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Abstract: Let G be a group. Dp(G) =
⋂

H≤G NG(H′(p)) is defined and, the properties of Dp(G)

are investigated. It is proved that Dp(G) = P[A], where P = D(P) is the Sylow p-subgroup and
A = N(A) is a Hall p′-subgroup of Dp(G), respectively. Furthermore,it is proved in a group G that
(1) Dp(G) = 1 if and only if CG(G′(p)) = 1; (2) Op′ (Dp(G)) ≤ Z∞(Op(G)) and (3) if Z(G′(p)) = 1,
then CG(G′(p)) = Dp(G).
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1. Introduction

All groups considered in this paper are finite. The reader is referred to [1] for notation
and terminology. Recall that the norm N(G) of a group G, introduced by Baer in [2],
is the intersection of the normalizers of all subgroups of G (cf. [2]). A closely related
subgroup was introduced and studied by Wielandt in [3]. It is defined as the intersection
of the normalizers of all subnormal subgroups of G and called the Wielandt subgroup of G
(see [4]).

Some generalisations of Baer and Wielandt’s subgroups were considered and a lot of
interesting results have been obtained (see [5–9]). The idea behind these investigations is
to consider a set S of subgroups of G and consider the intersection of the normalizers of all
subgroups in S.

If S is the set of the commutators of all subgroups of a group G, the intersection D(G)
of their normalisers was studied in [5].

Our main goal in this paper is to study a local version of D(G): the intersection of the
normalizers of the residuals of all subgroups of G with respect to the class of all abelian
p-groups, p a prime.

Given a prime p and a group G, let G′(p) denote the residual of G with respect to the
class of all abelian p-groups; it is know that G′(p) is the unique smallest normal subgroup
of G for which the corresponding factor group is an abelian p-group. There is, of course, a
relationship between G′(p) and Op(G) which is the unique smallest normal subgroup of
G whose factor group is a (not necessarily abelian) p-group. In fact, Op(G) ≤ G′(p) and
G′(p)/Op(G) is the commutator subgroup of G/Op(G). Therefore G′(p) = Op(G)G′. This
subgroup plays an important role in group theory because it is the kernel of the transfer
homomorphism from G to P/P′, where P is a Sylow p-subgroup of G ([10], 10.1.5).

Definition 1. Let p a prime. The norm Dp(G) of the abelian p-group-residuals is the subgroup

Dp(G) =
⋂

H≤G
NG(H′(p)).

Note that Dp(G) 6= D(G) in general (it is enough to consider the alternating group of
deree 4).

We prove:
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Theorem 1. Let G be a group. Then Dp(G) = P[A], where P is the Sylow p-subgroup and
A is a Hall p′-subgroup of Dp(G). Moreover, P = D(P) and A = N(A). In particular,
∩p||G|Dp(G) = N(G).

Theorem 2. Let G be a group. Then

(1) Dp(G) = 1 if and only if CG(G′(p)) = 1;
(2) Op′(Dp(G)) ≤ Z∞(Op(G));
(3) if Z(G′(p)) = 1, then CG(G′(p)) = Dp(G).

2. Elementary Properties on Dp(G)

In this section, we list some elementary properties of Dp(G) that will be used in the
proofs of the main results.

Lemma 1. Let G be a group. Then

(1) If H ≤ G, then H′(p) ≤ G′(p);
(2) if N E G and N ≤ H ≤ G, then (H/N)′(p) = H′(p)N/N;
(3) G′(p) is nilpotent if and only if (G/Φ(G))′(p) is nilpotent;
(4) if G = MN, where M ≤ G and N E G, then G′(p) ≤ M′(p)N. In particular,

(M× N)′(p) = M′(p)× N′(p).

Proof.

(1) Let H ≤ G. Since H/(H ∩Op(G)) ∼= HOp(G)/Op(G) ≤ G/Op(G), H/(H ∩Op(G))
is a p-group and so H′(p) = H′Op(H) ≤ H′(H ∩Op(G)) ≤ G′Op(G) = G′(p).

