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Abstract: k-nearest neighbor (kNN) is a widely used learning algorithm for supervised learning tasks.
In practice, the main challenge when using kNN is its high sensitivity to its hyperparameter setting,
including the number of nearest neighbors k, the distance function, and the weighting function. To
improve the robustness to hyperparameters, this study presents a novel kNN learning method based
on a graph neural network, named kNNGNN. Given training data, the method learns a task-specific
kNN rule in an end-to-end fashion by means of a graph neural network that takes the kNN graph of
an instance to predict the label of the instance. The distance and weighting functions are implicitly
embedded within the graph neural network. For a query instance, the prediction is obtained by
performing a kNN search from the training data to create a kNN graph and passing it through the
graph neural network. The effectiveness of the proposed method is demonstrated using various
benchmark datasets for classification and regression tasks.
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1. Introduction

The k-nearest neighbor (kNN) algorithm is one of the most widely used learning
algorithms in machine learning research [1,2]. The main concept of kNN is to predict
the label of a query instance based on the labels of k closest instances in the stored data,
assuming that the label of an instance is similar to that of its kNN instances. kNN is simple
and easy to implement, but is very effective in terms of prediction performance. kNN
makes no specific assumptions about the distribution of the data. Because it is an instance-
based learning algorithm that requires no training before making predictions, incremental
learning can be easily adopted. For these reasons, kNN has been actively applied to a
variety of supervised learning tasks including both classification and regression tasks.

The procedure for kNN learning is as follows. Suppose a training datasetD = {(xt, yt)}N
t=1

is given for a supervised learning task, where xt and yt are the input vector and the corre-
sponding label vector of the t-th instance. yt is assumed to be a one-hot vector in the case
of a classification task and a scalar value in the case of a regression task. In the training
phase, the dataset D is just stored without any explicit learning from the dataset. In the
inference phase, for each query instance x, kNN search is performed to retrieve kNN in-
stances N (xt) = {(x(i)t , y(i)

t )}k
i=1 that are closest to x based on a distance function d. Then,

the predicted label ŷ is obtained as a weighted combination of the labels y(1), . . . , y(k) based
on a weighting function w along with the distance function d as follows:

ŷ = f (x;D) = ∑k
i=1 w(d(x, x(i))) · y(i)

∑k
i=1 w(d(x, x(i)))

(1)

The difficulty in using kNN is determining the hyperparameters. The three main
hyperparameters are the number of neighbors k, the distance function d, and the weighting
function w [3]. Firstly, in terms of k, a small k makes it capture a specific local structure in
the data, and thus, the outcome can be sensitive to noise, whereas a large k makes it more
concentrate on the global structure of the data and suppresses the effect of noise. Secondly,
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the distance function d determines how to calculate the distance between the input vectors
of a pair of instances with nearby instances having high relevance. Popular examples of
this function for kNN are the Manhattan, Euclidean, and Mahalanobis distances. Thirdly,
the weighting function w determines how much each kNN instance contributes to the
prediction. The standard kNN assigns the same weight to each kNN instance (i.e., w(d) =
1/k). It is known to be better to assign larger/smaller weights to closer/farther kNN
instances based on their distances to the query instance x using a non-uniform weighting
function (e.g., w(d) = 1/d). Thus, a kNN instance with a larger weight will contribute
more to the prediction for the instance.

The performance of kNN is known to be highly sensitive to hyperparameters, the best
setting of which depends on the characteristics of the data [3,4]. Thus, the hyperparameters
must be chosen appropriately to improve the prediction performance. Since this is a
challenging issue, considerable research efforts have been devoted to hyperparameter
optimization for kNN, which are introduced briefly in Section 2. Compared to related
work, the main aim of this study is end-to-end kNN learning toward improved robustness
to the hyperparameter setting and to make predictions for new data without additional
optimization procedures.

