

Article On the Norm of the Abelian *p*-Group-Residuals

Baojun Li 🔎, Yu Han, Lü Gong * and Tong Jiang

School of Sciences, Nantong University, Nantong 226019, China; libj@ntu.edu.cn (B.L.); 2002310009@stmail.ntu.edu.cn (Y.H.); 1902310009@stmail.ntu.edu.cn (T.J.)

* Correspondence: gonglv@ntu.edu.cn

Abstract: Let *G* be a group. $D_p(G) = \bigcap_{H \leq G} N_G(H'(p))$ is defined and, the properties of $D_p(G)$ are investigated. It is proved that $D_p(G) = P[A]$, where P = D(P) is the Sylow *p*-subgroup and A = N(A) is a Hall *p*'-subgroup of $D_p(G)$, respectively. Furthermore, it is proved in a group *G* that (1) $D_p(G) = 1$ if and only if $C_G(G'(p)) = 1$; (2) $O_{p'}(D_p(G)) \leq Z_{\infty}(O^p(G))$ and (3) if Z(G'(p)) = 1, then $C_G(G'(p)) = D_p(G)$.

Keywords: finite group; abelian *p*-group residual; soluble group; normalizer

1. Introduction

All groups considered in this paper are finite. The reader is referred to [1] for notation and terminology. Recall that the norm N(G) of a group G, introduced by Baer in [2], is the intersection of the normalizers of all subgroups of G (cf. [2]). A closely related subgroup was introduced and studied by Wielandt in [3]. It is defined as the intersection of the normalizers of all subnormal subgroups of G and called the Wielandt subgroup of G(see [4]).

Some generalisations of Baer and Wielandt's subgroups were considered and a lot of interesting results have been obtained (see [5-9]). The idea behind these investigations is to consider a set *S* of subgroups of *G* and consider the intersection of the normalizers of all subgroups in *S*.

If *S* is the set of the commutators of all subgroups of a group *G*, the intersection D(G) of their normalisers was studied in [5].

Our main goal in this paper is to study a local version of D(G): the intersection of the normalizers of the residuals of all subgroups of *G* with respect to the class of all abelian *p*-groups, *p* a prime.

Given a prime *p* and a group *G*, let G'(p) denote the residual of *G* with respect to the class of all abelian *p*-groups; it is know that G'(p) is the unique smallest normal subgroup of *G* for which the corresponding factor group is an abelian *p*-group. There is, of course, a relationship between G'(p) and $O^p(G)$ which is the unique smallest normal subgroup of *G* whose factor group is a (not necessarily abelian) *p*-group. In fact, $O^p(G) \leq G'(p)$ and $G'(p)/O^p(G)$ is the commutator subgroup of $G/O^p(G)$. Therefore $G'(p) = O^p(G)G'$. This subgroup plays an important role in group theory because it is the kernel of the transfer homomorphism from *G* to P/P', where *P* is a Sylow *p*-subgroup of *G* ([10], 10.1.5).

Definition 1. Let *p* a prime. The norm $D_p(G)$ of the abelian *p*-group-residuals is the subgroup

$$D_p(G) = \bigcap_{H \le G} N_G(H'(p))$$

Note that $D_p(G) \neq D(G)$ in general (it is enough to consider the alternating group of deree 4).

We prove:

Citation: Li, B.; Han, Y.; Gong, L.; Jiang, T. On the Norm of the Abelian *p*-Group-Residuals. *Mathematics* **2021**, *9*, 842. https://doi.org/10.3390/ math9080842

Academic Editors: Adolfo Ballester-Bolinches and Askar Tuganbaev

Received: 27 January 2021 Accepted: 9 April 2021 Published: 13 April 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). **Theorem 1.** Let G be a group. Then $D_p(G) = P[A]$, where P is the Sylow p-subgroup and A is a Hall p'-subgroup of $D_p(G)$. Moreover, P = D(P) and A = N(A). In particular, $\bigcap_{p||G|} D_p(G) = N(G)$.

Theorem 2. Let G be a group. Then

- (1) $D_p(G) = 1$ if and only if $C_G(G'(p)) = 1$;
- (2) $O_{p'}(D_p(G)) \le Z_{\infty}(O^p(G));$
- (3) if Z(G'(p)) = 1, then $C_G(G'(p)) = D_p(G)$.

