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Abstract: In this expository paper, we study Lq-Lr decay estimates of the evolution operator generated
by a perturbed Stokes system in n-dimensional exterior domains when the coefficients are time-
dependent and can be unbounded at spatial infinity. By following the approach developed by
the present author for the physically relevant case where the rigid motion of the obstacle is time-
dependent, we clarify that some decay properties of solutions to the same system in whole space Rn

together with the energy relation imply the desired estimates in exterior domains provided n ≥ 3.
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1. Introduction

This paper studies the large time decay of solutions to the initial value problem
for a linear nonautonomous system arising from fluid dynamics, specifically a viscous
incompressible flow past an obstacle. Let Ω be an exterior domain in Rn, n ≥ 3, with C1,1-
boundary ∂Ω. Complement Rn \Ω is identified with the obstacle (rigid body) immersed in
a fluid, and it is assumed to be a compact set in B1(0) with nonempty interior. Towards the
understanding of the stability or attainability of time-dependent Navier–Stokes flow past
the obstacle whose motion could also be time-dependent, an essential step is to deduce
some decay properties of a linearized system of form

∂tu− ∆u +∇p− b(t) · ∇u + M(t)u = 0,

div u = 0,
(1)

in Ω× (s, ∞), where vector field u = (u1(x, t), · · · , un(x, t))> ∈ Rn and scalar function
p = p(x, t) ∈ R are unknowns denoting fluid velocity and pressure, while b(x, t) ∈ Rn

and M(x, t) ∈ Rn×n are prescribed functions. When b = 0 and M = O, (1) is just the well-
known Stokes system. We consider perturbed Stokes system (1) subject to homogeneous
Dirichlet boundary condition

u|∂Ω = 0, u→ 0 as |x| → ∞ (2)

and initial condition
u(x, s) = f (x) (3)

at initial time s ≥ 0. The adjoint of the solution operator (evolution operator)
T(t, s): f 7→ u(t) to (1)–(3) provides solution operator T(t, s)∗: g 7→ v(s) to backward
problem

−∂sv− ∆v−∇σ + b(s) · ∇v +
[

M(s)> +
(
div b(s)

)
I
]
v = 0,

div v = 0,
(4)

in Ω× [0, t), with I being the n× n identity matrix, where v(y, s) and σ(y, s) are unknowns,
subject to
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v|∂Ω = 0, v→ 0 as |y| → ∞ (5)

and final condition
v(y, t) = g(y) (6)

at final time t > 0. In what follows, let us assume that div b = 0 for simplicity. This
condition is actually satisfied for a typical example, (9) below. Initial and final velocities f
and g are taken from class Lq

σ(Ω) of solenoidal Lq-vector fields, 1 < q < ∞, with vanishing
normal trace at boundary ∂Ω.

In [1,2], the present author established the Lq-Lr estimate

‖∇ju(t)‖Lr(Ω) ≤ C(t− s)−(n/q−n/r)/2−j/2‖ f ‖Lq(Ω), t > s ≥ 0, j = 0, 1, (7)

of solution u(t) to (1)–(3) and the same estimate for (4)–(6) when b = η(t) + ω(t)× x (rigid
motion consisting of translation and rotation) and Mu = ω(t)× u (one half of the Coriolis
force) in 3D, where 1 < q ≤ r ≤ ∞ (q 6= ∞) for j = 0 and 1 < q ≤ r ≤ n = 3 for j = 1. We
interpret (7) as the linearized stability with definite rate. Since the only assumption on
(η, ω) is

η, ω ∈ Cθ([0, ∞); R3) ∩ L∞(0, ∞; R3) (8)

with some θ ∈ (0, 1), the result of [1,2] completely recovers Estimate (7) for the Stokes
and Oseen semigroups, those semigroups with rotating effect due to [3–7]. In order to
study the attainability (relating to the celebrated starting problem raised by Finn [8]) and
stability of the steady (or even time-periodic) Navier–Stokes flow, especially within the Lq

framework, see [6,9–16], it is always crucial to make full use of (7) when n ≥ 3, whereas
even more linear analysis is needed in [17] by Maekawa for 2D cases. Since the equation
is nonautonomous without any specific structure of (η, ω), such as time periodicity, one
can no longer carry out spectral analysis that is standard as a strategy of obtaining time-
decay estimates of semigroups for the autonomous case; see [3,5–7,11,18]. Moreover, as
observed in [19,20], drift operator (ω× x) · ∇ with unbounded coefficient arising from the
presence of rotation of the obstacle prevents the usual analysis on the basis of the theory of
parabolic evolution operators; see, for instance, Tanabe [21], which corresponds to analytic
semigroups for the autonomous case.

The aim of this expository paper is to clarify how one can deduce decay estimate (7)
of the solution to (1)–(3) if we adapt the approach developed in [1,2]. A typical example
that we have in mind is 3D case

b · ∇u = (η + ω× x−V) · ∇u, Mu = ω× u + u · ∇V (9)

with V = V(x, t) being time-dependent Navier–Stokes flow induced from rigid motion (8)
of the obstacle. Roughly speaking, we make Assumptions (i)–(iii):

(i) Initial value problem (1)–(3) and backward adjoint problem (4)–(6) are well-posed
in Lq

σ(Ω). A unique solution u(t) to (1)–(3) satisfies smoothing estimate (7) only for
t− s ≤ τ∗ and

‖∂tu(t)‖W−1,q(Ω3)
≤ C(t− s)−α‖ f ‖Lq(Ω), 0 ≤ s < t ≤ s + τ∗, (10)

with some α ∈ [1/2, 1), where τ∗ ∈ (0, ∞) is arbitrary, constants C may depend on τ∗,
and we set Ω3 = Ω ∩ B3(0). See (A3)–(A5) in the next section.

(ii) Initial value problem (1) in Rn × (s, ∞) subject to (3) and backward adjoint problem
(4) in Rn × [0, t) subject to (6) are well-posed in Lq

σ(Rn). A unique solution u(t) to the
former enjoys (7) (both smoothing action and decay, in which Ω is replaced by Rn)
and

‖∂tu(t)‖W−1,q(B3)
≤ C‖ f ‖Lq(Rn)

{
(t− s)−1/2, 0 < t− s ≤ 1,
(t− s)−n/2q, t− s > 1,

(11)
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and we have the same estimates for the latter (backward problem), where B3 = B3(0).
See (A6)–(A7) in the next section.

(iii) Initial value problem (1)–(3) and backward adjoint problem (4)–(6) fulfil the energy
relations with dissipation

1
2
‖u(t)‖2

L2(Ω) + δ
∫ t

τ
‖∇u(σ)‖2

L2(Ω) dσ ≤ 1
2
‖u(τ)‖2

L2(Ω), t ≥ τ ≥ s ≥ 0, (12)

1
2
‖v(s)‖2

L2(Ω) + δ
∫ τ

s
‖∇v(σ)‖2

L2(Ω) dσ ≤ 1
2
‖v(τ)‖2

L2(Ω), t ≥ τ ≥ s ≥ 0, (13)

with some δ > 0, where the second term of each exhibits the dissipative effect. See
(A8) in the next section.

