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Abstract: During the abrupt outbreak of the COVID-19 pandemic, the public health system of most of
the world’s nations has been tested. However, it is the concern of governments and other responsible
entities to provide the correct statistics and figures to take any practicable necessary steps such
as allocation of the requisite quarantine operations, calculation of the needed number of places in
hospitals, determination of the extent of personal security, and determining the degree of isolation
of infectious people, among others. Where the statistical literature supposes that a model governs
every real phenomenon, once we know the model, we can evaluate the dilemma. Therefore, in
this article, we compare the COVID-19 pandemic dynamics of two neighboring Arabic countries,
Egypt and Saudi Arabia, to provide a framework to arrange appropriate quarantine activities. A new
generalized family of distributions is developed to provide the best description of COVID-19 daily
cases and data on daily deaths in Egypt and Saudi Arabia. Some of the mathematical properties of
the proposed family are studied.

Keywords: coronavirus COVID-19 pandemic; Egypt; Saudi Arabia; mathematical modeling; statisti-
cal methods; Nadarajah-Haghighi distribution; maximum likelihood; moment

1. Introduction

In the past few months, the COVID-19 pandemic has dominated the world and
the international health community. Many authors have made efforts to compare the
epidemic patterns of various regions. Nesteruk [1] provided a q the epidemic dynamics
in Italy and mainland China [2] and provided a comparison of the epidemic dynamics in
Ukraine and neighboring countries [3]. Zhao et al. [4] compared the COVID-19 pandemic
dynamics of two neighboring Asian countries, Iran and Pakistan, and developed a new
statistical model describing data on COVID-19 daily deaths in Iran and Pakistan. There
have been some efforts to try to model the dynamics of the disease, such as by Zhao et al. [4]
Sarkodie and Owusu [5], Giordano et al. [6], Anastassopoulou et al. [7], Naik et al. [8],
Musa et al. [9], Alghamdi et al. [10], and Langemann et al. [11]. There have also been
several efforts to use machine learning to model disease dynamics. La Gatta et al. [12]
looked at using deep learning for epidemiological research and for learning about Covid19
spatio-temporal patterns. Nadler et al. [13] applied a neural susceptible-infected-recovered
(SIR) model to developed and developing countries forecast confirmed infections, and
analyzed future trajectories.

In the statistical literature, suppose that a model governs every real phenomenon.
Once we know the model, we can fully evaluate our dilemma or phenomenon. Several
different approaches have been created to build new models from older ones, and several
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continuous distributions were constructed by expanding other common continuous dis-
tributions; see, for example, Alzaatreh and Famoye [14], Al-Babtain et al. [15], Jayakumar
and Mathew [16], Cordeiro et al. [17], Oluyede et al. [18], Mansour and Mahdy [19],
Maurya et al. [20], Abouammoh and Kayid [21], Chen [22], Mansour et al. [23] and
Tahir et al. [24].

Here, we present a fundamental study to compare Saudi Arabia’s and Egypt’s outbreak
dynamics, which reports the total number of outbreaks, full recoveries, total fatalities, and
real active cases. COVID-19 daily cases and daily deaths in Egypt and Saudi Arabia are
presented in Figure 1. From Figure 1, it is obvious that the number of daily cases in Saudi
Arabia is more than the number of daily cases in Egypt, but the number of daily deaths
in Saudi Arabia is less than the number of daily deaths in Egypt. Additionally, the total
number of cases, total number recovered, the total number of deaths, and the total number
of active cases are all found in Figure 2. The histogram for COVID-19 daily cases, daily
deaths, and daily recovered in Egypt and Saudi Arabia is displayed in Figure 3. It is clear
that the shapes of the distributions differ for different data. There is much interest in
creating more flexible statistical distributions to describe real-world phenomena in the
statistics field. Many different types of generalized distributions have been developed and
applied to various phenomena. The fact that these generalized distributions have more
parameters is a common feature. After looking at the existing generalized distributions,
and the shapes of the distributions in Figure 3, we found that we need a new generalized
family of distributions to provide an adequate description of COVID-19 daily cases and
daily death data in Egypt and Saudi Arabia.