2. Elementary Properties on $D_p(G)$

In this section, we list some elementary properties of $D_p(G)$ that will be used in the proofs of the main results.

Lemma 1. Let G be a group. Then

- (1) If $H \leq G$, then $H'(p) \leq G'(p)$;
- (2) if $N \leq G$ and $N \leq H \leq G$, then (H/N)'(p) = H'(p)N/N;
- (3) G'(p) is nilpotent if and only if $(G/\Phi(G))'(p)$ is nilpotent;
- (4) if G = MN, where $M \leq G$ and $N \leq G$, then $G'(p) \leq M'(p)N$. In particular, $(M \times N)'(p) = M'(p) \times N'(p)$.

Proof.

- (1) Let $H \le G$. Since $H/(H \cap O^p(G)) \cong HO^p(G)/O^p(G) \le G/O^p(G), H/(H \cap O^p(G))$ is a *p*-group and so $H'(p) = H'O^p(H) \le H'(H \cap O^p(G)) \le G'O^p(G) = G'(p)$.
- (2) Let $O^{p}(H/N) = R/N$. $O^{p}(H)N \leq R$ Since $(H/N)/O^{p}(H/N) = (H/N)/(R/N) \cong$ H/R. Conversely, $H/O^{p}(H)N \cong (H/O^{p}(H)/(O^{p}(H)N/O^{p}(H))$ and $H/O^{p}(H)N \cong$ $(H/N)/(O^{p}(H)N/N)$, so $R/N \leq O^{p}(H)N/N$. Hence $O^{p}(H/N) = O^{p}(H)N/N$. Then $(H/N)'(p) = (H/N)'O^{p}(H/N)$ $= (H'N/N)(O^{p}(H)N/N) = H'O^{p}(H)N/N = H'(p)N/N$.
- (3) Clearly, G'(p) is nilpotent if and only if $G'(p)\Phi(G)/\Phi(G) \cong G'(p)/G'(p) \cap \Phi(G)$ is nilpotent. So (3) follows from (2).
- (4) By $G' \leq M'N$ and $O^p(G) \leq O^p(M)N$, we get $G'(p) \leq M'(p)N$. If $M \leq G$, then $G'(p) \leq N'(p)M$. Thus $G'(p) \leq M'(p)N \cap N'(p)M = M'(p)(N \cap N'(p)M) = M'(p)N'(p)(M \cap N)$. Hence, if $G = M \times N$, then $G'(p) = M'(p) \times N'(p)$ by (1).

Proposition 1. Let G be a group. Then

- (1) $N(G)C_G(G'(p)) \le D_p(G) \le D(G);$
- (2) $D_p(G)$ is soluble;
- (3) if $M \leq G$, then $M \cap D_p(G) \leq D_p(M)$;
- (4) *if* $N \leq G$, then $D_p(G)N/N \leq D_p(G/N)$;
- (5) *if* $G = A \times B$, where $A, B \leq G$ and (|A|, |B|) = 1, then $D_p(G) = D_p(A) \times D_p(B)$.

Proof.

- (1) Since $H' \leq H'(p) \leq H$ and H', H'(p) are characteristic subgroups of H, we have $N_G(H') \geq N_G(H'(p)) \geq N_G(H)$, that is, $N(G) \leq D_p(G) \leq D(G)$. If $x \in C_G(G'(p))$, then x is a normalizer of H'(p) for all $H \leq G$ by Lemma 1 (1). Hence $x \in D_p(G)$ and so, $C_G(G'(p) \leq D_p(G)$.
- (2) It follows from (1) and D(G) is soluble in ([9], Proposition 2.4).
- (3) It is easy to see that $M \cap D_p(G) \leq \bigcap_{H \leq M} N_M(H'(p)) = D_p(M)$.
- (4) If $x \in D_p(G)$, then xN normalizes (H/N)'(p) for all $H/N \leq G/N$ by Lemma 1 (2). Hence $D_p(G)N/N \leq D_p(G/N)$.

