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Abstract: With the evolution of data mining systems, the acquisition of timely insights from un-
structured text is an organizational demand which is gradually increasing. The existing opinion
mining systems have a variety of properties, such as the ranking of products’ features and feature
level visualizations; however, organizations require decision-making based upon customer feedback.
Therefore, an opinion mining system is proposed in this work that ranks reviews and features based
on novel ranking schemes with innovative opinion-strength-based feature-level visualization, which
are tightly coupled to empower users to spot imperative product features and their ranking from
enormous reviews. Enhancements are made at different phases of the opinion mining pipeline,
such as innovative ways to evaluate review quality, rank product features and visualize opinion-
strength-based feature-level summary. The target user groups of the proposed system are business
analysts and customers who want to explore customer comments to gauge business strategies and
purchase decisions. Finally, the proposed system is evaluated on a real dataset, and a usability study
is conducted for the proposed visualization. The results demonstrate that the incorporation of review
and feature ranking can improve the decision-making process.

Keywords: opinion mining; opinion visualization; sentiment analysis; feature ranking; review
quality evaluation

1. Introduction

Improvements in information and communication technologies break down geograph-
ical boundaries, allowing for faster connection and communication worldwide [1]. Further,
the proliferation of social networks due to the ubiquity of Web 2.0 revolutionizes the way
people present their opinions by providing social interactions [2,3]. As a result, consumers
from all over the world are sharing their emotions, opinions, evaluations and judgments
to a wide ranging audience by connecting themselves to online platforms such as blogs,
newsgroups, discussion boards, and social networking sites [4–6]. Consequently, the Web
consists of huge volumes of publicly available opinion data about different objects, for
instance, individuals, government, products, events, organizations, services, education,
news [7,8]. The volume of opinion data about different entities (individuals, products,
events, organizations, services) is growing rapidly on these platforms due to the accessi-
bility, scalability, and enhanced user participation of Web 2.0. The fast-growing opinion
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data are unstructured, freely available, and decision-oriented to fulfil the need of diverse
stakeholders such as corporates and consumers [9–11]. Though there are various plat-
forms of electronic word of mouth (e-WOM), the most highly focused are online reviews
platforms. Enterprises are now focusing on customer online reviews to support their
decision-making process, such as risk management, sale prediction, market intelligence,
new product design, trend prediction, advertisement placement, threats from competitors
and benchmarking [12–16]. From the customer point of view, e-WOM considerably impacts
customers’ product choice and adoption, purchase intentions, and use of products [17,18].
Moreover, social networks have increased the sophistication of customers, and so cus-
tomers compare competing products before buying a product [19,20]. As a result, positive
e-WOM improves the trust, satisfaction and loyalty of customers [2]. In contrast, negative
e-WOM decrease customers’ patronage and loyalty [3].

The volume of e-WOM has been growing at a remarkable pace as the universality of
the Web offers easy users’ participation through different online platforms [21]. These plat-
forms provide valuable insights into different features of a target product, for instance, a
digital camera. Consumers consult these platforms to compare features of different cameras
(picture quality, battery life, zoom, flash) from competing brands before making a pur-
chase [22]. The features of a product play a crucial role in the purchase decision. However,
online reviews do not highlight the critical features of a product to facilitate consumers in
their decision-making process. Moreover, users need to gravitate through a host of reviews
to learn about features that need to be considered before making a purchase due to the
varying quality, enormous availability, distributed nature, voluminosity, heterogeneity, and
multi-dimensionality of online reviews. As a result, it is a time-consuming and tedious task
to analyze and summarize online reviews to get information about competing features be-
tween products of different brands [23,24]. Further, the nature of the online reviews poses
many challenges to the text mining community, such as filtering low-quality reviews from
high-quality reviews (information overloading problem), ranking of products’ prominent
features and integrated visual views of consumers’ opinions (consumers-to-consumers
communication problem) [25–27]. The information overload problem has been resolved in
literature by a variety of review ranking schemes. To overcome the consumer-consumers
communication problem, opinion mining systems have been available in the literature
aiming at providing automatic analysis and summarization of online reviews to pinpoint
decision-oriented features of a target product [28].

Due to the characteristics of online reviews, it becomes difficult to identify high-quality
reviews which cover a diverse set of opinions. The quality of a review is described by
its embedded polarity or opinions [29] or how helpful a review is [30]. For example, the
Amazon online reputation system in Ref. [31] asks users to vote for customer reviews they
found “helpful” in the form of helpfulness votes and star rating. The helpfulness votes and
5-star rating represent the quality of the product that signifies customers’ endorsement and
impact other customers’ shopping intentions [32–34]. Currently, high-quality reviews are
identified when users explicitly filter reviews based on the star rating and/or their level of
helpfulness [32,35]. Different review quality evaluation methods have been proposed in
the literature that utilize combinations of metadata, textual, and social features [36–38]. In
contrast to classical rating systems [39] in which users rate a product, community-driven
review systems allow the customers to rate prominent features of a product. The customers
rating may vary based on the different features of the product. Consequently, it emphasizes
the need to develop mechanisms to identify prominent features of a product in Ref. [40]
about which the customers are concerned and rank products based on identified features
by excavating a large number of customer reviews. Commonly, feature frequency, semantic
polarities and ratings are used for feature ranking to enhance consumers to consumer com-
munication [41–46]. However, these methods overlook important factors that can improve
feature ranking by focusing on (i) opinion strength, such as how positive or negative an
opinion word is, (ii) quality of reviews, and (iii) consideration of user preferences. Further,
the visualization of the opinion summary has the same importance as the assessment
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of review quality and feature ranking. A feature-based opinion summary with ample
visualization may be more valuable than a summary showing only an average rating for
features of a target product [41]. However, existing review quality evaluation methods are
not integrated with feature ranking, opinion visualizations, and user preferences and they
overlook a few parameters, such as visitor count and title information. Therefore, there is a
need for an integrated system that ranks, analyzes, summarizes and visualizes these online
reviews to fulfil the requirements of consumers and enterprises.