This article is structured as follows: the proposed method is discussed in Section 2.
Section 3 presents the estimation of the model parameters. A special case of the proposed
method is introduced in Section 4. Some properties of the proposed method are discussed
in Section 5. Section 6 is devoted to modeling COVID-19 events. Finally, the article is
concluded in the last section.
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2. Proposed Family

In the statistical literature, we suppose that some models govern every real phe-
nomenon. Once we know the model, we can fully evaluate our dilemma or phenomenon,
since different models have been built to accomplish this mission. Poisson distribution
is one of the most famous models that also provides a family of distribution. Using that
family, several lifetime models have been proposed and their properties studied by several
authors (see Maurya and Nadarajah [25]). Nadarajah and Cancho [26] proposed a three-
parameter geometric exponential Poisson distribution, which is a compound distribution
of a geometric exponential model with zero truncated Poisson distribution. This depended
on the principle (minimum and maximum) used in series and parallel structures. In this
section, we present a new generalized geometric Poisson (NGGP) family. This depends
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on the principle (maximum and minimum) used in parallel and series structures. The
cumulative distribution function (cdf) of the NGGP family of distributions is defined by

F(x) = F(x, α, ρ; ξ) =
(1− ρ)[1− exp(−αG(x; ξ))]

1− e−α − ρ[1− exp(−αG(x; ξ))]
, (1)

where G(x; ξ) is a baseline cdf which depends on parameter vector ξ, x > 0, α > 0 and
0 < ρ < 1. The corresponding probability density function, hazard rate function and
reversed failure rate function are

f (x) = f (x, α, ρ; ξ) =
α(1− e−α)(1− ρ)g(x; ξ)[exp(−αG(x; ξ))]

[1− e−α − ρ[1− exp(−αG(x; ξ))]]2
, (2)

where g(x; ξ) is a baseline pdf which depends on parameter vector ξ,

h(x) = f (x)
1−F(x)

=
α(1−e−α)(1−ρ)g(x;ξ)[exp(−αG(x;ξ))]

[exp(−αG(x;ξ))−exp(−α)][1−e−α−ρ[1−exp(−αG(x;ξ))]] ,
(3)

and

rh(x) =
f (x)
F(x)

=
α(1− e−α)g(x; ξ)[exp(−αG(x; ξ))]

[1− exp(−αG(x; ξ))][1− e−α − ρ[1− exp(−αG(x; ξ))]]
.

The shapes of (2) and (3) can be studied by taking their derivatives. Note that

∂ log f (x)
∂x

=
g̀(x)
g(x)

− αg(x) +
2αρg(x)[exp(−αG(x))]

1− e−α − ρ[1− exp(−αG(x))]
,

and

∂ log h(x)
∂x

=
∂ log f (x)

∂x
+

αg(x)[exp(−αG(x))]
exp(−αG(x))− exp(−α)

− αρg(x)[exp(−αG(x))]
1− e−α − ρ[1− exp(−αG(x))]

.

The quantile function corresponding to (1) is

F−1(u) = G−1
[
−1
α

log
{

1− u(1− e−α)

1− ρ + u ρ

}]
.

Using the series expansion, we can express (1) and (2) as mixtures.
We can rewrite F(x) as

F(x) =
(1− ρ)

(1− e−α − ρ)

∞

∑
k=0

(
−1
k

)[
ρ

1− e−α − ρ

]k
[exp(−kαG(x))− exp(−(k + 1)αG(x))], (4)

and

f (x) =
α(1− e−α)(1− ρ)

(1− e−α − ρ)2

∞

∑
k=0

(
−1
k

)[
ρ

1− e−α − ρ

]k
g(x)exp(−(k + 1)αG(x)). (5)

3. Maximum Likelihood Estimation

In this section, to achieve estimates of the maximum likelihood estimators (MLEs)
of the parameters of the NGGP family, we draw full samples from the population. Let
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x1, x2, . . . , xn be the observed sample from Equation (2). The log-likelihood function can
be represented as

log L = n log α + n log(1− e−α) + n log(1− ρ) +
n
∑

i=1
log g(xi; ξ)− α

n
∑

i=1
G(xi; ξ)

−2 n
n
∑

i=1
log[1− e−α − ρ[1− exp(−αG(xi; ξ))]].

