1.7633 2.8894

V(x, n, p) 1.058 1.112 1.188 1.29
V(x, n, p)− 1 0.058 0.112 0.188 0.29

V(x,n,p)−1√
nx3 0.2053 0.2156 0.2352 0.26

Ω2(x, n, p) 1.0441 1.0655 1.0774 1.0848
Ω2(x, n, p)V(x, n, p) 1.1047 1.185 1.2802 1.4002

Ω2(x, n, p)V(x, n, p)− 1 0.1047 0.185 0.2802 0.4002
Ω2(x,n,p)V(x,n,p)−1√

nx3 0.37 0.356 0.350 0.358
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Table 9. Cont.

x 0.6 0.7 0.8 0.9

nx 6 7 8 9
1− Fn,p(nx) 0.0001469 9.12× 10−6 3.7× 10−7 9.1× 10−9

1−Πnp(nx) 0.000594 8× 10−5 10−5 1.12× 10−6

1−Fn,p(nx)
1−Πnp(nx) 0.24723 0.10958 0.03645 0.00808

x−p
q 0.5555 0.6666 0.7777 0.8888

Λ3
( x−p

q
)

0.1951 0.3004 0.4435 0.6447

nqΛ3
( x−p

q
)

1.7562 2.7041 3.9918 5.8027

enqΛ3

(
x−p

q

)
5.7908 14.9418 54.1547 331.218

V(x, n, p) 1.43169 1.63733 1.97403 2.6787
V(x, n, p)− 1 0.43169 0.63733 0.97403 1.6787

V(x,n,p−1√
nx3 0.2937 0.3441 0.4304 0.6217

Ω2(x, n, p) 1.0896 1.0931 1.0956 1.0971
Ω2(x, n, p)V(x, n, p) 1.5601 1.7898 2.1628 2.9388

Ω2(x, n, p)V(x, n, p)− 1 0.5601 0.7898 1.1628 1.9388
Ω2(x,n,p)V(x,n,p)−1√

nx3 0.381 0.426 0.513 0.718

6. Supplement

In this section, we offer the reader some conjectures regarding the behavior of
dK(Fn,p, Πλ).

Due to the cumbersomeness of the table, we did not place columns corresponding to
11 ≤ k ≤ 20.

Nevertheless, we made sure that for each 2 ≤ k ≤ 20 the equality

max
1≤n≤20

dn,1/k = dk,1/k

holds. Our conjecture is as follows: for every 2 ≤ k ≤ n,

max
n≥1

dn,1/k = dk,1/k. (82)

Remark that the sequence dk,1/k decreases monotonically for 2 ≤ k ≤ 20. This property
is also true for sequences dk+j,1/k for every fixed j ≥ 1 and djk,1/k for fixed j ≥ 2. According
to CLT, Fn,p

(
np + x

√
n
)

converges in a uniform metric with the normal law Φ(x/
√

pq ).
On the other hand, Πnp

(
np + x

√
n
)

approaches Φ(x/
√

p ). It means that

lim
n→∞

dn,p = max
x>0

(
Φ(x/

√
q )−Φ(x)

)
. (83)

Hence,
lim
p→0

lim
n→∞

dn,p = 0.

Using formula (83), we get the elements of the last row of Table 5 and, hence, the
elements of the last row of Table 6.

The next conjecture concerns existence and the value of the limit of dk,1/k, when k→ ∞.
Calculations for k = 2, 20 suggest that

dk,1/k ≡ max
0≤j≤k

|Fk,1/k(j+)−Π1(j+)| = |Fk,1/k(0+)−Π1(0+)| ≡ e−1 − (1− 1/k)k. (84)
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Indeed, according to Table 5,

d2,1/2 = 0.11879 ≈ e−1 − 1
4

, d3,1/3 = 0.07183 ≈ e−1 −
(2

3

)3
, . . . .