This study presents a novel end-to-end kNN learning method, named kNN graph
neural network (kNNGNN), which learns a task-specific kNN rule from the training dataset
in an end-to-end fashion based on a graph neural network. For each instance in the training
dataset and its kNN instances, a kNN graph is constructed with nodes representing the
label information of the instances and edges representing the distance information between
the instances. Then, a graph neural network is built to consider the kNN graph of an
instance to predict the label for the instance. The graph neural network can be regarded
as a data-driven implementation of implicit weight and distance functions. By doing so,
the prediction performance of kNN can be improved without careful consideration of its
hyperparameter setting. The proposed method is applicable to any type of supervised
learning task, including classification and regression. Furthermore, the proposed method
does not require any additional optimization procedure when making predictions for
new data, which is advantageous in terms of computational efficiency. To investigate the
effectiveness of the proposed method, experiments are conducted using various benchmark
datasets for classification and regression tasks.

2. Related Work

This section discusses related work on hyperparameter optimization for the kNN
algorithm, which has been actively studied by many researchers. As previously men-
tioned, kNN learning involves three main hyperparameters: the number of neighbors
k, the distance function d, and the weighting function w. A different dataset requires
a different hyperparameter setting, and no specific setting can universally be the best
for every application, as indicted by the no-free-lunch theorem [5]. Thus, the proper
choice of these hyperparameters is critical for obtaining a high prediction performance.
In practice, the best hyperparameter setting for a given dataset is usually determined by
performing a cross-validation procedure that searches over possible hyperparameter candi-
dates. Various search strategies are applicable, such as grid search, random search [6], and
Bayesian optimization [7]. They are time consuming and costly, especially for large-scale
datasets. Previous research efforts have focused on choosing the hyperparameters of kNN
in more intelligent ways based on heuristics or extra optimization procedures for each
query instance.

There are two main research approaches regarding the number of neighbors k. The
first approach is to assign different k values to different query instances based on their local
neighborhood information instead of a fixed k value [8–12]. The second approach is to
employ non-uniform weighting functions to reduce the effect of k on the prediction perfor-
mance.
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For the distance function d, one research approach is to learn task-specific distance
functions directly from data to improve the prediction performance, which is referred to as
distance metric learning [13,14]. Many methods for this approach were developed for use
in the classification settings [15–19], while some were developed for use in the regression
settings [20–22]. Another approach is to adjust the distance function in an adaptive manner
for each query instance [23–27]. This requires an extra optimization procedure, as well as a
kNN search when making a prediction for each query instance.

For the weighting function w, existing methods have focused on designing non-
uniform weighting functions that decay smoothly as the distance increases [4]. One main
research approach is to assign adaptive weights to the kNN instances of each query instance
by performing an extra optimization procedure [23,25–28], which also helps to reduce the
effect of k. Another approach is to develop fuzzy versions of the kNN algorithm [29–31].

The three hyperparameters affect each other, which means that the optimal choice of
one hyperparameter is dependent on the other hyperparameters. Therefore, they must be
considered simultaneously rather than independently. Moreover, the methods involving
costly extra optimization procedures when making predictions for query instances are
computationally expensive, which is undesirable in practice. In addition, the majority of
existing methods focus on specific settings, primarily classification tasks. Developing a
universal method that is efficient and applicable to various tasks is beneficial. To address
these concerns, this study proposes to jointly learn a distance function and a weighting
function using a graph neural network in an end-to-end manner, which aims to make it
robust to the choice of k in the prediction performance and is applicable to both classification
and regression tasks.

3. Method
3.1. Graph Representation of Data

Suppose that a training set D = {(xt, yt)}N
t=1 is given, where xt ∈ Rp is the t-th

input vector for the input variables and yt is the corresponding label vector for the output
variable. For a classification task with regard to c classes, yt is a c-dimensional one-hot
vector where the element corresponding to the target class is set to 1 and all the remaining
elements are set to 0. For a regression task with a single output, yt is a scalar representing
the target value.

The proposed method uses a transformation function g that transforms each input
vector xt into a graph Gt such that Gt = g(xt;D). Two hyperparameters need to be de-
termined: the number of nearest neighbors k and the distance function d. They are used
only to operate the transformation function g for kNN search from D; however, they
are not used explicitly in the learning procedure in Section 3.2. For each xt, its kNN
instances are searched from D \ {(xt, yt)} based on the distance function d, denoted by
N (xt) = {(x(i)t , y(i)

t )}k
i=1. Then, the kNN graph Gt = (Vt, Et) is constructed as a fully

connected undirected graph with k + 1 nodes and k(k + 1)/2 edges as follows:

Vt = {vi
t|i ∈ {0, . . . , k}};