Several comments on Assumptions (i)–(iii) above are in order. The well-posedness
in Assumption (i), in other words, the generation of the evolution operator, is never
obvious; however, this is a different issue from what we address in this paper. When
b = η + ω× x and Mu = ω× u with (8), the generation of the evolution operator with (7)
for 0 ≤ s < t ≤ T was successfully proved by Hansel and Rhandi [22] for every T ∈ (0, ∞);
then, it was verified by [1] that constant C = C(τ∗) in (7) can be taken uniformly in (t, s)
with t− s ≤ τ∗, and by [2] that smoothing estimate (10) of ∂tu(t) near the obstacle holds
with α = (1 + 1/q)/2. The latter estimate is closely related to the asymptotic behavior of
pressure (in a bounded domain near the obstacle) and very crucial in [2] on account of the
lack of smoothing action exhibited by analytic semigroups since the evolution operator
is not parabolic. The remarkable smoothing rate α = (1 + 1/q)/2 was already found
by [6,7,23] for the Stokes and Oseen semigroups with rotating effect, and it was a slight
improvement of the rate deduced by Noll ans Saal [24] in another context. Assumption
(ii) on the Lq-Lr estimate (7) for the whole space problem is nontrivial, but it is the starting
point of analysis in this paper. When b = η + ω × x and Mu = ω × u with (8), the
solution in the whole space can be explicitly described in terms of the heat semigroup
in which a change of variable is made, so that Estimates (7) and (11) are in fact available.
Energy Relations (12) and (13) in (iii) are reasonable assumptions that play several roles,
especially for deduction of (7)j=0. When b = η + ω× x and Mu = ω× u, (12) and (13) are
obvious on account of the skew–symmetry of b · ∇u−Mu without any smallness condition.
Concerning case (9) as well, we can easily see (12) and (13), provided that V is small enough
in L∞(0, ∞; Ln,∞(Ω)), see, for instance, [25], where Ln,∞ is the weak-Ln space (a Lorentz
space). Except for Assumption (iii), we do not have useful higher energy estimates, which
play an important role in [4] by Maremonti and Solonnikov for the Stokes semigroup.

As the substitution of analysis of a parametrix of the resolvent in exterior domains for
the autonomous case, the key of our approach is how we make use of energy Relations (12)
and (13) to deduce (7)j=0, see Proposition 1. Here and in what follows, by (7)j=0 we denote
estimate (7) with j = 0. Case r = q (uniform boundedness) for large t − s > 0 is our
main task, yielding the other cases by use of the energy inequality of the differential form.
It is reasonable under Assumption (ii) to regard the solution to (1)–(3) as a perturbation
from (a modification of) Rn–flow by means of a cut-off procedure. The desired uniformly
boundedness of the perturbation is discussed by a bootstrap argument and by duality
argument with the aid of Assumption (iii) on the energy relations, and the use of duality
is why we need to simultaneously study adjoint evolution operator T(t, s)∗ with T(t, s).
Unfortunately, this step does not work when n = 2. If Dirichlet Condition (2) is replaced
by another boundary condition, a core part of this step does not follow, even for n ≥ 3.

With (7)j=0 at hand, we are able to proceed to the decay estimates of ‖∂tu(t)‖W−1,q(Ω3)

and ‖u(t)‖W1,q(Ω3)
near the obstacle that we call the local energy decay, as in several papers

for the autonomous case. Among other papers, the method of local energy decay is traced
back to [3] by Iwashita on the Stokes semigroup in the context of mathematical fluid
dynamics, and the origin would be even back to studies of hyperbolic equations with
dissipation by Shibata. The final step with another cut-off procedure is to derive the decay
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estimate of ‖∇u(t)‖Lq(Rn\B3)
near spatial infinity by the use of Assumption (ii) combined

with the local energy decay obtained in the preceding step. The cut-off remainder consists
of several terms; among them, two terms are delicate: one is ∂tu(t), and the other is
pressure. What we need is both decay for t− s → ∞ and smoothing rate for t− s → 0
of those terms; see (78). The latter of the temporal derivative is the assumption (10) in (i),
and the deduction of (10) was actually one of the main tasks in [2] on case b = η + ω× x
and Mu = ω × u with (8). For more general case, as in [2], we have to look into details
about the construction of a parametrix of the evolution operator to verify (10). If it is
constructed with the use of evolution operators for the whole space problem and for the
interior one near the obstacle by a cut-off technique as in [22], smoothing rate (10) of ∂tu(t)
is determined by the one of pressure for the interior problem.

To sum up, we claim that some decay properties of solutions to the same system in
whole space Rn together with the energy relation imply the desired estimates in exterior
domains provided n ≥ 3, and that we need to find (10) through analysis of pressure to
justify this statement. Let us close the introductory section with a remark on Case (9). With
the results for case V = 0 obtained in [1,2] at hand, it is actually possible to show the
stability or attainability of scale-critical Navier–Stokes flow V ∈ L∞(0, ∞; Ln,∞(Ω)) by an
interpolation technique due to Yamazaki [26] as long as it is small enough; see, for instance,
Takahashi [15] on the attainability of steady flow for the purely rotating case. However,
we have less information about the asymptotic behavior of disturbance. If we intend to
show some decay properties of gradient of the disturbance, we have to know (7)j=1 for
Problem (1)–(3) with (9). If we adapt the approach developed in ([25], Section 4) to case (9)
with the aforementioned V that is sufficiently small, we could verify Assumption (ii), but
only partially.

In the next section, we precisely formulate the problem and provide the main theorem.
Section 3 is devoted to the proof. We close the paper with a conclusion in the final section.

2. Result

Let us fix the notation. Given a domain D ⊂ Rn, q ∈ [1, ∞] and integer k ≥ 0,
the standard Lebesgue and Sobolev spaces are denoted by Lq(D) and by Wk,q(D). We
abbreviate norm ‖ · ‖q,D = ‖ · ‖Lq(D) and even ‖ · ‖q = ‖ · ‖q,Ω, where Ω is the exterior
domain with C1,1-boundary ∂Ω under consideration. We assumed that Rn \Ω ⊂ B1, where
Bρ = Bρ(0) denotes the open ball centered at the origin with radius ρ > 0. We set
Ωρ = Ω ∩ Bρ for ρ ≥ 1. By C∞

0 (D) we denote the class of all C∞ functions with

compact support in D, and by Wk,q
0 (D) the completion of C∞

0 (D) in Wk,q(D). We set

W−1,q(D) = W1,q′
0 (D)∗, where 1/q′ + 1/q = 1 and q ∈ (1, ∞). By 〈·, ·〉D we denote various

duality pairings over domain D. In what follows, we use the same symbols for denoting the
scalar and vector functions if there is no confusion. Let X be a Banach space. Then, L(X)
stands for the Banach space consisting of all bounded linear operators from X into itself.

Let D ∈ {Ω,Rn}, where Ω is the exterior domain under consideration. Class C∞
0,σ(D)

consists of all solenoidal vector fields in C∞
0 (D). Let 1 < q < ∞. We define space Lq

σ(D) by
the completion of C∞

0,σ(D) in Lq(D). For D = Ω, it is characterized as

Lq
σ(Ω) = {u ∈ Lq(Ω); div u = 0, ν · u|∂Ω = 0},

where ν stands for the outer unit normal to ∂Ω. When D = Rn, the boundary condition in
the sense of a normal trace is absent. The space of the Lq-vector fields admits Helmholtz
decomposition

Lq(D) = Lq
σ(D)⊕ {∇p ∈ Lq(D); p ∈ Lq

loc(D)},

see [27–29]; Simader and Sohr [29] established decomposition under condition ∂Ω ∈ C1

when D = Ω. By PD = PD,q : Lq(D) → Lq
σ(D) we denote the Fujita–Kato projection

associated with the decomposition above. We then observe that PD ∈ L(W1,q(D)) as well

as PD ∈ L(Lq(D)). Note the duality relation (PD,q)
∗ = PD,q′ and Lq

σ(D)∗ = Lq′
σ (D), where
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1/q′ + 1/q = 1. We simply write P = PΩ for exterior domain Ω under consideration. We
easily see that PRn = I +R⊗R, whereR = ∇(−∆)−1/2 is the Riesz transform.