(5) $H = (H \cap A) \times (H \cap B)$ for all $H \le G$ by the hypotheses. It follows from Lemma 1 (4) that $H'(p) = (H \cap A)'(p) \times (H \cap B)'(p)$. Hence

$$\begin{array}{lll} N_G(H'(p)) &=& N_G((H \cap A)'(p)) \cap N_G((H \cap B)'(p)) \\ &=& (N_A((H \cap A)'(p)) \times B) \cap (A \times N_B((H \cap B)'(p))) \\ &=& N_A((H \cap A)'(p)) \times N_B((H \cap B)'(p)), \end{array}$$

which implies that $D_p(G) = D_p(A) \times D_p(B)$.

Proposition 2. Let $G \neq 1$ be a group. Then

- (1) If G'(p) is nilpotent, then $D_p(G) > 1$.
- (2) If G'(p) is a minimal normal subgroup of G and $D_p(G)$ is nilpotent, then $C_G(G'(p)) = D_p(G)$.

Proof.

- (1) If G'(p) = 1, then *G* is abelian *p*-group and $G = D_p(G) > 1$. If $G'(p) \neq 1$, then $D_p(G) \ge C_G(G'(p)) \ge Z(G'(p)) > 1$ by Proposition 1 (1).
- (2) Since G'(p) is a minimal normal subgroup of G, $G'(p) \cap F(G) = G'(p)$ or 1. If $G'(p) \cap F(G) = 1$, then $G'(p)F(G) = [G'(p) \times F(G)]$ and so, $F(G) \leq C_G(G'(p))$. If $G'(p) \cap F(G) \neq 1$, then $G'(p) \leq F(G)$ and $[G'(p), F(G)] \leq G'(p)$. However, F(G) is nilpotent and hence [G'(p), F(G)] < G'(p). Thus, [G'(p), F(G)] = 1 and we have $F(G) \leq C_G(G'(p))$. By Proposition 1 (1), $F(G) \leq C_G(G'(p)) \leq D_p(G)$. The nilpotency of $D_p(G)$ implies that $F(G) = C_G(G'(p)) = D_p(G)$.

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. (1) By Proposition 1 (2), $D_p(G)$ is soluble. Then $D_p(G)$ has a Hall p'-subgroup, denoted by A. Let P be a Sylow p-subgroup of $D_p(G)$. Then $D_p(G) = PA$. Firstly, A is a Dedekind group. Case 1. A is a q-group.

For a subgroup *H* of *A*. Since $A \leq D_p(G)$, we have *A* normalizes H'(p). It follows from H'(p) = H that *H* is normal in *A*, that is, A = N(A) is a Dedekind group.

Case 2. *A* is not a *q*-group.

Let A_q and A_r be any Sylow *q*-subgroup and Sylow *r*-subgroup of A, respectively, $q \neq r$. Since A_q and A_r are subgroups of $D_p(G)$, A_q normalizes $A'_r(p)$ and A_r normalizes $A'_q(p)$. Then it follows from $A'_r(p) = A_r$ and $A_q = A'_q(p)$ that $[A_q, A_r] = 1$, that is, A is nilpotent. For a subgroup H of A_q , by the same argument above, A_q is Dedekind group, hence A is Dedekind group.

Secondly, P = D(P) is a D-group.

For a subgroup *K* of *P*. Since $P \le D_p(G)$, we have *P* normalizes K'(p). It follows from K'(p) = K' that K' is normal in *P*, that is, P = D(P) is a D-group.

Finally, $D_p(G) = P[A]$.

Since *P* normalizes A'(p) and A'(p) = A, we have $D_p(G) = P[A]$.

(2) By (1), the Hall *p*'-subgroup of $D_p(G)$ is Dedekind group for any prime $p \in \pi(G)$, then $\bigcap_{p||G|} D_p(G) \leq N(G)$. Hence $\bigcap_{p||G|} D_p(G) = N(G)$ by Proportion 1 (1). \Box

Suppose that a group *H* acts on a group *G*. We say that *H* acts hypercentrally on *N* if *N* has a subnormal series $1 = N_0 \le N_1 \le \cdots \le N_s = N$ such that $[H, N_i] \le N_{i-1}$, for all $i = 1, 2, \cdots, s$ (cf. [11]). Clearly, if *N* is a normal subgroup of *H* then *H* acts hypercentrally on *N* if and only if $N \le Z_{\infty}(H)$.