Et = {ei,j
t |i ∈ {0, . . . , k}, j ∈ {0, . . . , k}, i 6= j},

(2)

where each node feature vector vi
t ∈ Rc+1 and edge feature vector ei,j

t ∈ Rp are represented as:

vi
t =

{
(0, 1), if i = 0

(y(i)
t , 0), otherwise

;

ei,j
t = |x(i)t − x(j)

t |,

(3)

where the t-th input vector xt is denoted by x(0)t for the simplicity of description. The
number c is set to the number of classes in the case of classification and is 1 in the case
of regression.
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In the graph Gt, the 0-th node corresponds to xt, and the other nodes correspond to
the kNN instances of xt. Each node feature vector vi

t represents the label information with
the last element set to zero, except that v0

t does not contain the label information and has
the last element set to one. Each edge feature vector ei,j

t consists of the absolute difference

between each of the input variables x(i)t and x(j)
t . Thus, Gt represents the labels of the kNN

instances and pairwise distances between the instances. It should be noted that Gt does
not contain yt because it needs to be unknown when making a prediction in a supervised
learning setting.

3.2. k-Nearest Neighbor Graph Neural Network

Here, the proposed method named kNNGNN is introduced, which implements kNN
learning in an end-to-end manner. It adapts the message-passing neural network architec-
ture [32], which can handle general node and edge features with isomorphic invariance,
to build a graph neural network for kNN learning. To learn a kNN rule from the training
dataset D, it builds a graph neural network that operates on the graph representation
G = g(x;D) for an input vector x given the training dataset D to predict the corresponding
label vector y as ŷ = f (G) = f (g(x;D)).

The model architecture used in this study is as follows. It first embeds each vi into
a p-dimensional initial node representation vector using an embedding function φ as
h(0),i = φ(vi), i = 0, . . . , k. A message-passing step for the graph G is then performed using
two main functions: message function M and update function U. The node representation
vectors h(l),i are updated as below:

m(l),i = ∑
j|vj∈V\vi

M(ei,j)h(l−1),j, ∀i,

h(l),i = U(h(l−1),i, m(l),i), ∀i.
(4)

After L time steps of message passing, a set of node representation vectors {h(l),i}L
l=0

per node is obtained. The set for the 0-th node {h(l),0}L
l=0 is then processed with the readout

function r to obtain the final prediction of the label y as:

ŷ = r({h(l),0}L
l=0). (5)

The component functions φ, M, U, and r are parameterized as neural networks,
mostly based on the idea presented in Gilmer et al. [32]. The function φ is a two-layer fully
connected neural network with p tanh units in each layer. The function M is a two-layer
fully connected neural network where the first layer consists of 2m tanh units and the
second layer outputs a m× m matrix. The function U is modeled as a recurrent neural
network with gated recurrent units (GRUs) [33], which pass the previous hidden state
h(l−1),i and the current input m(l),i to derive the current hidden state h(l),i at each time step
l. The function r is a two-layer fully connected neural network where the first layer consists
of p tanh units and the second layer outputs ŷ by softmax and linear units in the case of
classification and regression tasks, respectively. Different types of supervised learning
tasks can be addressed using different types of units in the last layer of r.

The model defined above is denoted as the function f . The model makes a prediction
from the input vector x and its kNN instances in D, i.e., ŷ = f (g(x;D)). The model
differs from conventional neural networks in that it does not directly learn the relationship
between input and output variables. In terms of kNN learning, the weight and distance
functions are embedded implicitly into the function f . Therefore, the function f can be
regarded as an implicit representation of a kNN rule, in which the functions M and U work
as implicit distance and weighting functions, respectively.
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3.3. Learning from Training Data

Given the training dataset D = {(xt, yt)}N
t=1, the proposed method learns a task-

specific kNN rule from D in the form of ŷ = f (g(x;D)). The prediction model f is trained
based on the graph representation g using the following objective function J :

J =
1
N ∑

(xt ,yt)∈D
L(yt, ŷt) =

1
N ∑

(xt ,yt)∈D
L(yt, f (g(xt;D))), (6)

where L is the loss function, the choice of which depends on the target task. The typical
choices of the loss function are cross-entropy and squared error for the classification and
regression tasks, respectively.