(2) Let Op(H/N) = R/N. Op(H)N ≤ R Since (H/N)/Op(H/N) = (H/N)/(R/N) ∼=
H/R. Conversely, H/Op(H)N ∼= (H/Op(H)/(Op(H)N/Op(H)) and H/Op(H)N ∼=
(H/N)/(Op(H)N/N), so R/N ≤ Op(H)N/N. Hence Op(H/N) = Op(H)N/N.
Then (H/N)′(p) = (H/N)′Op(H/N)
= (H′N/N)(Op(H)N/N) = H′Op(H)N/N = H′(p)N/N.

(3) Clearly, G′(p) is nilpotent if and only if G′(p)Φ(G)/Φ(G) ∼= G′(p)/G′(p) ∩Φ(G) is
nilpotent. So (3) follows from (2).

(4) By G′ ≤ M′N and Op(G) ≤ Op(M)N , we get G′(p) ≤ M′(p)N. If M E G, then
G′(p) ≤ N′(p)M. Thus G′(p) ≤ M′(p)N ∩ N′(p)M = M′(p)(N ∩ N′(p)M) =
M′(p)N′(p)(M ∩ N). Hence, if G = M× N, then G′(p) = M′(p)× N′(p) by (1).

Proposition 1. Let G be a group. Then

(1) N(G)CG(G′(p)) ≤ Dp(G) ≤ D(G);
(2) Dp(G) is soluble;
(3) if M ≤ G, then M ∩ Dp(G) ≤ Dp(M);
(4) if N E G, then Dp(G)N/N ≤ Dp(G/N);
(5) if G = A× B, where A, B ≤ G and (|A|, |B|) = 1, then Dp(G) = Dp(A)× Dp(B).

Proof.

(1) Since H′ ≤ H′(p) ≤ H and H′, H′(p) are characteristic subgroups of H, we have
NG(H′) ≥ NG(H′(p)) ≥ NG(H), that is, N(G) ≤ Dp(G) ≤ D(G).
If x ∈ CG(G′(p)), then x is a normalizer of H′(p) for all H ≤ G by Lemma 1 (1).
Hence x ∈ Dp(G) and so, CG(G′(p) ≤ Dp(G).

(2) It follows from (1) and D(G) is soluble in ([9], Proposition 2.4).
(3) It is easy to see that M ∩ Dp(G) ≤ ⋂

H≤M NM(H′(p)) = Dp(M).
(4) If x ∈ Dp(G), then xN normalizes (H/N)′(p) for all H/N ≤ G/N by Lemma 1 (2).

Hence Dp(G)N/N ≤ Dp(G/N).
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(5) H = (H ∩ A)× (H ∩ B) for all H ≤ G by the hypotheses. It follows from Lemma 1
(4) that H′(p) = (H ∩ A)′(p)× (H ∩ B)′(p). Hence

NG(H′(p)) = NG((H ∩ A)′(p)) ∩ NG((H ∩ B)′(p))
= (NA((H ∩ A)′(p))× B) ∩ (A× NB((H ∩ B)′(p)))
= NA((H ∩ A)′(p))× NB((H ∩ B)′(p)),

which implies that Dp(G) = Dp(A)× Dp(B).

Proposition 2. Let G 6= 1 be a group. Then

(1) If G′(p) is nilpotent, then Dp(G) > 1.
(2) If G′(p) is a minimal normal subgroup of G and Dp(G) is nilpotent, then CG(G′(p)) =

Dp(G).

Proof.

(1) If G′(p) = 1, then G is abelian p-group and G = Dp(G) > 1. If G′(p) 6= 1, then
Dp(G) ≥ CG(G′(p)) ≥ Z(G′(p)) > 1 by Proposition 1 (1).