The partial derivatives of the log-likelihood function for the parameters (x; α, ρ; ξ) are
given, respectively by

∂ log L
∂α

=
n
α
+

n e−α

(1− e−α)
−

n

∑
i=1

G(xi; ξ)− 2 n
n

∑
i=1

e−α − ρG(xi; ξ)exp(−αG(xi; ξ))

[1− e−α − ρ[1− exp(−αG(xi; ξ))]]
, (6)

∂ log L
∂ρ

=
−n

(1− ρ)
+ 2 n

n

∑
i=1

[1− exp(−αG(xi; ξ))]

[1− e−α − ρ[1− exp(−αG(xi; ξ))]]
, (7)

and
∂ log L

∂ξ =
n

∑
i=1

1
g(xi ;ξ)

× ∂ g(xi ;ξ)
∂ξ − α

n

∑
i=1

∂ G(xi ;ξ)
∂ξ

−2 n
n

∑
i=1

α exp(−αG(xi ;ξ))
[1−e−α−ρ[1−exp(−αG(xi ;ξ))]]

× ∂ G(xi ;ξ)
∂ξ .

(8)

The maximum likelihood estimator ϑ̂ =
(
α̂, ρ̂, ξ̂

)
of ϑ = (α, ρ, ξ) is obtained by solving

the nonlinear system of Equations (6)–(8). It is usually more convenient to use nonlinear
optimization algorithms such as the quasi-Newton algorithm to numerically maximize the
log-likelihood function.

4. A Special Sub Model

Nadarajah and Haghighi [27] proposed a generalization of the exponential distribu-
tion, called Nadarajah-Haghighi (NH) distribution, with density and distribution functions
given by

g(x, δ, β) = δβ(1 + βx)δ−1e1−(1+βx)δ

, (9)

and
G(x, δ, β) = 1− e1−(1+βx)δ

, (10)

respectively.
By using (1), (2), (9) and (10), the cdf and probability density function (pdf) of the

new geometric Nadarajah-Haghighi Poisson (NGNHP) distribution are given by

f (x, α, ρ, δ, β) =
αδβ(1− e−α)(1− ρ)δβ(1 + βx)δ−1e1−(1+βx)δ

[
exp
(
−α(1− e1−(1+βx)δ

)
)]

[
1− e−α − ρ

[
1− exp

(
−α(1− e1−(1+βx)δ

)
)]]2 , (11)

and

F(x, α, ρ, δ, β) =
(1− ρ)

[
1− exp

(
−α(1− e1−(1+βx)δ

)
)]

1− e−α − ρ
[
1− exp

(
−α(1− e1−(1+βx)δ

)
)] , (12)

respectively.
For different values of the model parameters, plots for the pdf and cdf of the NGNHP

model are sketched in Figures 4 and 5.
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5. Statistical Properties

In this section, we derive computable representations for some statistical functions
associated with the NGNHP distribution, whose pdf admits a simple representation.

5.1. Expansion for the NGNHP Density Function

An expansion for Equation (11) can be derived using (5), (9), and (10). We also consider
the following expansions:

e−z =
∞

∑
i=0

(−z)i

i!
, (1− z)b =

b

∑
i=0

(
b
i

)
(−z)i.

Then, the NGNHP pdf can be expressed as

f (x) =
∞

∑
k,i=0

i

∑
j=0

Ak,i,j (1 + βx)δ−1 e(j+1)(1−(1+βx)δ), (13)

where

Ak,i,j =
α(1− e−α)(1− ρ)

(1− e−α − ρ)2

(
−1
k

)(
i
j

)
(−1)i+j

i!
δβ

[
ρ

1− e−α − ρ

]k
[(k + 1)α]i.
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5.2. Moments

The most important properties of a distribution can be studied by studying the
moments of the distribution. The rth ordinary moment of the NGNHP, say µ′r = E(Xr),
using Equation (13) is given by:

µ′r =
∞

∑
k,i,j=0

Ak,i,j

∞∫
0

xr (1 + βx)δ−1 e(j+1)(1−(1+βx)δ) dx.