Suppose that

• (A1) The coefficients of (1)

(x, t) 7→ b(x, t) ∈ Rn, (x, t) 7→ M(x, t) ∈ Rn×n

are measurable in x ∈ Rn and continuous in t ≥ 0 with the property

‖(b, M)‖ := sup
{
|b(x, t)|
1 + |x| + |M(x, t)|Rn×n ; x ∈ Rn, t ≥ 0

}
< ∞, (14)

where | · | denotes the Rn–norm. For simplicity, b(t) is assumed to be a solenoidal
vector field, that is, div b(t) = 0 in the sense of distributions for each t ≥ 0.

Let 1 < q < ∞. For D ∈ {Ω,Rn} and (b, M) given above, we introduce linear operator
LD,b,M(t) on Lq

σ(Ω) by{
Dq(LD,b,M(t)) = {u ∈W2,q(D) ∩W1,q

0 (D) ∩ Lq
σ(D); b(t) · ∇u ∈ Lq(D)},

LD,b,M(t)u = −PD[∆u + b(t) · ∇u−M(t)u].
(15)

Then initial value Problem (1)–(3) and backward adjoint problem (4)–(6) (with div b = 0)
are formulated, respectively, as

du
dt

+ LΩ,b,M(t)u = 0, t ∈ (s, ∞); u(s) = f , (16)

− dv
ds

+ LΩ,−b,M>(s)v = 0, s ∈ [0, t); v(t) = g. (17)

It is easily seen that

〈LD,b,M(t)u, v〉D = 〈u, LD,−b,M>(t)v〉D (18)

for all u ∈ Dq(LD,b,M(t)) and v ∈ Dq′(LD,−b,M>(t)), where 1/q′ + 1/q = 1. In fact,
we fix ζ ∈ C∞([0, ∞)) such that ζ(ρ) = 1 for ρ ≤ 1 and ζ(ρ) = 0 for ρ ≥ 2, and set
φR(x) = ζ(|x|/R) for R ≥ 1; then, we find∫

D

{
(b · ∇u) · v + u · (b · ∇v)

}
φR dx = −

∫
R<|x|<2R

(u · v)b · ∇φR dx.

By (14) and by u · v ∈ L1(D), passing to the limit as R→ ∞ justifies∫
D
(b · ∇u) · v dx = −

∫
D

u · (b · ∇v) dx (19)

for u ∈ Dq(LD,b,M(t)) and v ∈ Dq′(LD,−b,M>(t)), yielding (18) and, therefore,
LD,−b,M>(t) ⊂ LD,b,M(t)∗, where the adjoint is well-defined since LD,b,M(t) is densely
defined. At this point, we need the maximality in the sense that

• (A2) For each t ≥ 0 there is λ(t) > 0 such that both λ(t) + LD,b,M(t) and
λ(t) + LD,−b,M>(t) are surjective, where D ∈ {Ω,Rn}.
This means the solvability of the associated elliptic problem, which implies that

λ(t) + LD,b,M(t)∗ is injective. Under this condition, (18) leads to duality relation

LD,−b,M>(t) = LD,b,M(t)∗. (20)

Hence, LD,b,M(t) = LD,−b,M>(t)
∗ is a closed operator. In what follows, given (b, M),

we abbreviate LD(t) = LD,b,M(t) and even L(t) = LΩ(t). For case b = η(t) + ω(t)× x
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and Mu = ω(t)× u, Condition (A2) follows from [23] by Shibata along with the Mozzi–
Chasles transform ([30], Chapter VIII) (to reduce the problem to the particular case when
the translational and angular velocities are parallel each other).

As in [2,22], auxiliary spaces

Yq(D) = {u ∈W2,q(D) ∩W1,q
0 (D) ∩ Lq

σ(D); |x|∇u ∈ Lq(D)},
Zq(D) = {u ∈W1,q(D) ∩ Lq

σ(D); |x|∇u ∈ Lq(D)},
(21)

for D ∈ {Ω,Rn} play a role to describe the regularity of solutions, since domain Dq(LD(t))
varies as t goes on. Note that C∞

0,σ(D) ⊂ Yq(D) ⊂ Dq(LD(t)) for every t ≥ 0, and that the
homogeneous Dirichlet condition at ∂Ω is not involved in the space Zq(Ω).

We further make Assumptions (A3)–(A5):

• (A3) Let 1 < q < ∞. Operator family {L(t)}t≥0 generates an evolution operator
{T(t, s)}t≥s≥0 on Lq

σ(Ω) such that T(t, s) is a bounded linear operator from Lq
σ(Ω)

into itself with the semigroup property

T(t, τ)T(τ, s) = T(t, s) (t ≥ τ ≥ s ≥ 0); T(s, s) = I, (22)

in L(Lq
σ(Ω)) and that the map

{t ≥ s ≥ 0} 3 (t, s) 7→ T(t, s) f ∈ Lq
σ(Ω)

is continuous for every f ∈ Lq
σ(Ω). Moreover, we have the following properties:

1. Let n′ < q ≤ r < ∞, where 1/n′ + 1/n = 1. For every f ∈ Zq(Ω) and t ∈ (s, ∞),
we have

T(t, s) f ∈ Yq(Ω) ∩ Zr(Ω) (23)

and
T(·, s) f ∈ C1((s, ∞); Lq

σ(Ω))

with
∂tT(t, s) f + L(t)T(t, s) f = 0, t ∈ (s, ∞), (24)

in Lq
σ(Ω) (condition q > n′ is consistent with Lemma 3);

2. Let 1 < q < ∞. For every f ∈ Yq(Ω), we have

T(t, ·) f ∈ C1([0, t]; Lq
σ(Ω))

with
∂sT(t, s) f = T(t, s)L(s) f , s ∈ [0, t], (25)

in Lq
σ(Ω).

• (A4) Let 1 < q < ∞ and q ≤ r < ∞. Given τ∗ ∈ (0, ∞) and m ∈ (0, ∞), there is a
constant c1 = c1(τ∗, m, q, r, n, Ω) > 0, such that evolution operator T(t, s) satisfies

‖∇jT(t, s) f ‖r ≤ c1(t− s)−(n/q−n/r)/2−j/2‖ f ‖q (26)

for all (t, s) ∈ Λ(τ∗), f ∈ Lq
σ(Ω) and j = 0, 1 whenever ‖(b, M)‖ ≤ m, where

Λ(τ∗) = {(t, s); t > s ≥ 0, t− s ≤ τ∗}. (27)

In addition, for every f ∈ Lq
σ(Ω), we have

T(·, s) f ∈ C1((s, ∞); W−1,q(Ω3))
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and there is a constant α ∈ [1/2, 1) with the following property: Given τ∗ ∈ (0, ∞)
and m ∈ (0, ∞), there is a constant c2 = c2(τ∗, m, q, n, Ω) > 0 such that

‖∂tT(t, s) f ‖W−1,q(Ω3)
≤ c2(t− s)−α‖ f ‖q (28)

for all (t, s) ∈ Λ(τ∗) and f ∈ Lq
σ(Ω) whenever ‖(b, M)‖ ≤ m.

• (A5) Let 1 < q < ∞. Given t > 0, operator family {L(t − τ)∗}τ∈[0,t] (see (20))
generates an evolution operator {T̃(τ, s; t)}0≤s≤τ≤t on Lq

σ(Ω) in the same sense as in
Assumption (A3) (with obvious change).