In the light of above discussion, the motivation of the work is to (i) remove low-quality
reviews from feature ranking as suggested by Ref. [47], (ii) enhancing the feature ranking
by incorporating missing parameters, and (iii) improving existing opinion visualization
to provide opinion-strength-based summary. Therefore, this study aims to propose and
develop a reputation system to provides users a multi-level analysis and summarization
of consumer opinions. Specifically, the objectives of this paper are to propose (i) a review
ranking method incorporating vital parameters and user preferences, (ii) a feature ranking
method based on indispensable parameters, and (iii) opinion strength-based visualization.

The main contributions include:

(a) Scheme for the selection of high-quality reviews by incorporating users’ preferences.
(b) Feature ranking scheme based on multiple parameters for a deeper understanding of

consumers’ opinions.
(c) Opinion-strength-based visualization based on high-quality reviews to provide high-

quality information for decision-making. The proposed visualization provides a
multi-level detail of consumers’ opinions (ranging from −3 to +3) on critical products
features at a glance, which allows entrepreneurs and consumers to highlight decisive
product features having a key impact on the sale, product choice and adoption.

(d) Reputation system is evaluated on a real dataset
(e) Usability study for the evaluation of the proposed visualization

The rest of the paper is organized as follows. Section 2 presents existing work on
review quality evaluation, feature ranking and opinion visualizations. Section 3 presents
the proposed system. Section 4 presents the results and discussion, and finally, Section 5
concludes the paper.

2. Related Work

Existing studies on review quality evaluation, feature ranking, and opinion visualiza-
tions are presented in this section.

2.1. Review Quality Evaluation and Review Ranking

It is difficult for customers and enterprises to identify high-quality reviews projecting
the true quality of a target product due to the massive volume of reviews. Existing studies
of review quality evaluation have focused on a number of features such as helpfulness
votes, rating, review length and term frequency [20,48,49]. In Ref. [30], five feature classes:
Lexical (uni-gram and bi-gram), Structural (i.e. length, number of sentences), Syntactic
(nouns, adjectives, verbs), Meta-data (rating) and Semantic (features and opinion words) of
a review were explored to predict the quality of a review. Review length, user ratings, and
term frequency were found to be significant in review quality prediction. Similarly, the
experimental results performed by Ref. [29] highlighted the shallow syntactic features such
as verbs, nouns, and interjections as the strongest predictor of review quality prediction [29].
The authors in Ref. [50] utilized three more feature sets reviewer history features, reviewer
profile features, and readability features to identify the helpfulness of a review. Their results
demonstrated a correlation between these feature sets and the perceived helpfulness of
reviews. Ref. [38] pinpointed the helpfulness of a review from three different perspectives:
the writing style of the review, the reviewer’s expertise, and the timeliness of the review.
The experimental results of Ref. [26] found two main features review length and the
number of product features to be significant while ranking reviews [26]. Ref. [51] proposed
a review ranking scheme for book reviews based on the number of features. A score is
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assigned to each review on the basis of the number of features that appeared in the review.
Then reviews were ranked according to the assigned score. The review ranking scheme
outclassed the helpfulness votes-based ranking scheme. Ref. [42] extended the previous
scheme by incorporating the number of opinion words with the number of features for
review ranking. The extended scheme outperformed the term frequency-based scheme.

In Ref. [20], more weightage is given to the title of the review as compared to the
body while computing review ranking. According to the authors, the title of the review
conveys the overall mood of the reviewer and an effective summary of the review. However,
this work only considers opinion words from the title and ignores product features. The
pioneer work that included integration review quality evaluation, feature ranking, and
user preferences were presented by Shamim et al. [32], wherein a review quality evaluation
scheme based on user preferences and four other parameters including helpfulness ratio,
review rating, number of features and opinion words were proposed. In terms of user
preferences, the users are allowed to perform the following: (i) adjust the weight of each
parameter and (ii) select reviews for features ranking.

However, Ref. [52] ignored the title of the review in ranking reviews and features,
and Ref. [26] ignored product features in the review title for ranking reviews. To address
these limitations, the method proposed in the current study to rank the reviews calculates
separate weights for title and body of the based on both the number of features and opinion
words expressed in the title and body of a review along with metadata feature (review
rating and helpfulness ratio). We enhanced the previous review ranking scheme in Ref. [52]
by including the title score. Further, in contrast to Ref. [26] in which authors considered
rating for review raking, our work does consider multiple parameters: (i) feature frequency,
(ii) number of opinion words, (iii) accumulated strength of associated opinion words, and
(iv) title information of a review. The reason to include the title information of a review in
ranking is that the title highly summarizes a review and presents the overall opinion of
the reviewer [42]. Considering the significance of the title, the title score is included in the
review ranking and is associated with the weight coefficient α.

2.2. Feature Ranking

The pioneer work on feature-based opinion mining was done by Hu and Liu, [53]
to mine and summarize customers’ reviews by developing a system called feature-based
summarization (FBS). This work aimed to identify product features, and opinion orientation
for each feature and present a summary of the identified features and corresponding
opinions in a textual form. In this work, the authors' utilized the classification based on
associations (CBA) system using an Apriori algorithm to extract frequent explicit features.
The adjective synonyms and antonyms of Wordnet are utilized in FBS to identify the
opinion orientation of opinion words. An average accuracy of 84 % was achieved by FBS
for opinion orientation.

In the literature, a variety of feature ranking schemes are available that rank features
on the basis of feature frequency, opinion words, star rating, and semantic polarities. The
most popular feature ranking approach ranks features based on the frequency of a fea-
ture [44,45]. For instance, Ref. [44] utilized feature frequency for feature ranking. Likewise,
the feature frequency-based PageRank algorithm was revised for product ranking [45],
and the findings of this approach showed promising results. In Ref. [42], the authors
utilized the number of associated opinion words with each feature to rank features. The
experimental results of this ranking outperformed ranking based on feature frequency. The
previous ranking approach was enhanced by Ref. [43] by integrating guidelines defined
by the review website with the number of associated opinion words. The outcomes of
this integration exhibited significant improvement in the accuracy of the existing sys-
tem [53]. The ranking approach of Ref. [42] was also extended by Ref. [54] such that the
authors incorporated review rating with opinion words for feature ranking. The results
of the extended approach outclassed the frequency-based method. Correspondingly, the
amalgamation of review rating and opinion polarity resulted in higher precision than the
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frequency based method [41]. Semantic polarity with feature frequency was also deployed
in ranking features, and this method achieved 92% precision [55]. Ref. [52] provided two
types of feature ranking, positive and negative, based on the semantic orientation and
intensity (strength).