Lemma 2. Let G be a $\{p,q\}$ -group. Assume that N is a normal q-subgroup of G and H is a subgroup of G with $H = O^p(H)$. If $N \le D_p(G)$, then H acts hypercentrally on N.

Proof. Suppose that the lemma is not true. Let *G* be a counterexample of minimal order. Then

(1) G = NH.

If NH < G, then NH satisfies the condition of the lemma by Proposition 1 (3) and the choice of *G* shows that *H* acts hypercentrally on *N*, a contradiction.

(2) Let T be a minimal supplement of $C_G(N)$ in G, then $O^p(T) = T$.

Since $H = O^p(H)$ and N is a normal q-subgroup, we have $G = HN = O^p(H)N = O^p(G)$. Let T be a minimal supplement of $C_G(N)$ in G. Then $G = C_G(N)T$. Assume that $O^p(T) < T$. Then $C_G(N)O^p(T) < G$ by the minimality of T. It is easy to see that $G/C_G(N)O^p(T) = C_G(N)T/C_G(N)O^p(T) \cong T/C_T(N)O^p(T)$ is a p-group, and then $O^p(G) \le C_G(N)O^p(T) < G$, a contradiction.

(3) G = NT, and $T \leq G$.

If NT < G, then NT satisfies the condition of the lemma by Proposition 1 (3). By the choice of G, T acts hypercentrally on N. Let T_p and $C_G(N)_p$ be Sylow p-subgroup of T and $C_G(N)$, respectively. Then T_p acts trivially on N, and then $G_p = C_G(N)_p T_p$ acts trivially on N. Since G is a $\{p,q\}$ -group, $G/C_G(N_i/N_{i-1})$ is a q-group for each G-chief factor N_i/N_{i-1} of N. However, $O_q(G/C_G(N_i/N_{i-1})) = 1$ by ([12], Lemma 1.7.11). It follows that $G/C_G(N_i/N_{i-1}) = 1$. This shows that G acts hypercentrally on N, and so does H, a contradiction. Thus, G = NT

Since *N* normalizes T'(p) and T = T'(p), we have $T \leq G = NT$.

(4) G = RT, where R is a nontrivial normal subgroup in G with $R \le N$.

If RT < G, then one can see that RT satisfies the condition by Proposition 1 (3). Hence *T* acts hypercentrally on *R* by the choice of *G*. Since $N/R \leq D_p(RT/R)$ and $O^p(RT/R) = RT/R$, then, by the choice of *G*, RT/R acts hypercentrally on *N*/*R*. Then *T* acts hypercentrally on *N*, that is, G = NT acts hypercentrally on *N* by ([12], Lemma 1.7.11), so does *H*, a contradiction.

(5) Final contradiction.

Since G/R = TR/R acts hypercentrally on N/R, without generality, we can assume R = N is minimal normal in G. Then, by the minimality of N and the normality of T, we have that $G = N \times T$ or G = T.

If $G = N \times T$, then $N \leq Z(G)$, a contradiction.

Let G = T. Since T is the minimal supplement of $C_G(N)$ in G, we have that $T \cap C_G(N) \leq \Phi(T)$ by ([12], Lemma 2.3.4). Thus, $C_G(N) \leq \Phi(G)$. By the minimality of N and N, $O_q(G) \leq C_G(N) \leq \Phi(T) = \Phi(G)$. It follows that $O_{q,p}(G)$ is p-closed. Choose P to be a Sylow p-subgroup in $O_{q,p}(G)$. Then $P \leq G$ and so, $P \leq C_G(N) \leq \Phi(G)$. Therefore $O_{q,p}(G) \leq \Phi(G)$, a contradiction. \Box

Proof of Theorem 2. (1) Since $C_G(G'(p)) \leq D_p(G)$, the necessity is clear.

Conversely, assume that $C_G(G'(p)) = 1$ and $D_p(G) > 1$. It implies that $G'(p) \cap D_p(G) > 1$. Otherwise, $D_p(G) \leq C_G(G'(p))$ and $C_G(G'(p)) \neq 1$. By Proposition 1 (2), $D_p(G)$ is soluble. So *G* has a minimal normal subgroup *N* such that $N \leq G'(p) \cap D_p(G)$. Then *N* is elementary abelian.