3.4. Prediction for New Data

Once the prediction model f is trained, it can be used to predict unknown labels for
new data. The prediction procedure is illustrated in Figure 1. Given a query instance x∗
whose label y∗ is unknown, its kNN instances N (x∗) = {(x(i)∗ , y(i)

∗ )}k
i=1 are searched from

the training dataset D based on the distance function d. Then, the corresponding graph
G∗ = g(x∗;D) is generated. The prediction of y∗, which is denoted by ŷ∗, is computed
using the model f as:

ŷ∗ = f (G∗) = f (g(x∗;D)). (7)

𝐡 𝐿 ,0

𝐡 𝐿 ,1

𝐡 𝐿 ,2

𝐡 𝐿 ,𝑘

Message

Passing

𝑀,𝑈

Message

Passing

𝑀,𝑈

𝐡 0 ,0

𝐡 0 ,1

𝐡 0 ,2

𝒆0,1

𝐡 0 ,𝑘

𝐡 1 ,0

𝐡 1 ,1

𝐡 1 ,2

𝐡 1 ,𝑘

𝑟

Message

Passing

𝑀,𝑈

. . .

Training Set
𝐷 = 𝐱𝑡 , 𝐲𝑡 𝑡=1

𝑁

𝐯0

. . .𝐯1 𝐯2 𝐯𝑘

𝒆0,2 𝒆0,𝑘

𝒆𝑖,𝑗

𝐱 1 , 𝐲 1 ,

𝐱 2 , 𝐲 2 ,

… ,

𝐱 𝑘 , 𝐲 𝑘

kNN
Instances

kNN
Search

Query Instance

𝐱∗

Graph Representation 𝐺∗

. . .

. . .

. . .

Initial 

Embedding

𝜙

 𝐲∗

Prediction

Figure 1. Schematic of the kNN graph neural network (kNNGNN) prediction procedure.

The proposed method does not require additional optimization procedures when
making predictions. The prediction for a query instance is simply conducted by performing
a kNN search to identify the kNN instances and then processing these instances with the
model. This is advantageous in terms of computational efficiency.

As the proposed method learns the kNN rule, incremental learning can be imple-
mented efficiently. This is the main advantage of the kNN algorithm compared to other
learning algorithms, especially when additional training data are collected over time after
the model is trained. When new labeled data are added to the training dataset D, the
prediction performance will be improved without updating the model.

4. Experimental Investigation
4.1. Datasets

The effectiveness of the proposed method was investigated through experiments on
various benchmark datasets. They contained 20 classification datasets, and twenty regression
datasets were collected from the UCI machine learning repository (http://archive.ics.uci.
edu/ml/ (accessed on 10 January 2021) and the StatLib datasets archive (http://lib.stat.
cmu.edu/datasets/(accessed on 10 January 2021)). The datasets used for classification
tasks were annealing, balance, breastcancer, carevaluation, ecoli, glass, heart, ionosphere, iris,

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/
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landcover, movement, parkinsons, seed, segment, sonar, vehicle, vowel, wine, yeast, and zoo.
The datasets used for regression tasks were abalone, airfoil, appliances, autompg, bikesharing,
bodyfat, cadata, concretecs, cpusmall, efficiency, housing, mg, motorcycle, newspopularity, skillcraft,
spacega, superconductivity, telemonitoring, wine-red, and wine-white. Each dataset had a
different number of instances with a different dimensionality. For each dataset, one-
thousand instances were randomly sampled if the size of the dataset was greater than 1000.
All numeric variables were normalized into the range of [−1, 1]. The details of the datasets
used are listed in Tables 1 and 2.

Table 1. Summary statistics of the error rate over different hyperparameter settings on the classification datasets.

Dataset [Size × Dim.] No. of Classes
Uniform kNN Weighted kNN kNNGNN (Proposed)