In the context of feature ranking, Refs. [44,45] utilized only feature frequency, Ref. [43]
targeted feature frequency and opinion words, Ref. [52] ignored opinion and feature
frequency, Ref. [55] overlooked opinion strength and opinion frequency. Therefore, the
current work proposed new methods for feature ranking based on imperative parameters
(i) title count, (ii) review count, (iii) accumulated opinion strength, (iv) feature frequency,
and (iv) opinion orientation count. These parameters are described in detail in Section 3.
The current work contributes to the literature of feature ranking by providing four types of
ranking, ranking by weight, feature by positive credence, ranking by negative credence,
and overall ranking based on novel ranking methods.

2.3. Opinion Visualizations

The existing literature highlights a variety of visualizations that have been utilized to
show consumer opinions, including bar charts, radials, pie charts, graphs and maps. Radial
visualization was deployed in the opinion wheel and rose plot to present hotel customer
feedback and sentiment contents from a large number of documents, respectively [24,56,57].
Graphs are used for opinion visualization and include coordinated graphs [57], line
graphs and pie charts [58], positioning maps [59], comparative relation maps [16] and
bar charts [52]. The contradictory comments on the ‘Da Vinci Code’ (bestseller and contro-
versial novel) was visualized using a coordinated graph [57]. The positioning map [59],
comparative relation map [16], and bar chart [60] provide competitive intelligence by
comparing competitive product based on key features.

A scalable method ‘visual summary report’ for comparing several products and
features at a glance was proposed in Ref. [61]. The glowing bars [62] and bars with
different shapes [31] present a visual analysis of the really simple syndication RSS news
feed. The treemap in Ref. [39] presents a summary of car reviews in which prominent
keywords are rendered as boxes. The size of the boxes indicates the number of sentences
in which a specific keyword has appeared. The color of the boxes specifies the average
opinion of a keyword ranging from red to green to encode the opinion tendency (red for
negative opinion and green for positive opinion). The treemap provides multi-dimensional
information, such as the most common keywords, the average semantic associated with
keywords, and the most positive and negative keywords.

The treemap [39] and bar chart [52] are unable to present opinion strength (that ranges
from −3 to +3) on each feature of a target product. Therefore, the treemap is enhanced
in this work to present opinion strength (that ranges from −3 to +3) on each feature of a
target product. We selected the treemap visualization based on the finding of a usability
study with 146 participants performed in our previous work to identify a suitable opinion
visualization [63]. This work contributed to opinion visualization literature by proposing
opinion-strength-based visualization to provide a multi-dimensional view of consumers’
opinions by displaying the comparison of positive and negative opinions at various levels
of (+3 to −3) of opinion strength and significance of a feature.

3. Proposed System
3.1. Theoretical Framework

Let document D with product reviews contain n reviews R= [r1, r2, r3, . . . ., rn]. Every
review (rk) is comprised of a set of feature-opinion pair, which consists of a feature f j and
an opinion word OPWo. Each feature f j may pair with more than one opinion words in
a single review or over the set of n reviews. In our proposed system, each review rk is
represented by a tuple (termed as review tuple) of two elements

[
MDrk , Brk

]
. The review

tuple is as follows:
Review = rk =

[
MDrk , Brk

]
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where MDrk = [MDrk HR, MDrk Rating, MDrk Title], MDrk Title =[MDrk TitleF, MDrk TitleOPW],
Brk =

[
s1, s2, s3, . . . ., sp

]
∀ si ∈ Brk , si = [Brk si f j , Brk si f jSP, Brk si f jOS, Brk siContent]

The MD represents the metadata of a review, and B represents a set of sentences in the
body of reviews. Table 1 depicts the description of the abbreviation used. Each sentence
si in Brk is represented by a proposed tuple. The proposed tuple is an extension of tuples
presented in Refs. [40,58]. As shown in Figure 1, each sentence si contains single feature f j.
The opinion related to the feature f si

j in a sentence can be positive (OSPPOS) or negative

(OSPNEG)). Opinion polarity is estimated in the range of −3 to −1 for negative and +1 to
+3 for positive (three for strongest and one for weakest). The opinion with positive semantic
polarity can have opinion strength strong positive (OSPOS_S), mildly positive (OSPOS_M) or
weak positive (OSPOS_W) [52,64,65]. Similarly, the opinion with negative semantic polarity
can have opinion strength strong negative (OSNEG_S), mildly negative (OSNEG_M) or weak
negative (OSNEG_W) [52,64,65]. A feature tuple is also proposed in work, as shown below.

Table 1. Notations used in Review Tuple.

Notation Description

D Document with n product reviews

rk Review k

MDrk Metadata of review k

Brk Body of review k

MDrk HR Helpfulness Ratio of review k (HR is MD element)

MDrk Title Title of review k

MDrk Rating Rating of review k (Rating is MD element)

MDrk TitleFcount represents the number of features in the review title

MDrk TitleOPWcount depicts the number of opinion words in the review title

Brk FCount number of the features in the body of the review

Brk si f j represents a product feature ( f j) in sentence si

Brk si f jSP reflects the semantic polarity (SP) of the feature f j in sentence si in Brk

Brk si f jOS reflects the opinion strength (OS) of the feature f j in sentence si

f j f req Frequency of the feature

Brk si Content reflects the content of the sentence si

OSPPOS reflects that the semantic polarity of the opinion is positive

OSPNEG reflects that the opinion semantic polarity is negative

OSPOS_S reflects that the opinion strength is strong positive

OSPOS_M reflects that the opinion strength is mild positive

OSPOS_W reflects that the opinion strength is weak positive

OSNEG_S reflects that the opinion strength is strong negative

OSNEG_M reflects that the opinion strength is mild negative

OSNEG_W reflects that the opinion strength is weak negative

W_OSPOS_S reflects the weight of OSPOS_S (i.e., +3)

W_OSPOS_M reflects the weight of OSPOS_M (i.e., +2)

W_OSPOS_W reflects the weight of OSPOS_W (i.e., +1)

W_OSNEG_S reflects the weight of OSNEG_S (i.e., −3)

W_OSNEG_M reflects the weight of OSNEG_M (i.e., −2)

W_OSNEG_W reflects the weight of OSNEG_W (i.e., −1)