Assumption (A5) is related to the solution operator to backward adjoint problem (17).
In fact, we set

S(t, s) := T̃(t− s, 0; t), t ≥ s ≥ 0, (29)

then, for every g ∈ Zq(Ω) and s ∈ [0, t), we have

S(t, s)g ∈ Yq(Ω) ∩ Zr(Ω), (30)

where n′ < q ≤ r < ∞, as well as

S(t, ·)g ∈ C1([0, t); Lq
σ(Ω))

with
− ∂sS(t, s)g + L(s)∗S(t, s)g = 0, s ∈ [0, t), (31)

in Lq
σ(Ω). Given f , g ∈ C∞

0,σ(Ω), we compute ∂τ〈T(τ, s) f , S(t, τ)g〉Ω with use
of (24) and (31) to find

〈T(t, s) f , g〉Ω = 〈 f , S(t, s)g〉Ω (32)

where 〈·, ·〉Ω should be understood for the pair of Lq′
σ (Ω) and Lq

σ(Ω) with q ∈ (n′, n) in
this computation; nevertheless, once we have (32), continuity argument justifies (32) for

every q ∈ (1, ∞), f ∈ Lq
σ(Ω) and g ∈ Lq′

σ (Ω) as well. We thus verified duality relation

T(t, s)∗ = S(t, s), S(t, s)∗ = T(t, s) (33)

in L(Lq
σ(Ω)) for t ≥ s ≥ 0, which, together with (22), leads to backward semigroup

property
T(τ, s)∗T(t, τ)∗ = T(t, s)∗ (t ≥ τ ≥ s ≥ 0); T(t, t)∗ = I, (34)

in L(Lq
σ(Ω)). By duality, it follows from (26)j=0 that

‖T(t, s)∗g‖r ≤ c′1(t− s)−(n/q−n/r)/2‖g‖q (35)

for all (t, s) ∈ Λ(τ∗), see (27), and g ∈ Lq
σ(Ω) whenever ‖(b, M)‖ ≤ m, where 1 < q ≤ r < ∞

and c′1 = c1(τ∗, m, r′, q′, n, Ω). If one wishes to claim (43) below for ∇T(t, s)∗ as well,
additional assumptions (26)j=1 and (28) in which T(t, s) is replaced by T(t, s)∗ are needed.

We next make the following assumption on the evolution operators for the whole
space problem.

• (A6) Let 1 < q < ∞. Operator family {LRn(t)}t≥0 generates an evolution operator
{TRn(t, s)}t≥s≥0 on Lq

σ(Rn) in the same sense as in (A3) (with obvious change). Given
t > 0, operator family {LRn(t− τ)∗}τ∈[0,t] (see (20)) generates an evolution operator
{T̃Rn(τ, s; t)}0≤s≤τ≤t on Lq

σ(Rn) in the same sense as in Assumptions (A3) and (A5)
(with obvious change).

In the same manner as for the exterior problem mentioned above, we observe

TRn(t, s)∗ = T̃Rn(t− s, 0; t), t ≥ s ≥ 0.
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We need the following estimates of TRn(t, s)∗ as well as TRn(t, s).

• (A7) Let 1 < q < ∞ and q ≤ r ≤ ∞ (r = ∞ is not needed for case j = 1 below). Given
m ∈ (0, ∞), there is a constant c3 = c3(m, q, r, n) > 0, such that evolution operator
TRn(t, s) satisfies

‖∇jTRn(t, s) f ‖r,Rn ≤ c3(t− s)−(n/q−n/r)/2−j/2‖ f ‖q,Rn (36)

for all t > s ≥ 0, f ∈ Lq
σ(Rn) and j = 0, 1 whenever ‖(b, M)‖ ≤ m. In addition, for

every f ∈ Lq
σ(Rn), we have

TRn(·, s) f ∈ C1((s, ∞); W−1,q(B3))

and, given m ∈ (0, ∞), there is a constant c4 = c4(m, q, n) > 0, such that

‖∂tTRn(t, s) f ‖W−1,q(B3)
≤ c4‖ f ‖q,Rn

{
(t− s)−1/2, 0 < t− s ≤ 1,
(t− s)−n/2q, t− s > 1,

(37)

for all f ∈ Lq
σ(Rn) whenever ‖(b, M)‖ ≤ m. We have the same estimates, (36) and

(37), for adjoint TRn(t, s)∗ as well.

Lastly, we suppose

• (A8) There is a constant δ > 0, such that

〈L(t)u, u〉Ω = 〈u, L(t)∗u〉Ω ≥ δ‖∇u‖2
2 (38)

for all u ∈ D2(L(t)) = D2(L(t)∗) and t ≥ 0.

This, combined with (24) and (31), implies energy relations

d
dt

1
2
‖T(t, s) f ‖2

2 + δ‖∇T(t, s) f ‖2
2 ≤ 0, (39)

− d
ds

1
2
‖T(t, s)∗g‖2

2 + δ‖∇T(t, s)∗g‖2
2 ≤ 0, (40)

and, thereby,

1
2
‖T(t, s) f ‖2

2 + δ
∫ t

τ
‖∇T(σ, s) f ‖2

2 dσ ≤ 1
2
‖T(τ, s) f ‖2

2, t ≥ τ ≥ s ≥ 0, (41)

1
2
‖T(t, s)∗g‖2

2 + δ
∫ τ

s
‖∇T(t, σ)∗g‖2

2 dσ ≤ 1
2
‖T(t, τ)∗g‖2

2, t ≥ τ ≥ s ≥ 0, (42)

as long as f , g ∈ Z2(Ω). On account of (19), condition∣∣∣∣∫Ω
(Mu) · u dx

∣∣∣∣ ≤ c5‖∇u‖2
2

with some c5 ∈ [0, 1) independent of u ∈ W1,2
0 (Ω) is sufficient for (38) with δ = 1− c5.

This is accomplished for case (9) with small V ∈ L∞(0, ∞; Ln,∞(Ω)) by the Lorentz-Hölder
inequality and the Lorentz–Sobolev embedding relation.

We are now in a position to give our main theorem.

Theorem 1. Let n ≥ 3. Suppose (A1)–(A8). Given m ∈ (0, ∞), there exists a constant
C = C(m, q, r, n, Ω) > 0, such that

‖∇jT(t, s) f ‖r ≤ C(t− s)−κ(j)‖ f ‖q (43)
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for all (t, s) with t− s > 1 and f ∈ Lq
σ(Ω) whenever ‖(b, M)‖ ≤ m, see (14), where

κ(j) := min
{

n
2

(
1
q
− 1

r

)
+

j
2

,
n
2q

}
, 1 < q ≤ r < ∞, j = 0, 1 (44)

and r = ∞ is also allowed for j = 0.

Remark 1. When b = 0 and M = O (Stokes semigroup), decay rate (44) is optimal even for case
j = 1; see [4,31].

Remark 2. For case b = η + ω× x and Mu = ω× u with (8) studied in [1,2], the global Hölder
continuity condition is needed to prove Assumptions (A3)–(A5), so that constants c1 and c2 (see
(26) and (28)) involve the Hölder seminorm of (η, ω), which is thereby hidden in (43) through
c1, c2. If we consider (η, ω) of which the Hölder seminorm (and L∞-norm) is bounded from above
by m > 0, constant C in (43) can be taken uniformly with respect to such (η, ω).

Remark 3. It is clearly hopeless to verify (A2)–(A8) for (b, M), which merely satisfies (A1). The
verification of those conditions for (b, M) with more properties such as Hölder continuity (in t ≥ 0)
mentioned in Remark 2 is an important but different issue, and it very much depends on how a
parametrix of evolution operator T(t, s) is constructed. For case b = η + ω× x and Mu = ω× u
with (8), Conditions (A1)–(A8) are met due to [1,2,22].

3. Proof of Theorem 1

We start with a quite elementary but useful lemma on optimal growth rate of the
integral (see (46) below) under a condition on the decay of the square integral.

Lemma 1. Let µ ∈ (0, 1). Suppose that z = z(τ) is a real-valued function in L2
loc((1, ∞)), and

that ∫ 1+2σ

1+σ
z(τ)2 dτ ≤ Kσ−µ (45)

for all σ > 0 with some constant K > 0. Then, we have z ∈ L1
loc([1, ∞)) with

∫ 1+σ

1
|z(τ)| dτ ≤ C

√
Kσ(1−µ)/2 (46)

for all σ > 0 with some constant C = C(µ) > 0.