 $N \leq Z(G').$

Assume $G' \cap D_p(G) = 1$. Since $[G, D_p(G)] \leq [G, G] = G'$ and $[G, D_p(G)] \leq D_p(G)$, $[G, D_p(G)] \leq G' \cap D_p(G) = 1$. It follows that $D_p(G) \leq Z(G)$, a contradiction and thus $G' \cap D_p(G) \neq 1$. Since $G'(p) \cap D_p(G) \geq G' \cap D_p(G)$, we can assume that $N \leq G' \cap D_p(G)$. Now, by the ([13], Theorem 2.3 (1)), we have $N \leq G' \cap D(G) \leq Z_{\infty}(G')$. It follows

from the minimality of *N* that $N \leq Z(G')$.

 $N \le C_G(O^p(G)).$

Let *N* be *q*-group for some prime *q* and *r* a prime divisor of |G| different to *p* and *q*. If *R* is a *r*-group. Then $N \leq N_G(R)$ by $N \leq D_p(G)$ and hence $[N, R] \leq N \cap R = 1$. Thus, $R \leq C_G(N)$ and it follows from the choice of *r* that $G/C_G(N)$ is a $\{p,q\}$ -group. Therefore, without generality, we can assume that *G* is a $\{p,q\}$ -group.

If $q \neq p$, then, by Lemma 2, $N \leq Z_{\infty}(O^{p}(G))$. It follows from the minimality of N that $N \leq Z(O^{p}(G))$.

If *N* is a *p*-group, then $[N, Q] = [N, Q'O^p(Q)] = 1$ for any Sylow *r*-subgroup of *G* with $r \neq p$. Then $[N, O^p(G)] = 1$, and $N \leq C_G(O^p(G))$.

Hence, one can see that $N \leq C_G(G'(p))$, a contradiction.

(2) If $O_{p'}(D_p(G)) = 1$, the result is clear.

If $O_{p'}(D_p(G)) \neq 1$, then *G* has a minimal normal subgroup *N* with $N \leq O_{p'}(D_p(G))$. For any Sylow *r*-subgroup *R* of *G*, we have [N, R] = 1. Then $G/C_G(N)$ is a $\{p, q\}$ -group, hence, without loss of generality, we assume that *G* is a $\{p, q\}$ -group.

If *N* is a *q*-group, then, by Lemma 2, $N \leq Z_{\infty}(O^{p}(G))$. It follows from the minimality of *N* that $N \leq Z(O^{p}(G))$.

If *N* is a *p*-group, then $[N, Q] = [N, Q'O^p(Q)] = 1$ for any Sylow *q*-subgroup of *G*. Then $[N, O^p(G)] = 1$, and $N \leq Z(O^p(G))$.

By induction, $O_{p'}(D_p(G)/N) \leq Z_{\infty}(O^p(G)/N)$, then $O_{p'}(D_p(G)) \leq Z_{\infty}(O^p(G))$. (3) Note that Z(G'(p)) = 1 if and only if $D_p(G) \cap G'(p) = 1$ by (1). Then $[D_p(G), G'(p)] \leq D_p(G) \cap G'(p) = 1$, therefore $D_p(G) = C_G(G'(p))$ by Proposition 1 (1). \Box

4. Minimal Subgroups and $D_p(G)$

The main aim of this section is to to prove the following theorem.

Theorem 3. Let *q* be a prime. Assume that every element of order *q* lies in $D_p(G)$, and in addition, if q = 2 and the Sylow *q*-subgroup of *G* is nonabelian, then every element of order 4 lies in $D_p(G)$. Then *G* is *q*-soluble and $l_q(G) \le 1$.

Proof. Let $\Omega = \langle x \in O^p(G) | x^q = 1 \rangle$, if $q \neq 2$ or the Sylow *q*-subgroup of *G* is abelian; $\Omega = \langle x \in O^p(G) | x^4 = 1 \rangle$, if q = 2 and the Sylow *q*-subgroup of *G* is nonabelian. Then $\Omega \leq O^p(G) \cap D_p(G)$ by hypothesis.