Mathematics 2021, 9, 833 7 of 25

Mathematics 2021, 9, 833  7  of  25 
 

 

𝑂𝑆𝑃   reflects that the opinion semantic polarity is negative 

 𝑂𝑆 _   reflects that the opinion strength is strong positive   

 𝑂𝑆 _   reflects that the opinion strength is mild positive   

 𝑂𝑆 _   reflects that the opinion strength is weak positive   

 𝑂𝑆 _   reflects that the opinion strength is strong negative   

𝑂𝑆 _   reflects that the opinion strength is mild negative 

𝑂𝑆 _   reflects that the opinion strength is weak negative 

 𝑊_𝑂𝑆 _   reflects the weight of   𝑂𝑆 _   (i.e., +3) 

 𝑊_𝑂𝑆 _   reflects the weight of   𝑂𝑆 _   (i.e., +2) 

 𝑊_𝑂𝑆 _   reflects the weight of   𝑂𝑆 _   (i.e., +1) 

 𝑊_𝑂𝑆 _   reflects the weight of   𝑂𝑆 _   (i.e., −3) 

 𝑊_𝑂𝑆 _   reflects the weight of   𝑂𝑆 _   (i.e., −2) 

 𝑊_𝑂𝑆 _   reflects the weight of   𝑂𝑆 _   (i.e., −1) 

 

Figure 1. Hierarchy of the review tuple. 

Consider the following review shown in Figure 2. 

 

Figure 2. Example review. 

The helpfulness ratio (𝑀𝐷 𝐻𝑅,) of the above‐mentioned review is 75 (3/4*100) with 

a 5‐star rating. The  title of  the review  indicates a positive opinion with  ‘great’ opinion 

word in the title having an opinion strength strong positive (𝑂𝑆 _ ) associated with the 

weight of +3 (𝑊_𝑂𝑆 _ . The review presents opinions on battery, picture quality, and 

viewfinder features of a camera. The ‘battery’, ‘picture quality’, and ‘viewfinder’ features 

are described by the opinion word good, poor, and very good, respectively. The opinion 

word good is a positive word with the weak positive (𝑂𝑆 _ ) opinion strength, which is 

associated with the weight +1 (𝑊_𝑂𝑆 _ ). However, the opinion word poor is a negative 

Figure 1. Hierarchy of the review tuple.

The mathematical model of the feature tuple that is part of the review tuple is shown
below:

Brk si f j =
[
si f jfreq, siOSPPOS, siOSPNEG

]
where

siOSPPOS = [ OSPOS_S, OSPOS_M, OSPOS_W ]
siOSPNEG = [ OSNEG_S, OSNEG_M, OSNEG_W ]

Consider the following review shown in Figure 2.
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The helpfulness ratio (MDrk HR,) of the above-mentioned review is 75 (3/4*100) with
a 5-star rating. The title of the review indicates a positive opinion with ‘great’ opinion
word in the title having an opinion strength strong positive (OSPOS_S) associated with the
weight of +3 (W_OSPOS_S). The review presents opinions on battery, picture quality, and
viewfinder features of a camera. The ‘battery’, ‘picture quality’, and ‘viewfinder’ features
are described by the opinion word good, poor, and very good, respectively. The opinion
word good is a positive word with the weak positive (OSPOS_W) opinion strength, which
is associated with the weight +1 (W_OSPOS_W). However, the opinion word poor is a
negative word with the OSNEG_W strength (associated with the weight −1). The semantic
orientation of the opinion word very good is positive with the opinion strength of OSPOS_S

(where W_OSPOS_S = 3). The tuple of the review presented in Figure 2 is demonstrated in
Figure 3.
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Figure 4. Example reviews.

Figure 4 shows three reviews containing opinions on three different features (picture
quality, battery, viewfinder) of a digital camera. The resultant feature tuple of the battery
feature is presented in Figure 5. The battery feature was mentioned in all of the reviews
three times; therefore, its weight is three. Three opinion words (good, poor, disappointing)
are associated with the battery feature. These opinion words are Weakly Positive, Weakly
Negative and Mildly Negative with corresponding values of +1, −1, and −2, respectively.
One positive opinion word having an opinion strength of +1 is associated with the battery
feature, and hence the OSPPOS value of the battery is +1, while two negative words with
−1 and −2 opinion strengths are connected with the feature battery, resulting in the value
of OSPNEG of the feature equals to −3 (−2 + −1).
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3.2. Architecture of the System

The proposed system consists of five components: pre-processor, feature and opin-
ion extractor, review ranker, feature ranker, and opinion visualizer (see Figure 6). This
architecture is based on a previous study [52].
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3.2.1. Pre-Processor

A pre-processor prepares a document containing reviews for review and feature
ranking. A variety of processes, including conversion of review text to lower case, removal
of non-alphabetic characters, tokenization, stop word filter, spell checker, word stemming,
and part of speech (POS) tagging, are performed by the component. Firstly, the text of
the document is transformed into lower case. Secondly, stop words are eliminated from
the document by applying a stop word filter using a defined list of stop words. Thirdly,
word-stemming is performed to convert derivationally and inflectional forms of words
into a base form. After that, noise is removed from the document by spell checking. Then
POS tagging is employed to assign a POS category to each word in the document. In the
end, the tokenization returns a list of words.

3.2.2. Feature and Opinion Extractor

Feature and opinion extractor extracts candidate features along with opinion words to
generate a list of potential features. An existing study revealed that 60%–70% of the product
features are represented by frequent explicit nouns [55]. The current study considered
frequent nouns or noun phrases as candidate features based on the findings of existing
studies [42,52,53,58]. Let us suppose there are q nouns (i.e., features) (n1, n2, n3 . . . ., nq)
extracted from all the review tuples and stored in the list. A window based approach [41]
is then utilized to extract opinion words associated with a particular feature in which
opinion words discussed within K words of a particular feature are selected as associated
opinion words. In contrast to existing studies [42–44,52] which extract nouns based only
on feature frequency, we utilized three parameters to extract prominent features from a
review document.