Average Std. Dev. Best Average Std. Dev. Best Average Std. Dev. Best

annealing [898 × 38] 5 0.0724 0.0356 0.0175 0.0364 0.0146 0.0174 0.0254 0.0046 0.0189
balance [625 × 4] 3 0.1453 0.0356 0.1130 0.1436 0.0377 0.1098 0.1327 0.0235 0.1046
breastcancer [683 × 9] 2 0.0382 0.0051 0.0306 0.0381 0.0051 0.0305 0.0369 0.0051 0.0290
carevaluation [1000 × 6] 4 0.2035 0.0306 0.1619 0.1858 0.0326 0.1461 0.1110 0.0354 0.0717
ecoli [336 × 7] 8 0.1853 0.0350 0.1427 0.1703 0.0256 0.1422 0.1849 0.0238 0.1555
glass [214 × 9] 6 0.3808 0.0425 0.3196 0.3441 0.0229 0.3074 0.3703 0.0259 0.3244
heart [298 × 13] 2 0.2081 0.0311 0.1792 0.2093 0.0349 0.1684 0.2126 0.0366 0.1804
ionosphere [351 × 34] 2 0.1808 0.0448 0.1120 0.1790 0.0428 0.1120 0.0838 0.0122 0.0681
iris [150 × 4] 3 0.0886 0.0522 0.0407 0.0766 0.0417 0.0427 0.0573 0.0157 0.0413
landcover [675 × 147] 9 0.3550 0.2050 0.1950 0.3450 0.2023 0.1847 0.2187 0.0513 0.1767
movement [360 × 90] 15 0.4808 0.1436 0.2125 0.3679 0.1125 0.2125 0.3300 0.0375 0.2569
parkinsons [195 × 22] 2 0.1634 0.0458 0.0775 0.1373 0.0368 0.0775 0.1536 0.0253 0.0918
seed [210 × 7] 3 0.0809 0.0114 0.0590 0.0779 0.0090 0.0610 0.0840 0.0078 0.0619
segment [1000 × 19] 7 0.1021 0.0281 0.0594 0.0840 0.0184 0.0586 0.0749 0.0079 0.0586
sonar [208 × 60] 2 0.2929 0.0621 0.1706 0.2684 0.0556 0.1706 0.2387 0.0349 0.1837
vehicle [846 × 18] 4 0.2951 0.0469 0.2276 0.2880 0.0432 0.2239 0.2775 0.0391 0.2191
vowel [990 × 10] 11 0.2868 0.1367 0.0516 0.1450 0.0553 0.0516 0.1504 0.0404 0.0561
wine [178 × 13] 3 0.1035 0.1010 0.0316 0.0861 0.0759 0.0304 0.0522 0.0329 0.0270
yeast [1000 × 8] 10 0.4495 0.0218 0.4305 0.4369 0.0292 0.4116 0.4514 0.0284 0.4222
zoo [101 × 16] 7 0.2269 0.1656 0.0505 0.1145 0.0776 0.0484 0.1012 0.0462 0.0709

The lowest values for each dataset are presented in bold.

Table 2. Summary statistics of the RMSE over different hyperparameter settings on the regression datasets.

Dataset [Size × Dim.] Uniform kNN Weighted kNN kNNGNN (Proposed)

Average Std. Dev. Best Average Std. Dev. Best Average Std. Dev. Best

abalone [1000 × 8] 0.2018 0.0183 0.1812 0.2006 0.0185 0.1804 0.1982 0.0103 0.1829
airfoil [1000 × 5] 0.2573 0.0185 0.2209 0.2270 0.0115 0.2060 0.1884 0.0125 0.1698
appliances [1000 × 25] 0.2663 0.0173 0.2533 0.2617 0.0190 0.2493 0.2601 0.0024 0.2563
autompg [392 × 7] 0.1846 0.0137 0.1642 0.1768 0.0139 0.1576 0.1821 0.0092 0.1715
bikesharing [1000 × 14] 0.1886 0.0315 0.1386 0.1813 0.0291 0.1348 0.0752 0.0481 0.0310
bodyfat [252 × 14] 0.1887 0.0345 0.1434 0.1855 0.0350 0.1416 0.1296 0.0459 0.0830
cadata [1000 × 8] 0.3384 0.0281 0.2999 0.3329 0.0285 0.2968 0.3153 0.0243 0.2848
concretecs [1000 × 8] 0.2566 0.0197 0.2237 0.2361 0.0197 0.2065 0.2036 0.0236 0.1804
cpusmall [1000 × 12] 0.1370 0.0503 0.0828 0.1247 0.0414 0.0810 0.0876 0.0143 0.0708
efficiency [768 × 8] 0.1468 0.0326 0.1077 0.1392 0.0346 0.0980 0.0700 0.0326 0.0483
housing [506 × 13] 0.2503 0.0197 0.2179 0.2333 0.0168 0.2038 0.2180 0.0199 0.1847
mg [1000 × 6] 0.2947 0.0249 0.2782 0.2891 0.0275 0.2697 0.2923 0.0181 0.2802
motorcycle [133 × 1] 0.2845 0.0473 0.2415 0.2862 0.0170 0.2730 0.2694 0.0195 0.2491
newspopularity [1000 × 58] 0.1242 0.0117 0.1156 0.1244 0.0117 0.1158 0.1218 0.0014 0.1200
skillcraft [1000 × 18] 0.3741 0.0435 0.3365 0.3734 0.0437 0.3354 0.3603 0.0241 0.3317
spacega [1000 × 6] 0.1576 0.0124 0.1415 0.1552 0.0131 0.1392 0.1556 0.0097 0.1421
superconductivity [1000 × 81] 0.2962 0.0449 0.2574 0.2790 0.0393 0.2454 0.2655 0.0105 0.2491
telemonitoring [1000 × 16] 0.4274 0.0363 0.3943 0.4235 0.0377 0.3905 0.4121 0.0125 0.3914
wine-red [1000 × 11] 0.2844 0.0234 0.2668 0.2751 0.0272 0.2547 0.2812 0.0088 0.2708
wine-white [1000 × 11] 0.2895 0.0232 0.2756 0.2832 0.0259 0.2671 0.2854 0.0077 0.2758