Proof. From (45), it follows that∫ 1+2σ

1+σ
|z(τ)| dτ ≤

√
Kσ(1−µ)/2

for all σ > 0, which leads to (46) since

∫ 1+σ

1
|z(τ)| dτ =

∞

∑
j=0

∫ 1+σ/2j

1+σ/2j+1
|z(τ)| dτ ≤

√
Kσ(1−µ)/2

∞

∑
j=0

(
2(µ−1)/2)j+1.

The proof is complete.

Our proof of (43) with j = 0 is based on the following lemma with the aid of energy
Relations (39)–(42).

Lemma 2. Suppose (A1)–(A5) and (A8). Let r0 ∈ (2, ∞) and 1/r′0 + 1/r0 = 1.

1. Assume that, given m ∈ (0, ∞),

‖T(t, s) f ‖r0 ≤ C‖ f ‖r0 , t− s > 3, (47)
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for all f ∈ C∞
0,σ(Ω) with some constant C = C(m, n, Ω) > 0 whenever ‖(b, M)‖ ≤ m.

Then, we have (43)j=0 for all t > s ≥ 0 and f ∈ Lq
σ(Ω) provided 2 ≤ q ≤ r ≤ r0 as well as

‖T(t, s)∗g‖r ≤ C(t− s)−(n/q−n/r)/2‖g‖q (48)

for all t > s ≥ 0 and g ∈ Lq
σ(Ω) with some constant C = C(m, q, r, n, Ω) > 0 provided

r′0 ≤ q ≤ r ≤ 2, whenever ‖(b, M)‖ ≤ m.
2. Assume that, given m ∈ (0, ∞),

‖T(t, s)∗g‖r0 ≤ C‖g‖r0 , t− s > 3, (49)

for all g ∈ C∞
0,σ(Ω) with some constant C = C(m, n, Ω) > 0 whenever ‖(b, M)‖ ≤ m.

Then, we have (48) for all t > s ≥ 0 and g ∈ Lq
σ(Ω) provided 2 ≤ q ≤ r ≤ r0 as

well as (43)j=0 for all t > s ≥ 0 and f ∈ Lq
σ(Ω) provided r′0 ≤ q ≤ r ≤ 2, whenever

‖(b, M)‖ ≤ m.

Proof. It suffices to show (48). The other part of the first assertion follows from duality,
and the second assertion is similarly proved. By (26)j=0 with q = r = r0 for t− s ≤ 3 and
by duality together with the energy relation (42) with τ = t, we obtain (48) with r = q for
all q ∈ [r′0, 2], t > s ≥ 0 and g ∈ Lq

σ(Ω). We arbitrarily fix t > 0 and q ∈ [r′0, 2), and set
v(s) = T(t, s)∗g for g ∈ C∞

0,σ(Ω) \ {0}. We then find

‖v(s)‖2 ≤ ‖v(s)‖θ
q‖v(s)‖1−θ

2∗ ≤ C‖g‖θ
q‖∇v(s)‖1−θ

2 (50)

where 1/2 = θ/q + (1− θ)/2∗ and 1/2∗ = 1/2− 1/n. As in ([4], Section 5), we only have
to solve differential inequality

d
ds
‖v(s)‖2

2 ≥
C‖v(s)‖2/(1−θ)

2

‖g‖2θ/(1−θ)
q

(0 ≤ s < t)

that follows from (50) combined with energy Relation (40) to furnish

‖v(s)‖2 ≤ C(t− s)−(n/q−n/2)/2‖g‖q

for all t > s ≥ 0. This, together with the uniform boundedness in Lq
σ(Ω) implies (48) with

r′0 ≤ q ≤ r ≤ 2.

The following proposition provides us with (43)j=0 for all t > s ≥ 0 except the case
r = ∞. Note that κ(0) = (n/q− n/r)/2.

Proposition 1. Suppose (A1)–(A8). The assertion of Theorem 1 is true when j = 0 and r < ∞.

Proof. Given f ∈ C∞
0,σ(Ω), we set u(t) = T(t, s) f and denote by p(t) the pressure asso-

ciated with u(t). Let us take TRn(t, s) f with TRn(t, s) being the evolution operator in the
whole space Rn given by (A6) and single out associated pressure pRn (t), such that∫

B3

pRn (x, t) dx = 0. (51)

We regard (u, p) as a perturbation from (a modification of) the Rn-flow, to be precise,

u(t) = ũ(t) + v(t), p(t) = p̃(t) + pv(t)

where

ũ(t) := (1− φ)TRn(t, s) f +B[(TRn(t, s) f ) · ∇φ], p̃(t) = (1− φ)pRn (t), (52)
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and φ ∈ C∞
0 (B3) is a fixed cut-off function satisfying φ = 1 on B2. Here, B is called

the Bogovskii operator [30,32–34] in the domain G := B3 \ B1 that provides a particular
solution (among many solutions) of the boundary value problem for the equation of
continuity subject to homogeneous Dirichlet boundary condition, and enjoys optimal
regularity estimates (1 < q < ∞, k = 0, 1, 2, · · · )

B : Wk,q
0 (G)→Wk+1,q

0 (G)n, ‖∇k+1Bg‖q,G ≤ C‖∇kg‖q,G

B : W1,q/(q−1)(G)∗ → Lq(G)n, ‖Bg‖q,G ≤ C‖g‖W1,q/(q−1)(G)∗

(53)

along with

div (Bg) = g if 〈g, 1〉G =
∫

G
g(x) dx = 0. (54)

Let 2 < r < ∞, and let us show (47) (with r0 = r). Since we have the desired estimate
for ũ(t) above by (36), together with (53), our task is to find uniform boundedness for v(t).
In what follows, all constants can be taken uniformly in (b, M) with ‖(b, M)‖ ≤ m, see
(14). By (A3) and (A6), we deduce from f ∈ C∞

0,σ(Ω) that v ∈ C1((s, ∞); Lr
σ(Ω)) along with

v(t) ∈ Yr(Ω) since r > 2 > n′. One can write the initial boundary value problem that
(v, pv) obeys, and by (25), it is then converted into

v(t) = T(t, s) f̃ +
∫ t

s
T(t, τ)PF(τ) dτ (55)

in Lr
σ(Ω), where f̃ = φ f −B[ f · ∇φ] and

F(x, t) = −2∇φ · ∇TRn(t, s) f − (∆φ + b · ∇φ)TRn(t, s) f

−B[(∂tTRn(t, s) f ) · ∇φ] + ∆B[(TRn(t, s) f ) · ∇φ]

+ b · ∇B[(TRn(t, s) f ) · ∇φ]−MB[(TRn(t, s) f ) · ∇φ]

+ (∇φ)pRn (t).