The noun j weight (njweight) is calculated based on the assumption that frequently
discussed nouns in a large number of high-quality reviews associated with several opinion
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words discussed in considerable review titles are significant product features. To identify
potential features and associated opinion words from the list of nouns, an algorithm called
feature and opinion extractor is proposed and presented in Figure 7. The inputs to the
algorithm are the list of nouns (NounsList[]) extracted from reviews tuples (stored in the
list Reviews[]) and review document. NounsList[] is an adjacency list [10] that can store
the associated opinion words with a noun. Associated opinion words for feature nj is
searched in all reviews, and opinion words that are on a distance of K words from the
selected noun are populated in the NounsList[]. The following five equations are used to
calculate njweight. In Equation (1), the frequency of noun nj(nj f req) is calculated based on
its occurrence in the review document consisting of m reivews. In other words, nj f req in
Equation (1) represents count of nj occurrence in reviews.

nj f req = ∑m
k=1 countnjOccurence(rk). (1)

The number of opinion words associated with noun nj in the whole review document is
calculated in Equation (2). njOPWCount (depicted in Equation (2) is the number of opinion
words associated with the noun nj.

njOPWCount = ∑m
k=1 countDistinctOPWwithnj(rk). (2)

The numbers of times noun nj appeared in the titles of reviews is described by Equation (3)
where TitleCountwithnj is the number of titles in which the noun nj discussed. In Equation
(3), the bracket value is 1 (using the inversion notation [10]), if the condition holds otherwise,
it is 0 [10]. The condition [njExistinReviewTitle(rk) = True] in Equation (3), returns 1, if nj
exists in the review rk title.

TitleCountwithnj = ∑m
k=1[njExistinReviewTitle(rk) = True]. (3)

Equation (4) computes the numbers of times noun nj appeared in reviews.

ReviewCountwithnj = ∑m
k=1[njExistinReview(rk) = True]. (4)

Equation (5) shows the calculation of feature weight. The values of nj f req, njOPWCount,
TitleCountwithnj, and ReviewCountwithnj calculated in Equations (1)–(4) are utilized in the
Equation (4) to calculated the weight of a feature. Therefore, our proposed method to calcu-
lated weight of a noun is based on four paramters: (i) frequency of noun nj, (ii) the number
of associated opinion words with noun nj, and (iii) the number of times noun nj appreared
in reviews’ title, and number of reviews in which nj appeared (ReviewCountwithnj). These
parametera are calculated for each noun from (Lines 8–17) of the algorithm.

njweight = nj f req + njOPWCount + TitleCountwithnj + ReviewCountwithnj (5)

The noun frequency nj f req, njOPWCount, and TitleCountnj are then summed up to com-
pute the weight of a review called njFinalScore in the algorithm (Line 20–21). This
njFinalScore is used to filter the nouns. Nouns having a FinalScorenj above a thresh-
old β are selected as potential features. After this, FeatureOpinionList[] containing the
selected (most frequent) features with associated opinion words is built.
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3.2.3. Review Ranker

The job of the review ranker is to calculate the rank of reviews stored in the review
document. To calculate the rank of a review, first, the weight of each review is calculated
based on five parameters. A user can define the contribution of these parameters by
assigning them a weight. After assigning the weight to the reviews, the reviews are
classified into five classes: (a) excellent, (b) good, (c) average, (d) fair, and (e) poor according
to their weights.

To compute the class of each review stored in the review document, a ReviewRank-
ing algorithm is proposed and presented in Figure 8. The core of the algorithm is to
assign weights to reviews. The parameters used to compute the weight of a review tu-
ple are: (i) title score (TitleScore), (ii) number of features in the review body (Brk Fcount),
(iii) number of opinion words in the review body (BrkOPWcount), (iv) helpfulness ra-
tio (MDrk HR), and (v) users’ rating MDrk rating. The Title score depicts the sum of the
number of feature and opinion words in the review title. Firstly, for each review tuple,
the algorithm computes the number of features (MDrk TitleFcount) and opinion words
(MDrk TitleOPWcount) appearing in the review title and then these computations are used
to calculated title score (TitleScore) (Line 4–12). In other words, the Title score represents
the sum of MDrk TitleFcount, and MDrk TitleOPWcount Moreover, for each review tuple
the number of opinion words (BrkOPWcount) and features (Brk Fcount) appearing in the
body are calculated (Line 14-21). Weight of each review (rkWeight) is computed based on
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the values of the parameters (Brk Fcount, MDrk rating, MDrk HR, BrkOPWcount, TitleScore).
Users’ preferences are incorporated in review ranking by defining the weight of each param-
eter (W_UP1, W_UP2, W_UP3, W_UP4, and W_UP5) by users. User preferences weights
(W_UP1, W_UP2, WUP3 , W_UP4, and W_UP5) and the weights assigned to TitleScore (α)
are presented in (Line 23-25). Title weight coefficient (α) can be adjusted depending on the
size and nature of experimental data. We set the value of α to 10 based on the conclusion of
Ref. [42]. Maximum weight (MaxWeightReview) among the m reviews is computed in Line
27. After calculating the weights of reviews, class of each review is calculated (based on
review own weight and maximum weight (MaxWeightReview) among all reviews weights).
Based on rkWeight and MaxWeightReview; rk can be classified as one of the following
review classes: (i) Excellent, (ii) Good, (iii) Average, (iv) Fair, and (v) Poor. We utilized
these five review classes of Ref. [52] to depict the quality of each review in the review
document and to distinguish high-quality reviews (HQ_reviews) from low-quality reviews
to improve feature ranking. The presented scheme requires the user to decide which of the
classes to be selected. The reviews that belong to selected classes (termed as high-quality
reviews) are considered for feature ranking and opinion summary. For example, if the user
selects classes Excellent, and Good; then all the reviews with rkClass equals Excellent, and
Good are declared as high-quality reviews.
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Consider the review shown in Figure 9 as an example. In this review, features are high-
lighted in red while opinion words are highlighted in green. The TitleScore of the review is
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two as the title of the review comprises of one feature (Picture) and one opinion word (Bril-
liant). There are four features in the body of the review (picture quality, viewfinder, zoom,
battery), and as a result, the Brk FCount score of the review is four. Four opinion words
(excellent, poor, good and fantastic) are expressed in the review, so the BrkOPWCount of
the review is four. Putting the values of the rkWeight computation equation results in 25.4.
In the calculation of the rkWeight of the review rk shown in Figure 9, assuming the value of
0.20 for all preferences (W_UP1, W_UP2, W_UP3, W_UP4, and W_UP5).
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3.2.4. Feature Ranker

After discarding low-quality reviews (with Classrk below a certain threshold θ specified
by user) among n reviews, we are left with m high-quality reviews (HQ-Reviews[]). The
feature ranker ranks the extracted features (FeatureOpinionList[]) by utilizing high-quality
reviews provided by the review ranker. In contrast to Ref. [52], we are enhancing the feature
ranking by incorporating opinion and feature frequency along with opinion strength and
orientation. The proposed feature ranker computes four rankings for every feature f j
based on the information presented in high-quality reviews: (i) feature f j weight ( f jweight),
(depicted in Equation (10)); (ii) positive credence of f j ( f jPOSCred), (depicted in Equation
(12)); (iii) negative credence ( f jNEGCred), (depicted in Equation (14)); and (iv) overall
credence ( f jRank), (depicted in Equation (15)). An algorithm is proposed and presented in
Figure 10 to calculate these ranking of a feature.