The lowest values for each dataset are presented in bold.
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4.2. Compared Methods

Three kNN methods that use different weighting schemes w were compared in the
experiments: uniform kNN, weighted kNN, and the proposed kNNGNN. The uniform
kNN and weighted kNN respectively used the following weighting functions:

wU(d(x, x′)) = 1/k;

wW(d(x, x′)) = 1/d(x, x′).
(8)

For kNNGNN, the weighting function is embedded implicitly.
For each method, the hyperparameter settings were varied to examine their effects.

The candidates for the distance function d were as follows:

Manhattan dL1(x, x′) = ||x− x′||1;

Euclidean dL2(x, x′) = ||x− x′||2 =
√
(x− x′)T(x− x′);

Mahalanobis dM(x, x′) =
√
(x− x′)TS−1(x− x′),

(9)

where S is the covariance matrix of the input variables calculated from the training dataset.
Accordingly, there were a total of nine combinations of distance and weighting func-

tions compared in the experiments, as summarized in Table 3. None of the methods used
any additional optimization procedures when making predictions. For kNNGNN, the
distance function was only explicitly used for the kNN search to generate graph represen-
tations of the data. For each combination, the effect of k was investigated on the prediction
performance by varying its value from 1, 3, 5, 7, 10, 15, 20, and 30.

Table 3. Methods compared in the experiments.

kNN Method (Weighting Function w)

Uniform kNN Weighted kNN kNNGNN (Proposed)

distance function d Manhattan (L1) kNN_L1 WkNN_L1 kNNGNN_L1
Euclidean (L2) kNN_L2 WkNN_L2 kNNGNN_L2

Mahalanobis (M) kNN_M WkNN_M kNNGNN_M

4.3. Experimental Settings

In the experiments, the performance of each method was evaluated using a two-fold
cross-validation procedure. In this procedure, the original dataset was divided into five
disjoint subsets. Then, two iterations were conducted, each of which used one subset and
the other subset as the training and test sets, respectively. As performance measures, the
misclassification error rate and root mean squared error (RMSE) were used for the classifi-
cation and regression tasks, respectively. Given a test set denoted by D′ = {(xt, yt)}N′

t=1,
the performance measures are calculated as:

ErrorRate =
1

N′ ∑
(xt ,yt)∈D′

I(argmax(yt) 6= argmax(ŷt));

RMSE =
1

N′ ∑
(xt ,yt)∈D′

(yt − ŷt)
2.