By noting that 0 < e(1−(1+βx)δ) < 1, we can write

µ′r =
∞

∑
k,i=0

i

∑
j=0

Ak,i,je(j+1)Hj,r , (14)

where

Hj,r =

∞∫
0

xr (1 + βx)δ−1e−(j+1)(1+βx)δ

dx,

for r ∈ R, and setting y = (j + 1)(1 + βx)δ, we have

x =

{
1
β

[(
y

j + 1

) 1
δ

− 1

]}
,

and then, after some algebra, we can write

Hj,r =
β−r−1

δ(j + 1)

∞∫
j+1

[(
y

j + 1

) 1
δ

− 1

]r

e−y dy. (15)

The most general case of the binomial theorem is the identity

(a + s)υ =
∞

∑
m=0

(
υ
m

)
am sυ−m, (16)

where
(

υ
m

)
is a binomial coefficient and υ is a real number. This power series con-

verges when υ ≥ 0 is an integer or |a/b| < 1. By using (16) in Equation (15), since
|(y/(j + 1))̂(1/δ) | < 1, it follows by interchanging the sum and the integral that

Hj,r =
β−r−1

δ(j + 1)

∞

∑
m=0

(−1)m
(

r
m

) ∞∫
j+1

(
y

j + 1

) r−m
δ

e−y dy.

Then, we can write from (14)

µ′r =
1
βr

∞

∑
k,i=0

i

∑
j=0

∞

∑
m=0

Ak,i,j
(−1)me(j+1)

(j + 1)
r+δ−m

δ

(
r
m

)
Γ
(

r + δ−m
δ

, j + 1
)

. (17)

Next, we find a lemma.

Lemma 1. The rth incomplete moment of X, say I(x; r, θ) =
∫ x

0 ur f (u)du, is given by

I(x; r, θ) =
∞

∑
k,i=0

i

∑
j=0

Ak,i,je(j+1)
x∫

0

ur (1 + βu)δ−1e−(j+1)(1+βu)δ

du, r = 1, 2, . . . ,
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where θ = (α, ρ, δ, β). Then we have

I(x; r, θ) = 1
βr

∞
∑

k,i=0

i
∑

j=0

∞
∑

m=0
Ak,i,j

(−1)me(j+1)

(j+1)
r+δ−m

δ

(
r
m

)
×
[
Γ
(

r+δ−m
δ , j + 1

)
− Γ

(
r+δ−m

δ , (j + 1)(1 + βu)δ
)]

.

Proof. The proof follows easily by changing variables in the integration.
The first incomplete moment of X, denoted by I1(x; θ), is computed by taking a given

value of r = 1. The first incomplete moment is significant in the calculation of various
statistics and the Bonferroni and Lorenz curves. The degree of variability in a population is
calculated by calculating the frequency of the individual differences from the mean and
the median. The mean deviations, about the mean and about the median of X, depend on
I1(x; θ). �

6. Modeling COVID-19 Daily Cases and Daily Deaths in Egypt and Saudi Arabia

As we mentioned above, more statistical analysis of COVID-19 events is needed before
any conclusions can be made. However, it is now required to formulate a fitting model to
classify COVID-19 incidents, such as daily cases, total cases, daily deaths, total deaths, etc.,
to obtain a good estimate of the quarantine activities.

In this section, we model COVID-19 daily cases and daily deaths data in Egypt
and Saudi Arabia from 14 February 2020 to 16 February 2021. The proposed NGNHP
distribution is applied to this data, and the proposed NGNHP model can be applied
effectively to provide the best description of COVID-19 daily cases and daily deaths data
of the two neighbor countries.

To compare with other distributions in order to know which distribution provides
the best fits to data, we consider specific discrimination measures such as Akaike infor-
mation criterion (AIC), Corrected Akaike Information Criterion (CAIC), and Bayesian
information criterion (BIC). It is well established that choosing the right approximation
model to align accuracy with the alternatives is preferred. It is necessary to assess the
distributional parameters of a parametric model since the distribution of these parameters
will dramatically affect the overall fit’s adequacy. The maximum likelihood estimates of
the model parameters for Egyptian COVID-19s daily cases data, Saudi COVID-19 daily
cases data, Egyptian COVID-19 daily deaths data and Saudi COVID-19 daily deaths data
are provided in Table 1. The discrimination measures for Egyptian COVID-19 daily cases
data, Saudi COVID-19 daily cases data, Egyptian COVID-19 daily deaths data and Saudi
COVID-19 daily deaths data are presented in Table 2.

Table 1. Estimates of the model parameters for the data.