The f jweight is calculated based on the idea that frequently discussed features in a
large number of high-quality reviews associated with many opinion words that appeared in
substantial reviews’ titles are decisive product features. Therefore, the value of f jweight is
calculated using four parameters; (i) count of f j occurrence in high-quality reviews ( f j f req),
(ii) the number of opinion words associated with the f j ( f jOPWCount), (iii) number of
reviews which discussed the feature in title or body (ReviewCountwith f j), and (iv) the
number of reviews’ titles that contains the feature (TitleCountwith f j). These parameters
are computed using Equations (6)–(9), respectively as shown (Lines 3–10) of the algorithm.
Moreover, TitleCountwith f j and RevCountwith f j are exploited in calculating the weight of
a feature f j on the ground that if a feature f j is discussed in many reviews and titles, then it
is significant. The calculation of f jweight is depicted in Equation (10).

f j f req = ∑m
k=1 count f jOccurence(rk), (6)

f jOPWCount = ∑m
k=1 countDistinctOPWwith f j(rk), (7)
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ReviewCountwith f j = ∑m
k=1[ f jExistinReview(rk) = True], (8)

TitleCountwith f j = ∑m
k=1[ f jExistinReviewTitle(rk) = True], (9)

f jweight = f j f req + f jOPWCount + ReviewCountwith f j + TitleCountwith f j. (10)
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Count f jOSPPOS in Equation (11) represents the count of positive opinions for the fea-
ture f j in all sentences of m reviews. In Equation (11), the condition

[
sk f jOSP = OSPPOS]

returns to 1 if sk f jOSP is positive, otherwise it would return zero. In Equation (12), the condi-
tion

[
sk f jOS = OSPOS_M] returns to 1 if the feature opinion strength in sent sk is OSPOS_M,

otherwise it would return zero. Moreover, ∑m
r=1 ∑

sentences(r)
k=1 OSPOS_M[sk f jOS = OSPOS_M]

sums the opinion strength OSPOS_M the number of times it appears in the sentences of all m
reviews. Positive credence ( f jPOSCred) of a feature f j in Equation (12), denotes the number
of positive opinion words used to describe a feature f j and the accumulated strength of
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associated positive opinion words. The larger the value of f jPOSCred denotes that the
feature f j was discussed more positively and many times.

Count f jOSPPOS =
m

∑
r=1

sentences(r)

∑
k=1

[
sk f jOSP = OSPPOS

]
, (11)

f jPOSCred = Count f jOSPPOS+

∑m
r=1 ∑

sentences(r)
k=1, W_ OSPOS_S ∗

[
sk f jOS = OSPOS_S]+ ∑m

r=1 ∑
sentences(r)
k=1 W_OSPOS_M ∗

[
sk f jOS = OSPOS_M]+ ∑m

r=1 ∑
sentences(r)
k=1 W_ OSPOS_W∗[

sk f jOS = OSPOS_W]. (12)

Equation (13) depicts the total number of occurrences of negative opinions of a feature
f j in the body of m high-quality reviews. f jNEGCred in Equation (14) reflects the number of
negative opinion words used to describe a feature and the total strength of these negative
opinion words. The idea behind f jNEGCred is that the rank of a feature f j should be
higher than other features if f j is associated with more negative words. The high value of
f jNEGCred indicates that the features are discussed negatively by a large number of users.

Count f jOSPNEG = ∑m
r=1 ∑sentences(r)

k=1

[
sk f jOSP = OSPNEG

]
, (13)

f jNEGCred = Count f jOSPNEG +

∑m
r=1 ∑

sentences(r)
k=1, WOS

NEGS ∗
[
sk f jOS = OSNEGS

]
+ ∑m

r=1 ∑
sentences(r)
k=1 W_OSNEG_M ∗

[
sk f jOS = OSNEG_M] + ∑m

r=1 ∑
sentences(r)
k=1 w_OSNEG_W ∗[

sk f jOS = OSNEG_W]. (14)

Count f jOSPNEG is subtracted from f jPOSCred of a feature f j to obtain an overall rank
( f jRank) as shown in Equation (15).

f jRank = f jPOSCred − f jNEGCred. (15)

The count of OSPOS_S, OSPOS_M, OSPOS_W , OSNEG_S, OSNEG_M, OSNEG_W in each review
is computed (Lines 12–25). f jWeight is computed in Line 38 and f jRank is computed in
Line 47.

3.2.5. Opinion Visualizer

An extensive literature review followed by a usability study with 146 participants
was performed by the authors in their previous work to identify a suitable opinion visu-
alization [63]. In Ref. [63], a questionnaire survey was performed to get feedback from
users about existing opinion visualizations. Users’ preferred visualization (tree map [39])
is adapted for the current study based on the findings of a previous study. The proposed
visualization provides a multi-dimensional view of consumer opinions. The proposed
visualization is discussed in the result section.

4. Evaluation of Proposed System
4.1. Dataset

Python 2.7 using a natural language toolkit (NLTK) was used to implement the
proposed system. For the evaluation of the proposed system, experiments were performed
on a real dataset (from amazon.com) utilized by Refs. [52,53,64,66,67]. The dataset contains
user reviews of five digital devices, as shown in Table 2.
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Table 2. Detailed information of dataset.