(2) Since G′(p) is a minimal normal subgroup of G, G′(p) ∩ F(G) = G′(p) or 1. If G′(p)
∩ F(G) = 1, then G′(p)F(G) = [G′(p)× F(G)] and so, F(G) ≤ CG(G′(p)). If G′(p)
∩ F(G) 6= 1, then G′(p) ≤ F(G) and [G′(p), F(G)] ≤ G′(p). However, F(G) is
nilpotent and hence [G′(p), F(G)] < G′(p). Thus, [G′(p), F(G)] = 1 and we have
F(G) ≤ CG(G′(p)).
By Proposition 1 (1), F(G) ≤ CG(G′(p)) ≤ Dp(G). The nilpotency of Dp(G) implies
that F(G) = CG(G′(p)) = Dp(G).

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. (1) By Proposition 1 (2), Dp(G) is soluble. Then Dp(G) has a Hall
p′-subgroup, denoted by A. Let P be a Sylow p-subgroup of Dp(G). Then Dp(G) = PA.

Firstly, A is a Dedekind group. Case 1. A is a q-group.
For a subgroup H of A. Since A ≤ Dp(G), we have A normalizes H′(p). It follows

from H′(p) = H that H is normal in A, that is, A = N(A) is a Dedekind group.
Case 2. A is not a q-group.
Let Aq and Ar be any Sylow q-subgroup and Sylow r-subgroup of A, respectively,

q 6= r. Since Aq and Ar are subgroups of Dp(G), Aq normalizes A′r(p) and Ar normalizes
A′q(p). Then it follows from A′r(p) = Ar and Aq = A′q(p) that [Aq, Ar] = 1, that is, A is
nilpotent. For a subgroup H of Aq, by the same argument above, Aq is Dedekind group,
hence A is Dedekind group.

Secondly, P = D(P) is a D-group.
For a subgroup K of P. Since P ≤ Dp(G), we have P normalizes K′(p). It follows from

K′(p) = K′ that K′ is normal in P, that is, P = D(P) is a D-group.
Finally, Dp(G) = P[A].
Since P normalizes A′(p) and A′(p) = A, we have Dp(G) = P[A].
(2) By (1), the Hall p′-subgroup of Dp(G) is Dedekind group for any prime p ∈ π(G),

then ∩p||G|Dp(G) ≤ N(G). Hence ∩p||G|Dp(G) = N(G) by Proportion 1 (1).

Suppose that a group H acts on a group G. We say that H acts hypercentrally on N if
N has a subnormal series 1 = N0 ≤ N1 ≤ · · · ≤ Ns = N such that [H, Ni] ≤ Ni−1, for all
i = 1, 2, · · · , s (cf. [11]). Clearly, if N is a normal subgroup of H then H acts hypercentrally
on N if and only if N ≤ Z∞(H).

Lemma 2. Let G be a {p, q}-group. Assume that N is a normal q-subgroup of G and H is a
subgroup of G with H = Op(H). If N ≤ Dp(G), then H acts hypercentrally on N.
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Proof. Suppose that the lemma is not true. Let G be a counterexample of minimal order.
Then

(1) G = NH.
If NH < G, then NH satisfies the condition of the lemma by Proposition 1 (3) and the

choice of G shows that H acts hypercentrally on N, a contradiction.
(2) Let T be a minimal supplement of CG(N) in G, then Op(T) = T.
Since H = Op(H) and N is a normal q-subgroup, we have G = HN = Op(H)N =

Op(G). Let T be a minimal supplement of CG(N) in G. Then G = CG(N)T. Assume
that Op(T) < T. Then CG(N)Op(T) < G by the minimality of T. It is easy to see
that G/CG(N)Op(T) = CG(N)T/CG(N)Op(T) ∼= T/CT(N)Op(T) is a p-group, and then
Op(G) ≤ CG(N)Op(T) < G, a contradiction.