(10)

For the proposed method, each prediction model was built based on the following
configurations. In the objective function J , the loss function L used for the classification
and regression tasks was set to cross-entropy and squared error, respectively. For the
model, the hyperparameter L was set to 3, as Gilmer et al. [32] demonstrated any L ≥ 3
would work. The hyperparameter p was explored on {10, 20, 50} by holdout validation.
In the training phase, dropout was applied to the function r with a dropout rate of 0.1
for regularization [34]. During the training, eighty percent and 20% of the training set
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were used to train and validate the model, respectively. The model parameters were
updated using the Adam optimizer with a batch size of 20. The learning rate was set to
10−3 at the first training epoch and was reduced by a factor of 0.1 if no improvement in
the validation loss was observed for 10 consecutive epochs. The training was terminated
when the learning rate was decreased to 10−7 or the number of epochs reached 500. In
the inference phase, for each query instance, thirty different outputs were obtained by
performing stochastic forward passes through the trained model with the dropout turned
on [35]. The average of these outputs was then used to obtain the predicted label for
the instance.

All baseline methods were implemented using the scikit-learn package in Python. The
proposed method was implemented based on GPU-accelerated TensorFlow in Python. All
experiments were performed 10 times independently with different random seeds. For
the results, the average performance over the repetitions was compared. Then, for each of
the three weighting functions w, the summary statistics of the performance over different
settings of distance functions d and the number of neighbors k are reported.

4.4. Results and Discussion

Figure 2 shows the error rate comparison results of the baseline and proposed methods
with varying the hyperparameter settings on 20 classification datasets. Compared to the
baseline methods, kNNGNN overall yielded lower error rates at various values of k for most
datasets. For the results with different hyperparameters, the average, standard deviation,
and best error rate for each dataset are summarized in Table 1. kNNGNN yielded the
lowest average and standard deviation of the error rate over different hyperparameters
on most datasets, which indicated that the performance of kNNGNN was less sensitive to
its hyperparameter settings. In particular, kNNGNN was superior to the baseline method
when the hyperparameter k was larger.

Figure 3 compares the baseline and proposed methods in terms of the RMSE with
varying hyperparameter settings on 20 regression datasets. As shown in this figure, the
performance curves of kNNGNN flattened as k increased on most datasets, whereas the
RMSE of the baseline methods tended to increase at large k for some datasets. Table 2 shows
the average, standard deviation, and best RMSE for different hyperparameter settings
for each dataset. The behavior of kNNGNN was similar to that of the classification tasks.
kNNGNN showed stable performance against changes in the hyperparameter settings.
kNNGNN yielded the lowest average and standard deviation of the RMSE for the majority
of datasets.

In summary, the experimental results successfully demonstrated the effectiveness of
kNNGNN in improving the prediction performance for both classification and regression
tasks. Although kNNGNN failed to yield the lowest error for some datasets, kNNGNN
yielded high robustness to its hyperparameters. This indicated that kNNGNN would
provide comparable performance without carefully tuning its hyperparameters; thus, it can
be preferred in practice considering the difficulty of choosing the optimal hyperparameter
setting. Because the performance curve of kNNGNN flattened at large k values on most
datasets, setting a moderate k value around 15∼20 would be reasonable considering the
trade-off between the performance and computational cost.
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Figure 2. Error rate comparison with varying hyperparameter settings on classification datasets.
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Figure 3. RMSE comparison with varying hyperparameters on regression datasets.
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5. Conclusions

This study presented kNNGNN, which learns a task-specific kNN rule from data in an
end-to-end fashion. The proposed method constructed the kNN rule in the form of a graph
neural network, in which the distance and weighting functions were embedded implicitly.
The graph neural network considered the kNN graph of an instance as the input to predict
the label of the instance. Owing to the flexibility of neural networks, the method can be
applied to any form of supervised learning tasks including classification and regression. It
does not require any extra optimization procedure when making predictions for new data,
which is beneficial in terms of computational efficiency. Moreover, as the method learns
the kNN rule instead of the explicit relationship between the input and output variables,
incremental learning can be implemented efficiently.

The effectiveness of the proposed method was demonstrated through experiments on
benchmark classification and regression datasets. The results showed that the proposed
method can yield comparable prediction performance with less sensitivity to the choice
of its hyperparameters. The proposed method allows more robust kNN learning without
carefully tuning the hyperparameters. The use of a graph neural network for kNN learning
may still have room for improvement and thus merits further investigation. One practical
concern is the high complexity of a graph neural network in terms of time and space, which
increases with k. A graph neural network cannot be trained in a reasonable amount of time
without using a GPU. Alleviation of complexity to improve learning efficiency will be an
avenue for future work.
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