Product Type Product Name Number of
Reviews

Number of
Sentences

Length in
Words

Length in
Characters

1. Digital Camera 1 Canon G3 45 597 11,280 48,714

2. Digital Camera 2 Nikon Coolpix 4300 34 346 6749 29,763

3. Cellular Phone Nokia 6610 44 546 9681 42,795

4. MP3 Player Creative Labs Nomad Jukebox Zen
Xtra 40 GB 95 1716 12,719 54,872

5. DVD Player Apex AD2600 Progressive-scan
DVD player 100 740 32,553 138,301

Total 318 489 72,982 314,445

The evaluation of the proposed system was performed by computing the accuracy of
review quality evaluation, f jPOSCred, f jNEGCred , and f jRank.

Manually calculated class (actual class) is compared with a system generated class
(extracted class) to calculate the accuracy of reviews, as shown in the formula below:

Accuracy =
Extracted Value

Actual Value
∗ 100 (16)

The accuracy reveals how accurate the proposed review ranking scheme is in calculat-
ing the review quality class. Correspondingly, the actual values of f jPOSCred, f jNEGCred
and f jRank are compared with extracted values to find the accuracy of the proposed fea-
ture ranking scheme. An example of accuracy calculation of f jPOSCred, f jNEGCred, and
f jRank is given in Table 3.

Table 3. Calculation of accuracy.

Metrics Picture Quality

Actual f jPOSCred 15

Extracted f jPOSCred 12

Accuracy of f jPOSCred 12/15 * 100 = 80%

Actual f j NEGCred 10

Extracted f j NEGCred 9

Accuracy of f j NEGCred 9/10 * 100=90%

Actual f jRank 5

Extracted f jRank 3

Accuracy of f jRank 3/5 * 100 = 60%

4.2. Results and Discussion
4.2.1. Review Quality Classification

The classification of the review quality of ‘digital camera 1’ shows mixed quality
reviews (Table 4). The majority of the reviews are classified as good, presenting sufficient
opinions on digital camera 1. It is interesting to note that only a few reviews are labelled
as excellent. Furthermore, 64% of the reviews belong to ‘good’ and ‘average’ reviews,
delivering ample opinions on different features of digital camera 1. Only 14 reviews out
of 45 (31%) were found to be ‘fair’ and ‘poor’. The review quality classes of ‘DVD Player’
are illustrated in Table 4. Forty-four percent of the reviews were collectively classified as
‘Excellent’ and ‘Good’. However, many reviews belong to the poor class, showing the low
quality of these reviews. Notably in Table 4, 58% of reviews are categorized as the top three
classes (Excellent, Good, Average) of review quality.
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Table 4. Review quality evaluation of Digital Camera 1 and DVD Player.

Review Classes Digital Camera 1 DVD Player

Excellent 3 6

Good 17 37

Average 11 14

Fair 5 6

Poor 9 36

The average accuracy of the review classification of all five products is presented in
Figure 11. The system accomplished greater than 80% accuracy for all products. Further,
the system achieved an average accuracy of 85% for all products.
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4.2.2. Feature Ranking

This section reports the f jPOSCred, f jNEGCred, and f jRank of the data files along
with the accuracy achieved by the System in Table 5. The f jPOSCred, f jNEGCred and
f jRank of each feature fj were computed using Equations (12), (14), and (15), respectively,
given in Section 3.2.4. The accuracy of the feature ranking scheme was calculated using
Equation (16) given in Section 4.1. Due to word limits, only the results of DVD Player are
presented here.

Table 5. POSCred, NEGCred, and OverallCred of top ten features of DVD Player.

POSCred NEGCred Overall Cred

Features Weight Accuracy Features Weight Accuracy Features Weight Accuracy

Player 144 87 Player 196 91 Feature 23 100

Play 31 90 Play 35 81 Price 17 61

Price 28 61 Picture 27 69 Work 7 71

Feature 23 100 Apex 22 100 Product 3 67

Apex 14 93 Quality 11 58 Unit −3 100

Picture 13 77 Video 9 64 Service −4 100

Work 8 88 Disc 8 67 Play −7 58

Product 7 100 Button 7 100 Button −7 100

Unit 4 100 Unit 7 100 Disc −8 67

Service 0 100 Product 4 80 Apex −9 89
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The top ten features of ‘DVD Player’ are highlighted in Table 5 according to the
positive credence ( f jPOSCred). The ‘Player’ received the highest f jPOSCred, indicating
its appreciation by many users. The next three features (Play, Price, Feature) show users’
endorsement with positive ranks of 31, 28, and 23, respectively. The features Apex, Picture,
Work, ‘Product’, and ‘Unit’ are also acknowledged positively by some users. The accuracy
of the top 10 features of DVD Player according to the f jPOSCred are shown in Table 5.
The accuracy of features ‘Product’, ‘Unit’, ‘Service’, and ‘Feature’ was found to be 100%.
Moreover, another four features, Player’, ‘Play’, ‘Apex’, and ‘Work’, achieved accuracy of
86%, 90%, 92%, and 87.5%, respectively. Further, the accuracy of only 60% belongs to the
feature ‘Feature’, resulting in an average accuracy of 90%.

The top ten features of DVD Player are shown in Table 5 according to the f jNEGCred
(negative credence). DVD Player received f jNEGCred of 196, indicating its inadequacy.
Users also disapproved the ‘Play’, ‘Picture’, ‘Apex’ and ‘Quality’ features of DVD Player, as
indicated by their larger f jNEGCred. The features, namely ‘Video’, ‘Unit’, ‘Disc’, ‘Button’,
and ‘Product’, also were negatively discussed by some users. The accuracy of the top
10 features of DVD Player is shown in Table 5, according to the f jNEGCred. Three features
(apex, button, unit) achieved 100% accuracy. ‘Player’, ‘Play’, and ‘Product’ features showed
more than 80% accuracy resulting in overall accuracy of 81%. However, the accuracy of
one feature ‘Quality’ is only 58%.

The top ten features of DVD Player are highlighted in Table 5, according to the f jRank.
The top four features, namely ‘Feature’, ‘Price’, ‘Work’, ‘Product’, have positive f jRank,
describing users’ satisfaction about these features. Conversely, the negative f jRank score of
features Unit’, ‘Service’, ‘Play’, ‘Button’, ‘Disc’, and ‘Apex’ illustrate users’ dissatisfaction.
The accuracy of DVD Player’s top ten features, according to the Orank, is shown in Table 5,
illustrating four features achieved 100% accuracy (feature, unit, service, button). However,
the average accuracy of the system was found to be 81%.