(56)

We note that the pressure pRn (t) with (51) is trivial for the case (9) with V = 0 [1,2],
however, this is not the case here. Therefore, we need well-known estimate

‖w− w‖r,B3 ≤ C‖∇w‖W−1,r(B3)
, w :=

1
|B3|

∫
B3

w(x) dx, (57)

for all w ∈ Lr(B3), which follows from (53) (for B′), together with

|〈w− w, ϕ〉B3 | = |〈w, ϕ− ϕ〉B3 | = |〈w, div
(
B′(ϕ− ϕ)

)
〉B3 |

≤ C‖∇w‖W−1,r(B3)
‖B′(ϕ− ϕ)‖

W1,r/(r−1)
0 (B3)

for every ϕ ∈ Lr/(r−1)(B3), where 1 < r < ∞ and B′ denotes the Bogovskii operator in
domain B3. By (51), (53), and (57) together with Equation (1), we find

‖B[(∂tTRn(t, s) f ) · ∇φ]‖r,G + ‖(∇φ)pRn (t)‖r,G

≤ C‖(∂tTRn(t, s) f ) · ∇φ‖W1,r/(r−1)(G)∗ + C‖pRn (t)‖r,B3

≤ C‖∂tTRn(t, s) f ‖W−1,r(B3)
+ C‖∇pRn (t)‖W−1,r(B3)

≤ C‖∂tTRn(t, s) f ‖W−1,r(B3)
+ C‖∇TRn(t, s) f ‖r,B3 + C‖TRn(t, s) f ‖r,B3 ,

while the other terms of F(t) are harmless. Estimates (36) and (37) thus imply that

‖F(t)‖r ≤ C(t− s)−1/2(1 + t− s)−n/2r+1/2‖ f ‖r (58)
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for all t > s ≥ 0 (and 1 < r < ∞). Since the support of f̃ is compact in Ω, it follows
from (26), along with energy relation (41) that

‖T(t, s) f̃ ‖r ≤ C‖T(t− 1, s) f̃ ‖2 ≤ C‖ f̃ ‖2 ≤ C‖ f ‖r. (59)

To estimate the Duhamel term, it is convenient to adopt the duality argument. Let
ψ ∈ C∞

0,σ(Ω). It is easy to see from (35), (42) and (58) together with backward semigroup
property (34) that∣∣∣∣(∫ s+1

s
+
∫ t

t−1

)
〈F(τ), T(t, τ)∗ψ〉 dτ

∣∣∣∣
≤
∫ s+1

s
‖F(τ)‖2,Ω3‖T(t, τ)∗ψ‖2,Ω3 dτ +

∫ t

t−1
‖F(τ)‖r‖T(t, τ)∗ψ‖r′ dτ

≤ C
∫ s+1

s
‖F(τ)‖r dτ ‖T(t, t− 1)∗ψ‖2 + C(t− s− 1)−n/2r‖ f ‖r‖ψ‖r′

≤ C‖ f ‖r‖ψ‖r′

(60)

for t− s > 2 and every r ∈ (2, ∞), where r′ = r/(r− 1). Let us discuss term

J :=
∫ t−1

s+1
〈F(τ), T(t, τ)∗ψ〉 dτ.

By (30) and (33) we know T(t, τ)∗ψ ∈ Yq(Ω) for all q ∈ (n′, ∞) and τ ∈ [0, t), so that(
T(t, τ)∗ψ

)∣∣
∂Ω = 0. We thus have Poincaré inequality

‖T(t, τ)∗ψ‖2,Ω3 ≤ C‖∇T(t, τ)∗ψ‖2,Ω3 .

From this along with (35), (42) and (58) it follows that

|J| ≤ C
(∫ t−1

s+1
‖F(τ)‖2

r dτ

)1/2(∫ t−1

s+1
‖∇T(t, τ)∗ψ‖2

2 dτ

)1/2

≤ C
(∫ t−1

s+1
(τ − s)−n/r dτ

)1/2

‖ f ‖r‖T(t, t− 1)∗ψ‖2

≤ C‖ f ‖r‖ψ‖r′

(61)

provided r ∈ (2, n), which, together with (59) and (60), implies (47) for such r. Hence, we
obtain (48) for n′ < q ≤ r ≤ 2.

With this at hand, we proceed to the next step in which r > n is assumed. This time,
we need to split above integral J into

|J| ≤ C‖ f ‖r

(∫ (s+t)/2

s+1
+
∫ t−1

(s+t)/2

)
(τ − s)−n/2r‖∇T(t, τ)∗ψ‖2 dτ. (62)

Given r such that {
3 < r < 6, if n = 3,
n < r < ∞, if n ≥ 4,

(63)

we set µ := 1− n
r ∈ (0, 1) and define exponent q by 1

q −
1
2 = µ

n . Then, we have q ∈ (n′, 2).
In view of Assumption (A5), (29), (31) and (33), let us define w(τ) for τ ∈ [0, t] by

w(t− τ) = T(t, τ)∗ψ, τ ∈ [0, t],

that satisfies
dw
dτ

+ L(t− τ)∗w = 0, τ ∈ (0, t]; w(0) = ψ.
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Then, by virtue of energy Relation (42) along with (35) and by the decay estimate
obtained in the previous step, we find

∫ t−s−1

(t−s)/2
‖∇w(τ)‖2

2 dτ =
∫ (s+t)/2

s+1
‖∇T(t, τ)∗ψ‖2

2 dτ

≤ C‖T(t, (s + t)/2)∗ψ‖2
2

≤ C(t− s− 2)−µ‖T(t, t− 1)∗ψ‖2
q

≤ C‖ψ‖2
r′ (t− s− 2)−µ

(64)

for t− s > 2. As for the former integral of (62), we use (64) to furnish

∫ (s+t)/2

s+1
≤ C(t− s)1/2−n/2r

(∫ (s+t)/2

s+1
‖∇T(t, τ)∗ψ‖2

2 dτ

)1/2

≤ C‖ψ‖r′

for t − s > 3. The latter integral of (62) must be comparable with that. In fact, due to
Lemma 1 with σ = (t− s− 2)/2, it follows from (64) that∫ t−1

(s+t)/2
≤ C(t− s)−n/2r

∫ t−1

(s+t)/2
‖∇T(t, τ)∗ψ‖2 dτ

= C(t− s)−n/2r
∫ (t−s)/2

1
‖∇w(τ)‖2 dτ

≤ C‖ψ‖r′

for t − s > 3. In this way we accomplish (47) for all r0 ∈ (n, ∞) when n ≥ 4, while
we still need to repeat the procedure once more when n = 3. This procedure in 3D is
indeed possible for every r < ∞ by the same manner as before with the aid of (48) for
6/5 < q ≤ r ≤ 2. We completed the proof of (43)j=0 for all t > s ≥ 0 and 2 ≤ q ≤ r < ∞.

Uniform boundedness (49) for the adjoint is similarly proven by use of (26), (A7)
for TRn(t, s)∗ and (41). Here, the Duhamel formula can be justified merely in weak form
by (18) and (24), but it is enough for a duality argument. We thus employ Lemma 2 to
obtain (43)j=0 for all t > s ≥ 0 and 1 < q ≤ r ≤ 2. Remaining case q < 2 < r is easily
filled on account of semigroup property (22) to conclude (43)j=0 for all t > s ≥ 0 and
1 < q ≤ r < ∞.

The proof of this proposition would be a novelty among other arguments in [1,2].
However, the first step of the proof above does not work well when n = 2; in fact, (61)
cannot be bounded for r > 2.

For the proof of (43)j=1, it suffices to show

‖∇T(t, s) f ‖r ≤ C(t− s)−min{1/2,n/2r}‖ f ‖r (65)

for all (t, s) with t− s > 1, r ∈ (1, ∞) and f ∈ Lr
σ(Ω) since we combine (65) with (43)j=0

to obtain the desired estimates. As in several papers for the autonomous case mentioned
in Section 1, it is standard to split (65) into ‖∇T(t, s) f ‖r,Ω3 and ‖∇T(t, s) f ‖r,Rn\B3

. The
former is given by Proposition 2 below, for which the following lemma is needed.

Lemma 3. Let n′ < q < ∞, where 1/n′ + 1/n = 1.

1. There is a constant C = C(q, n, Ω) > 0, such that

‖|x|∇Pg‖q ≤ C
(
‖|x|∇g‖q + ‖g‖W1,q(Ω)

)
(66)

for all g ∈W1,q(Ω)n with |x|∇g ∈ Lq(Ω)n×n.
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2. Let g ∈W1,q(Ω)n satisfy |x|∇g ∈ Lq(Ω)n×n. Then, we have

T(t, s)Pg ∈ Yq(Ω) ∩ Zr(Ω)

for all r ∈ (q, ∞) and t ∈ (s, ∞).