(3) G = NT, and T E G.
If NT < G, then NT satisfies the condition of the lemma by Proposition 1 (3). By

the choice of G, T acts hypercentrally on N. Let Tp and CG(N)p be Sylow p-subgroup of
T and CG(N), respectively. Then Tp acts trivially on N, and then Gp = CG(N)pTp acts
trivially on N. Since G is a {p, q}-group, G/CG(Ni/Ni−1) is a q-group for each G-chief
factor Ni/Ni−1 of N. However, Oq(G/CG(Ni/Ni−1)) = 1 by ([12], Lemma 1.7.11). It
follows that G/CG(Ni/Ni−1) = 1. This shows that G acts hypercentrally on N, and so does
H, a contradiction. Thus, G = NT

Since N normalizes T′(p) and T = T′(p), we have T E G = NT.
(4) G = RT, where R is a nontrivial normal subgroup in G with R ≤ N.
If RT < G, then one can see that RT satisfies the condition by Proposition 1 (3).

Hence T acts hypercentrally on R by the choice of G. Since N/R ≤ Dp(RT/R) and
Op(RT/R) = RT/R, then, by the choice of G, RT/R acts hypercentrally on N/R. Then T
acts hypercentrally on N, that is, G = NT acts hypercentrally on N by ([12], Lemma 1.7.11),
so does H, a contradiction.

(5) Final contradiction.
Since G/R = TR/R acts hypercentrally on N/R, without generality, we can assume

R = N is minimal normal in G. Then, by the minimality of N and the normality of T, we
have that G = N × T or G = T.

If G = N × T, then N ≤ Z(G), a contradiction.
Let G = T. Since T is the minimal supplement of CG(N) in G, we have that T ∩

CG(N) ≤ Φ(T) by ([12], Lemma 2.3.4). Thus, CG(N) ≤ Φ(G). By the minimality of N
and N, Oq(G) ≤ CG(N) ≤ Φ(T) = Φ(G). It follows that Oq,p(G) is p-closed. Choose P to
be a Sylow p-subgroup in Oq,p(G). Then P E G and so, P ≤ CG(N) ≤ Φ(G). Therefore
Oq,p(G) ≤ Φ(G), a contradiction.

Proof of Theorem 2. (1) Since CG(G′(p)) ≤ Dp(G), the necessity is clear.
Conversely, assume that CG(G′(p)) = 1 and Dp(G) > 1. It implies that G′(p) ∩

Dp(G) > 1. Otherwise, Dp(G) ≤ CG(G′(p)) and CG(G′(p)) 6= 1. By Proposition 1 (2),
Dp(G) is soluble. So G has a minimal normal subgroup N such that N ≤ G′(p) ∩ Dp(G).
Then N is elementary abelian.

N ≤ Z(G′).
Assume G′ ∩ Dp(G) = 1. Since [G, Dp(G)] ≤ [G, G] = G′ and [G, Dp(G)] ≤ Dp(G),

[G, Dp(G)] ≤ G′ ∩ Dp(G) = 1. It follows that Dp(G) ≤ Z(G), a contradiction and thus
G′ ∩Dp(G) 6= 1. Since G′(p)∩Dp(G) ≥ G′ ∩Dp(G), we can assume that N ≤ G′ ∩Dp(G).

Now, by the ([13], Theorem 2.3 (1)), we have N ≤ G′ ∩ D(G) ≤ Z∞(G′). It follows
from the minimality of N that N ≤ Z(G′).

N ≤ CG(Op(G)).
Let N be q-group for some prime q and r a prime divisor of |G| different to p and q.

If R is a r-group. Then N ≤ NG(R) by N ≤ Dp(G) and hence [N, R] ≤ N ∩ R = 1. Thus,
R ≤ CG(N) and it follows from the choice of r that G/CG(N) is a {p, q}-group. Therefore,
without generality, we can assume that G is a {p, q}-group.

If q 6= p, then, by Lemma 2, N ≤ Z∞(Op(G)). It follows from the minimality of N that
N ≤ Z(Op(G)).
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If N is a p-group, then [N, Q] = [N, Q′Op(Q)] = 1 for any Sylow r-subgroup of G
with r 6= p. Then [N, Op(G)] = 1, and N ≤ CG(Op(G)).