4.3. Comparison of Proposed System with FBS System and Opinion Analyzer

We compared the results of the proposed system with two state-of-the-art systems,
namely, the opinion analyzer (our previous work that is enhanced in the current study) [52]
and the FBS system [53]. These systems are selected for the comparison, as the dataset
utilized is same. In addition, the objectives of these systems are feature ranking based
on consumers’ opinions. It is notable that the top ten features of Digital Camera 1 of
the proposed system and opinion analyzer are different as the methods used to extract
features in both systems are different. To compare these systems, firstly, we extracted
the common features from top ten features of these systems according to positive and
negative ranks. There are eight and nine common features in positive and negative rank,
respectively. Secondly, we compared the accuracy of these common features for positive
and negative ranks separately, as shown in Figures 12 and 13. The average accuracy of
the proposed system (95%) is slightly better than opinion analyzer (92%) for positive rank
(Table 6). However, the proposed system showed a little degradation on average accuracy
for negative rank (Table 6). This is might due to the fact that we utilized more parameters
for feature extraction as compared to opinion analyzer.

Table 6. Comparison of average accuracy of positive and negative ranks.

Proposed System Opinion Analyzer

Average Accuracy for Positive Rank 95 93

Average Accuracy for Negative Rank 94 96

Average Accuracy for Negative and
Positive Rankings 95 95
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Figure 12. Comparison of proposed system with opinion analyzer on positive ranking.
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Figure 13. Comparison of proposed system with opinion analyzer on negative ranking.

Similarly, we compared the average accuracy of the top ten features of five products
based on the positive and negative credence’s with the accuracy of the FBS system [53].
The proposed system outclassed FBS system on the accuracy of four products (cellular
phone, Digital Camera 1, MP3 Player, DVD Player), as shown in Figure 14. In the case
of Digital Camera 2, the proposed exhibited a little accuracy deprivation; however, the
proposed system surpassed FBS based on average accuracy. Table 6 shows the average
accuracy achieved by the proposed system and opinion analyzer for positive and negative
ranks. It can be seen that the average accuracy for positive and negative ranks are same for
both systems.
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4.4. Opinion Visualizer

In this work, due to space constraints, we are presenting the opinion summary of
Digital Camera 1 only. The proposed tree map visualization is shown in Figure 15. The
tree map consists of ten rectangles. Each rectangle represents one feature. The weight of a
feature is depicted by the size of the rectangle. Each rectangle is further divided into various
sections according to opinion orientation and strength. Positive and negative opinions on a
feature are expressed by the rectangle at 6 levels: three for positive (weakly positive, mildly
positive, strongly positive) and three for negative (weakly negative, mildly negative, and
strongly negative), using different shades of red and green colors. Figure 16 shows the
color scheme used in the tree map. The proposed tree map presents the comparison of
opinions at six levels of opinion strength as compared to the tree map of Reference [39].
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A large number of users discussed about the camera as shown by the size of camera
rectangle in Figure 15. Two types of negative opinions (strongly negative and mildly
negative) expressed on the camera. However, users appreciated the camera by stating
strongly, mildly, and weakly positive opinions. The second feature is picture according to
the size of rectangle (weight). It received only three types of opinions: strongly positive,
mildly positive, and strongly negative. The features ‘Battery’ and ‘Use’ acknowledged
by only positive opinions. On the other hand, ‘Viewfinder’ of the camera is discussed
negatively with mildly negative or weakly negative comments. Only mildly positive
opinions were expressed by users on the features ‘LCD’ and ‘Lens’. The features ‘Software’
and ‘Flash’ of Digital Camera 1 were considered both positively and negatively by the
users. The overall opinion of users on Digital Camera 1 found to be positive.

Case Study

The proposed opinion-strength-based visualization was evaluated by conducting a
usability study. The aim of the usability study is to identify the effectiveness and usefulness
of the visualization. A total of ten participants (6 Male, 4 Female) was participated in the
study. At first, the concepts of the proposed visualization were presented to the participants.
After that the participants were asked to provide their feed back about user-friendliness,
visual appeal, informativeness, understandability, and intuitiveness of the visualization. A
5-point Likert scale (Strongly Disagree to Strongly Agree) was ultilized to get the feedback.
Figure 17 demonstrates the result of the usability study.
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None of the participants strongly disagreed with the visual appeal, understandability,
intuitiveness, and informativeness. Figure 17 shows that most of the participants reported
strong agreement or agreement on the usability of the proposed visualization. The use
of a color scale to increase the understanding of the visualization was suggested by two
participants. The suggestion was incorporated. Another suggestion provided by many
participants is to increase the width of borders and this suggestion is amalgamated. Last
modification was done is the increase of font size based on the results of the usability study.
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5. Conclusion, Limitation and Future work

In this paper, authors proposed novel ranking schemes for users’ reviews and product
features along with an opinion-strength-based visualization to present users high quality
information from massive reviews. The focus is to improve existing ranking schemes
of reviews and features by incorporating users’ preferences with enhanced parameters
set that are not considered in previous studies. In contrast to existing opinion mining
system, the proposed system integrates review ranking and feature ranking by utilized
only high-quality reviews based on users’ preferences for feature ranking that result in
enhanced product feature ranking. First, the information overload problem (selecting high
quality reviews) was addressed by proposing a new review ranking scheme. Second, a
new scheme for feature ranking based on an enhanced parameter set was proposed. Third,
binary classification-based visualization was improved by the introduction of opinion-
strength-based visualization that present users’ opinions on critical product features at
multiple levels according to opinion intensity. Four, the accuracy of the system is accessed
using a real dataset of 332 reviews of five products from amazon.com. Finally, a usability
study is performed to evaluate the quality of the proposed visualization. Our results show
an average accuracy of 85% for review quality classification. Moreover, the results of Digital
Camera 1 and DVD Player show five classes of reviews, presenting the insight about the
quality of reviews. Player, play, and feature are found to be the top three features of the
DVD Player according to positive credence, whereas player, play, and pictures are the top
three features according to negative credence. The proposed system achieved promising
results over existing systems. The study has some limitations as the system is evaluated
on 332 reviews of one domain (electronic product). Future research should target more
products having a large number reviews from different domains.
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