Assume $p \neq q$. By Theorem 1.3, Ω is a p'-group and by Theorem 1.4, $\Omega \leq Z_{\infty}(O^{p}(G))$. If $O^{p}(G)$ is not q-nilpotent, then there exists a minimal non-q-nilpotent subgroup H of $O^{p}(G)$. By the structure of the minimal non-q-nilpotent groups, we have that H = [Q]R, where $Q = O_{q}(H)$ and $\exp(Q) = q$ or 4 (if q = 2 and Q is non-abelian) and R is a cyclic r-group with $r \neq q$. However, $Q \leq \Omega \leq Z_{\infty}(O^{p}(G), \text{ so } Q \leq H \cap Z_{\infty}(O^{p}(G) \leq Z_{\infty}(H))$. It follows that H is nilpotent, a contradiction. This contradiction shows that $O^{p}(G)$ is q-nilpotent. Thus, G is q-soluble and $l_{q}(G) \leq 1$ since $G/O^{p}(G)$ is a p-group.

Assume p = q. If $O^p(G)$ is of order p' then G is p'-closed and so is p-nilpotent. In particular, G is p-soluble with $l_p(G) \leq 1$. If $O^p(G)$ is not a p'-group, then $\Omega \neq \emptyset$ and by Theorem 1.3, $O_{p'}(\Omega)$ is the Hall p'-subgroup of Ω . Let T be any p'-subgroup of G. Then $\Omega \leq N_G(R)$. Since, clearly, Ω is normal in G, we see that $[\Omega, T] \leq \Omega \cap T \leq O_{p'}(\Omega)$. Since $O^p(G) = \langle T \leq G \mid p \nmid |T| \rangle$, $[\Omega, O^p(G)] \leq O_{p'}(\Omega)$. Now, considering on the quotient $O^p(G)/O_{p'}(\Omega)$, we have that $\Omega/O_{p'}(\Omega) \leq Z(O^p(G)/O_{p'}(\Omega))$. By a same argument as above (or by Ito's theorem), it can be obtained that $O^p(G)/O_{p'}(\Omega)$ is p-nilpotent. Therefore, $O^p(G)$ is p-nilpotent and so is G. Thus, is p-soluble with $l_p(G) \leq 1$. The proof is completed. \Box

Author Contributions: Methodology, B.L.; Supervision, B.L.; Writing—original draft, Y.H. and L.G.; Writing—review and editing, T.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grants number 11471055 and 11601245.

Acknowledgments: The authors would like to thank the anonymous reviewers for their useful comments that have improved the final version of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Ballester-Bolinches A.; Ezquerro L. Classes of Finite Groups; Springer: Dordrecht, The Netherlands, 2006.
- 2. Baer, R. Der Kern eine charakteristische Untergruppe. Compos. Math. 1934, 1, 254–283.
- 3. Wielandt, H. Uber den Normalisator der subnormalen Untergruppen. *Math. Z.* **1958**,69, 463–465. [CrossRef]
- 4. Bryce, R.; Cossey, J. The Wielandt subgroup of a finite soluble group. J. Lond. Math. Soc. 1989, 40, 244–256. [CrossRef]
- 5. Li, S.; Shen, Z. On the intersection of the normalizers of derived subgroups of all subgroups of a finite group. *J. Algebra* **2010**, *323*, 1349–1357. [CrossRef]
- 6. Ballester-Bolinches, A.; Cossey, J.; Zhang, L. Generalised norms in finite groups. J. Algebra 2014, 402, 392–405. [CrossRef]
- 7. Chen, X.; Guo, W. On the π -F-norm and H-F-norm of a finite group. J. Algebra **2014**, 405, 213–231. [CrossRef]
- 8. Gong, L.; Guo, X. On the intersection of the normalizers of the nilpotent residuals of all subgroups of a finite group. *Algebra Colloq.* **2013**, *20*, 349–360. [CrossRef]
- 9. Li, X.; Guo, X. On Generalized Norms of Finite Groups. Comm. Algebra 2016, 44, 1088–1095. [CrossRef]
- 10. Robinson, D. A Course in the Theory of Groups; Springer: New York, NY, USA, 1982.
- 11. Li, B.; Gong, L. On *f*-hypercentral actions of finite group. *Commun. Math. Stat.* 2021. [CrossRef]
- 12. Guo, W. The Theory of Classes of Groups; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 2000.
- 13. Gong, L.; Guo, X. On normalizers of the nilpotent residuals of subgroups of a finite group. *Bull. Malays. Math. Sci. Soc.* 2016, 39, 957–970. [CrossRef]