Hence, one can see that N ≤ CG(G′(p)), a contradiction.
(2) If Op′(Dp(G)) = 1, the result is clear.
If Op′(Dp(G)) 6= 1, then G has a minimal normal subgroup N with N ≤ Op′(Dp(G)).
For any Sylow r-subgroup R of G, we have [N, R] = 1. Then G/CG(N) is a {p, q}-

group, hence, without loss of generality, we assume that G is a {p, q}-group.
If N is a q-group, then, by Lemma 2, N ≤ Z∞(Op(G)). It follows from the minimality

of N that N ≤ Z(Op(G)).
If N is a p-group, then [N, Q] = [N, Q′Op(Q)] = 1 for any Sylow q-subgroup of G.

Then [N, Op(G)] = 1, and N ≤ Z(Op(G)).
By induction, Op′(Dp(G)/N) ≤ Z∞(Op(G)/N), then Op′(Dp(G)) ≤ Z∞(Op(G)).
(3) Note that Z(G′(p)) = 1 if and only if Dp(G)∩G′(p) = 1 by (1). Then [Dp(G), G′(p)] ≤

Dp(G) ∩ G′(p) = 1, therefore Dp(G) = CG(G′(p)) by Proposition 1 (1).

4. Minimal Subgroups and Dp(G)

The main aim of this section is to to prove the following theorem.

Theorem 3. Let q be a prime. Assume that every element of order q lies in Dp(G), and in addition,
if q = 2 and the Sylow q-subgroup of G is nonabelian, then every element of order 4 lies in Dp(G).
Then G is q-soluble and lq(G) ≤ 1.

Proof. Let Ω = 〈x ∈ Op(G) | xq = 1〉, if q 6= 2 or the Sylow q-subgroup of G is abelian;
Ω = 〈x ∈ Op(G) | x4 = 1〉, if q = 2 and the Sylow q-subgroup of G is nonabelian. Then
Ω ≤ Op(G) ∩ Dp(G) by hypothesis.

Assume p 6= q. By Theorem 1.3, Ω is a p′-group and by Theorem 1.4, Ω ≤ Z∞(Op(G)).
If Op(G) is not q-nilpotent, then there exists a minimal non-q-nilpotent subgroup H of
Op(G). By the structure of the minimal non-q-nilpotent groups, we have that H = [Q]R,
where Q = Oq(H) and exp(Q) = q or 4 (if q = 2 and Q is non-abelian) and R is a cyclic
r-group with r 6= q. However, Q ≤ Ω ≤ Z∞(Op(G), so Q ≤ H ∩ Z∞(Op(G) ≤ Z∞(H).
It follows that H is nilpotent, a contradiction. This contradiction shows that Op(G) is
q-nilpotent. Thus, G is q-soluble and lq(G) ≤ 1 since G/Op(G) is a p-group.

Assume p = q. If Op(G) is of order p′ then G is p′-closed and so is p-nilpotent. In
particular, G is p-soluble with lp(G) ≤ 1. If Op(G) is not a p′-group, then Ω 6= ∅ and by
Theorem 1.3, Op′(Ω) is the Hall p′-subgroup of Ω. Let T be any p′-subgroup of G. Then
Ω ≤ NG(R). Since, clearly, Ω is normal in G, we see that [Ω, T] ≤ Ω ∩ T ≤ Op′(Ω). Since
Op(G) = 〈T ≤ G | p - |T|〉, [Ω, Op(G)] ≤ Op′(Ω). Now, considering on the quotient
Op(G)/Op′(Ω), we have that Ω/Op′(Ω) ≤ Z(Op(G)/Op′(Ω)). By a same argument as
above (or by Ito’s theorem), it can be obtained that Op(G)/Op′(Ω) is p-nilpotent. There-
fore, Op(G) is p-nilpotent and so is G. Thus, is p-soluble with lp(G) ≤ 1. The proof is
completed.
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