Proof. The second assertion follows from (23) because (66) implies Pg ∈ Zq(Ω). Let us
consider Neumann problem

−∆w = div g in Ω,
∂w
∂ν

∣∣∣
∂Ω

= −ν · g|∂Ω.

It then suffices to show

‖|x|∇2w‖q ≤ C
(
‖|x|(div g)‖q + ‖g‖W1,q(Ω)

)
, (67)

which implies (66) since Pg = g +∇w. We take the same cut-off function φ ∈ C∞
0 (B3) as in

the proof of Proposition 1, and choose a solution w satisfying
∫

Ω3
w dx = 0, so that

‖w‖q,Ω3 ≤ C‖∇w‖q,Ω3 ≤ C‖∇w‖q ≤ C‖g‖q (68)

where the last inequality is due to [28,29]. Then, φw obeys

−∆(φw) = φ(div g)− 2∇φ · ∇w− (∆φ)w in Ω3, ν · ∇(φw)|∂Ω3 = −ν · (φg)|∂Ω3

which leads to
‖∇2(φw)‖q,Ω3 ≤ C‖g‖W1,q(Ω3)

+ C‖w‖W1,q(Ω3)
, (69)

where ν denotes the outer unit normal to ∂Ω3. On the other hand, (1− φ)w obeys

−∆{(1− φ)w} = (1− φ)(div g) + 2∇φ · ∇w + (∆φ)w =: h in Rn.

For Riesz transformR, we know

‖|x|Rh‖q,Rn ≤ C‖|x|h‖q,Rn

from Muckenhoupt theory for singular integrals, as long as n′ < q < ∞; in fact, for such q,
weight |x|q belongs to Muckenhoupt class Aq(Rn); see Farwig and Sohr ([35], Section 2),
and Torchinsky ([36], Chapter IX) for details. We thus obtain

‖|x|∇2{(1− φ)w}‖q,Rn = ‖|x|(R⊗R)h‖q,Rn ≤ C‖|x|h‖q,Rn

≤ C‖|x|(div g)‖q + C‖w‖W1,q(Ω3)

(70)

for n′ < q < ∞. We collect (68)–(70) to conclude (67).

Proposition 2. Suppose (A1)–(A8). Let 1 < q < ∞. Given m ∈ (0, ∞), there is a constant
C = C(m, q, n, Ω) > 0 such that

‖T(t, s) f ‖W1,q(Ω3)
≤ C(t− s)−n/2q‖ f ‖q (71)

‖T(t, s) f ‖∞,Ω3 ≤ C(t− s)−n/2q‖ f ‖q (72)

‖∂tT(t, s) f ‖W−1,q(Ω3)
≤ C(t− s)−n/2q‖ f ‖q (73)

for all (t, s) with t− s > 1 and f ∈ Lq
σ(Ω) whenever ‖(b, M)‖ ≤ m.
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Proof. Given q ∈ (1, ∞), let us take ε > 0 to be so small that

ε < min
{

n
2
− n

2q
,

n
2
− 1
}

,

and then choose pair (p0, q0), such that (n/p0 − n/q0)/2 = n/2 − ε as well as
1 < p0 < q < q0 < ∞. If, in particular, f ∈ Lq(Ω)n fulfils f (x) = 0 a.e. Rn \ B3 (but
does not necessarily satisfy the solenoidal condition), it follows from (26)j=1 and (43)j=0
that

‖T(t, s)P f ‖W1,q0 (Ω) ≤ C‖T(t− 1, s)P f ‖q0 ≤ C(t− s− 1)−n/2+ε‖ f ‖p0

for t− s > 2, which implies

‖T(t, s)P f ‖W1,q(Ω3)
≤ C(t− s)−1/2(1 + t− s)−n/2+1/2+ε‖ f ‖q (74)

for all t > s ≥ 0.
For the proof of (71), it suffices to show it for u(t) = T(t, s) f with f ∈ C∞

0,σ(Ω).
For such f , function ũ(t) given by (52) satisfies (71) because of (36). Let us consider
v(t) = u(t)− ũ(t) obeying (55). Since both f̃ and F(t) vanish outside Ω3, one can apply (74)
to those vector fields. Then, we immediately see that T(t, s) f̃ satisfies the desired estimate.
Combining (58) with the above observation, we also find

∫ t

s
‖T(t, τ)PF(τ)‖W1,q(Ω3)

dτ ≤ C‖ f ‖q

(∫ (s+t)/2

s
+
∫ t

(s+t)/2

)
β(τ) dτ

with

β(τ) = (t− τ)−1/2(1 + t− τ)−n/2+1/2+ε(τ − s)−1/2(1 + τ − s)−n/2q+1/2,

for τ ∈ (s, t), which concludes (71).
By the Sobolev embedding relation, (72) follows directly from (71) when q > n. This,

together with (43)j=0, implies (72) for other case q ≤ n, too.
We next show (73) for case q > n′. From (28), along with (24), it follows in this case

that
‖L(t)T(t, s) f ‖W−1,q(Ω3)

≤ c2(t− s)−α‖ f ‖q (75)

for all (t, s) ∈ Λ(τ∗) and f ∈ Zq(Ω). Let us take ε and (p0, q0) as above. If g ∈ W1,q(Ω)n

fulfills g(x) = 0 a.e. Rn \ B3 (so that Pg ∈ Zq(Ω)), then we see that T(t− 1, s)Pg ∈ Zq0(Ω)
by Lemma 3, which, together with (43)j=0 and (75), leads to

‖∂tT(t, s)Pg‖W−1,q0 (Ω3)
= ‖L(t)T(t, t− 1)T(t− 1, s)Pg‖W−1,q0 (Ω3)

≤ C‖T(t− 1, s)Pg‖q0

≤ C(t− s− 1)−n/2+ε‖g‖p0

for t− s > 2. This, combined with (28), implies that

‖∂tT(t, s)Pg‖W−1,q(Ω3)
≤ C(t− s)−α(1 + t− s)−n/2+α+ε‖g‖q (76)

for all t > s ≥ 0. Let f ∈ C∞
0,σ(Ω); then, it follows from (37) and (53) that the temporal

derivative of function ũ(t) given by (52) enjoys (73). Consider ∂tv(t) = ∂tu(t) − ∂tũ(t)
with u(t) = T(t, s) f , which obeys

∂tv(t) = ∂tT(t, s) f̃ + PF(t) +
∫ t

s
∂tT(t, τ)PF(τ) dτ
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in W−1,q(Ω3) by the latter part of (A4). We know (58) for second term PF(t), whereas (76)
can be applied to g = f̃ and g = F(τ) since F(τ) ∈W1,q(Ω)n follows from (A6)–(A7), (51)
and (53) in view of (56). We combine (76) with (58) to furnish∫ t

s
‖∂tT(t, τ)PF(τ)‖W−1,q(Ω3)

dτ ≤ C‖ f ‖q

(∫ (s+t)/2

s
+
∫ t

(s+t)/2

)
β̃(τ) dτ

with
β̃(τ) = (t− τ)−α(1 + t− τ)−n/2+α+ε(τ − s)−1/2(1 + τ − s)−n/2q+1/2

for τ ∈ (s, t), which yields (73) for f ∈ C∞
0,σ(Ω); therefore, for f ∈ Lq

σ(Ω) provided
q ∈ (n′, ∞). If, in particular, f ∈ Zq(Ω) with q ∈ (n′, ∞), one can rewrite (73) as

‖L(t)T(t, s) f ‖W−1,q(Ω3)
≤ C(t− s)−n/2q‖ f ‖q (77)

for t− s > 1. Other case q ∈ (1, n′] is discussed in the following way: Let f ∈ C∞
0,σ(Ω) and

fix r ∈ (n′, ∞), then we have T((t + s)/2, s) f ∈ Yr(Ω) ⊂ Zr(Ω) by (23). We thus utilize
(77) with such r and (43)j=0 to find

‖∂tT(t, s) f ‖W−1,q(Ω3)
≤ C‖L(t)T(t, s) f ‖W−1,r(Ω3)

≤ C(t− s)−n/2r‖T((t + s)/2, s) f ‖r

≤ C(t− s)−n/2q‖ f ‖q

for t− s > 2. The proof is complete.