In connection with this we remark that the behaviour of differences
Ck

n pk(1− p)n−k − πnp(k) under condition np ≤ 2−
√

2 is investigated in [10].
Note that (84) is equivalent to the assumption

dK(Fn,1/n , Π1) = |Fn,1/n(0+)−Π1(0+)|,

i.e., max
0≤k≤n

|Fn,1/n(k+)−Π1(k+) is realized at k = 0. This fact is fairly easy to prove in the

case λ ≤ 2−
√

2, using the results of the paper [10], in which this case is considered. In the
case of λ = 1, it is more difficult to find a proof, but it certainly exists.

After that we can assert the formula (84) is valid for all k and, moreover, there exists
lim
k→∞

kdk,1/k. Indeed, according to [10],

k
(

e−1 −
(

1− 1
k

)k)
= k

(
e−1 − ek ln(1−1/k)

)
= e−1k

(
1− e−

1
2k +O(k−2)

)
→

k→∞

1
2e

,

whence
lim
k→∞

kdk,1/k =
1
2e

.

Accordingly to Table 6 the constant c0 in the inequality

sup
n,p

dn,p

p
≤ c0 (85)

cannot be less 2(e−1 − 1
4 ) ≈ 0.235759.

If we impose the constraint p ≤ 1
4 , then the lower bound for c0 is not less than

4
(
e−1 −

( 3
4
)4) ≈ 0.205892 (see Table 6). As for the upper bound for c0, it is equal to

2
(
e−1 − 1

4
)

if in (85) supremum with respect to p is taken over all p such that p = 1/k,
k = 2, ∞.

If we adhere to the principle of incomplete induction, then the available information
is sufficient to assert that c0 = 2

(
e−1 − 1

4
)
.

Note that in the case p > 1
2 , it is sufficient to swap the roles of p and 1− p.

Table 6 demonstrates the following remarkable property:

max
1≤n≤20

max
2≤k≤9

k dn,1/k = max
2≤k≤9

k dk,1/k = 2 d2,1/2 = 2
(

e−1 − 1
4

)
= 0.235759.

Therefore, it is highly plausible that

max
1≤n≤20

sup
0<p<1/2

dn,p

p
= max

1≤n≤20
max

2≤k≤9
k dn,1/k = 2 d2,1/2.

Moreover, the following equality is highly plausible,

sup
n≥1

sup
0<p<1/2

dn,p

p
= max

1≤n≤20
sup

0<p<1/2

dn,p

p
= 2 d2,1/2 (86)

The equality (86) is another our conjecture. If this assumption is true, then instead
of (39) we have a more precise estimate

dn,p ≤ 2
(

e−1 − 1
4

)
p < 0.23576p. (87)
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If the hypothetical estimate (87) is correct, main statements of the present work can
be sharpen.

Since 2 · 0.23576 < 0.472, in the right-hand side of inequality (25) in Proposition 1 the
product 2xe−nH(x,p) can be replaced by 0.472xe−nH(x,p).

Taking into account the inequality 0.23576 c1 < 1.285, in all places the constant
c1 = 5.4489 . . . can be replaced by c̃1 = 1.285. In particular, in the formulations of
Theorems 1–3, c1 can be replaced by c̃1.

Taking into account that dk,1/k = e−1 − (1− 1/k)k, and using Table 6, we arrive at
the conclusion that in the case under k ≥ 2 and p = 1

k (see the row “n = 2” , the column
“2dn,1/2”),

dK(Fn,1/k , Πn/k) ≤ k
(

e−1 − (1− 1/k)k
)∣∣∣

k=2
p < 0.236 p. (88)

If k is growing, the coefficient at p in (88) decreases, but cannot be less than 1
2e = 0.18 . . . .

7. Conlusions

The main results of this paper are Theorems 1–3. In them, estimates are obtained for
the errors arising when the tails of binomial distributions are replaced by the tails of the
corresponding Poisson distributions. The constant c1 ≈ 5.5 included in the error estimates
is large enough for the estimates to be of practical use. However, further improvement
of the estimates will allow apply our results, in particular, when constructing confidence
intervals for the parameter p. The basis for the hope of obtaining such an improvement is
the inequality (88).
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