Corollary 1. Suppose (A1)–(A8). Let 1 < q < ∞. Set u(t) = T(t, s) f with f ∈ Lq
σ(Ω) and

single out pressure p(t) associated with u(t) subject to
∫

Ω3
p dx = 0. Let φ ∈ C∞

0 (B3) be the cut-
off function as in the proof of Proposition 1, and B the Bogovskii operator in domain G = B3 \ B1.
Then, for each m ∈ (0, ∞), there is a constant C = C(m, q, n, Ω) > 0, such that

‖p(t)‖q,Ω3 + ‖B[∂tu(t) · ∇φ]‖q,G ≤ C‖ f ‖q

{
(t− s)−α, 0 < t− s ≤ 1,
(t− s)−n/2q, t− s > 1,

(78)

for all f ∈ Lq
σ(Ω), whenever ‖(b, M)‖ ≤ m.

Proof. By (1) together with (57) in which B3 is replaced by Ω3 and by (53) we find

‖p(t)‖q,Ω3 ≤ C‖∇p(t)‖W−1,q(Ω3)
≤ C‖∂tu(t)‖W−1,q(Ω3)

+ C‖u(t)‖W1,q(Ω3)

and
‖B[∂tu(t) · ∇φ]‖q,G ≤ C‖∂tu(t) · ∇φ‖W1,q/(q−1)(G)∗ ≤ C‖∂tu(t)‖W−1,q(Ω3)

.

Hence, we collect (26), (28), (71) and (73) to conclude (78).

Let us complete the proof of Theorem 1 by showing estimates near spatial infinity.

Proof of Theorem 1. Let 1 < q < ∞. We show

‖∇T(t, s) f ‖q,Rn\B3
≤ C(t− s)−min{1/2,n/2q}‖ f ‖q (79)

‖T(t, s) f ‖∞,Rn\B3
≤ C(t− s)−n/2q‖ f ‖q (80)

for all (t, s) with t− s > 1 and f ∈ Lq
σ(Ω), which, combined with (71) and (72), conclude (65)

and (43)j=0 with r = ∞, where q ∈ (n/2, ∞) has to be assumed for (80); however, the
other case, q ∈ (1, n/2], is easily discussed at the very end. Given f ∈ C∞

0,σ(Ω), we set
u(t) = T(t, s) f . Let us take cut-off function φ ∈ C∞

0 (B3) and Bogovskii operator B, both



Mathematics 2021, 9, 841 17 of 19

of which are the same as in the proof of Proposition 1. By p(t), we denote the pressure
associated with u(t), such that

∫
Ω3

p dx = 0, and consider

v(t) := (1− φ)u(t) +B[u(t) · ∇φ], pv(t) := (1− φ)p(t) (81)

which obeys the following equation in terms of evolution operator TRn(t, s):

v(t) = TRn(t, s) f̃ +
∫ t

s
TRn(t, τ)PRn H(τ) dτ, (82)

where f̃ = (1− φ) f +B[ f · ∇φ] and

H(x, t) = 2∇φ · ∇u(t) + (∆φ + b · ∇φ)u(t)− ∆B[u(t) · ∇φ]

− b · ∇B[u(t) · ∇φ] + MB[u(t) · ∇φ]

+B[∂tu(t) · ∇φ]− (∇φ)p(t).

(83)

Since H(t) vanishes outside B3, one can employ (26), (71), and (78) with (53) to obtain

‖H(t)‖r,Rn ≤ C(t− s)−α(1 + t− s)−n/2q+α‖ f ‖q (84)

for all t > s ≥ 0 and r ∈ (1, q]. In view of v(t) = u(t) in Rn \ B3 (see (81)), let us consider
‖∇v(t)‖q,Rn and ‖v(t)‖∞,Rn by using (82). We immediately observe from (36) that

‖∇TRn(t, s) f̃ ‖q,Rn ≤ C(t− s)−1/2‖ f ‖q, ‖TRn(t, s) f̃ ‖∞,Rn ≤ C(t− s)−n/2q‖ f ‖q

for t > s ≥ 0, whereas (36) and (84) imply that

∫ t

s
‖∇TRn(t, τ)PRn H(τ)‖q,Rn dτ ≤ C‖ f ‖q

(∫ (s+t)/2

s
+
∫ t

(s+t)/2

)
γ(τ) dτ,

∫ t

s
‖TRn(t, τ)PRn H(τ)‖∞,Rn dτ ≤ C‖ f ‖q

(∫ (s+t)/2

s
+
∫ t

(s+t)/2

)
γ̃(τ) dτ,

where

γ(τ) = (t− τ)−1/2(1 + t− τ)−(n/r−n/q)/2(τ − s)−α(1 + τ − s)−n/2q+α,

γ̃(τ) = (t− τ)−n/2q(1 + t− τ)−(n/r−n/q)/2(τ − s)−α(1 + τ − s)−n/2q+α,

for τ ∈ (s, t). Hence, a suitable choice of exponent r ∈ (1, q] (depending on q) leads
us to (79) for q ∈ (1, ∞), which concludes (43)j=1, and (80) for q ∈ (n/2, ∞). We thus
find (43)j=0 with r = ∞ for such q, which, together with (43)j=0 (r < ∞), provides the
desired L∞-estimate for every q ∈ (1, ∞). The proof of Theorem 1 is complete.

4. Conclusions

The stability or attainability of physically relevant basic (Navier–Stokes) flow V is a
significant issue in mathematical fluid dynamics. Estimate (7) for the associated linearized
flow describes linearized stability with a definite decay rate of disturbance, and it is
always a crucial step toward nonlinear stability, where nonlinearity is regarded as a small
perturbation as long as the initial disturbance is small enough. The exterior problem is even
more interesting since the rigid motion (translation or rotation) of the obstacle is involved
in stability analysis. Spectral analysis of the linearized operator through resolvent problem
is quite useful to deduce (7) when basic flow V is steady. In this paper, we considered the
situation where both the motion of the obstacle and basic flow V were time-dependent
(see (9) as a typical example), for which stability analysis is much less developed because
spectral analysis does not work well. The novelty is to provide the essence of the new
approach proposed by the present author [1,2] to show linearized stability (7) even for
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nonautonomous systems in exterior domains under reasonable assumptions on regularity
of the evolution operator, including smoothing estimate (10) of the temporal derivative,
linearized stability for the whole space problem, and energy Relations (12) and (13) with
dissipation. Theorem 1, together with standard analysis of the nonlinear problem, tells
us roughly that linearized stability for the whole space problem and the energy structure
lead to nonlinear stability in exterior domains. Emphasis is on how we utilize the energy
relation to find this conclusion. In addition to example (9) with V = 0 discussed in [1,2],
we could apply Theorem 1 to Case (9), with V decaying faster than scale-critical rate
O(|x|−1) at spatial infinity. This is indeed the case when the better spatial decay structure
of V with wake behind the translating obstacle is available. As mentioned at the end of
the introduction, we still have to await further analysis to apply our theory to the more
important case of (9) with V, which decays at the scale-critical rate uniformly in t. This is
left as future work.
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