Estimates of the MLEs of the Parameters

Data ^
α

^
ρ

^
δ

^
β

Egyptian COVID-19’s daily cases data 0.1461 0.9990 7632 0.1413
Saudi COVID-19’s daily cases data 0.0509 0.9985 7286 0.1327

Egyptian COVID-19’s daily deaths data 2.3845 0.6525 0.0106 2.2230
Saudi COVID-19’s daily deaths data 0.1576 0.5715 0.0715 1.009

Table 2. Discrimination measures of the models for the data.

AIC CAIC BIC

Egyptian COVID-19’s daily cases data 5094.923 5095.011 5110.566
Saudi COVID-19’s daily cases data 5560.234 5560.322 5575.877

Egyptian COVID-19’s daily deaths data 2976.485 2976.573 2992.129
Saudi COVID-19’s daily deaths data 2840.788 2840.876 2856.431
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Distribution fitting helps us create accurate models of the random processes we
operate with, saving us from time and money losses caused by incorrect model selection
and leading to smarter business decisions. Parameters define distributions. The maximum
likelihood estimation method is used to estimate the distribution’s parameters from a data
set. There are many methods for checking how “good” the distribution matches the data.
Comparing the histogram to the probability density function, comparing the empirical
distribution function to the underlying cumulative distribution function, constructing a
Q–Q (quantile–quantile) plot, which is a graphical method for comparing two probability
distributions by plotting their quantiles against each other, and constructing a P-P plot are
all examples of goodness of fit methods.

Thus, after computing the model parameters’ values, we can now show how the
proposed model provides the best description of COVID-19 daily cases data and COVID-
19 daily deaths data. For such a purpose, we considered the graphical sketching of the
estimated pdf (Epdf), the estimated cdf (Ecdf), the probability–probability (PP) plot, and
the quantile–quantile (QQ) plot.

The fitted pdf, the fitted cdf, the probability–probability (PP) plot, and the quantile–
quantile (QQ) plot of the NGNHP model for COVID-19 daily cases data in Egypt are
presented in Figure 6. The fitted pdf, the fitted cdf, the PP plot, and the QQ plot of the
NGNHP model for COVID-19 daily cases data in Saudi Arabia are also presented in
Figure 7. Further, the fitted pdf, the fitted cdf, the PP plot, and the QQ plot of the NGNHP
model for COVID-19 daily deaths data in Egypt are presented in Figure 8. Additionally, the
fitted pdf, the fitted cdf, the PP plot, and the QQ plot of the NGNHP model for COVID-19
daily deaths data in Saudi Arabia are presented in Figure 9. The black lines of Ecdf and
Epdf in Figures 6–9 show the real behaviors of COVID-19 daily cases and daily deaths data
in Egypt and Saudi Arabia, whereas the blue and green lines show the proposed NGNHP
model’s performance.
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Figure 9. Estimated pdf, estimated cdf, PP Plot, and QQ plot of the NGNHP model for Saudi
COVID-19 daily deaths data.

To show how closely the proposed model fits COVID-19 daily cases and daily deaths
data in Egypt and Saudi Arabia, the PP plots and QQ plots of the NGNHP model are
provided in Figures 6–9. From Figures 5–8, we can see that the proposed model provides a
close fit to COVID-19 daily cases and daily deaths data in Egypt and Saudi Arabia.

Figures 6–9 illustrate that the proposed NGNHP model fits COVID-19 daily cases and
daily deaths data in Egypt and Saudi Arabia very closely, leading to the conclusion that the
proposed model performs well.

We presented a new class of statistical distributions in this paper that can model the
incidents resulting from COVID-19 pandemic dynamics. We offered a forum for researchers
to use our model recommendation and we anticipate that current researchers will use our
model for this and other similar purposes.

7. Concluding Remarks

The situation with the global coronavirus pandemic is very threatening. However, it is
the concern of governments and other responsible entities to provide correct statistics and
figures to take any practicable necessary step, such as allocation of the requisite quarantine
operations, calculation of the needed number of places in hospitals, determination of the
extent of personal security, and determining the degree of isolation of infectious people,
among others. Therefore, the proposed method of epidemic dynamics comparison can
be used to evaluate the actual situation. Forecasts are potentially unpredictable, but it is
important to estimate and convey this ambiguity in forecasting so that users can make
the best choices possible. Forecast uncertainty can be measured by issuing probability
predictions regarding possible observed events based on existing projections and historical
findings and forecasts. Complete probability density functions or cumulative distribution
functions may be used to generate such probabilistic forecasts. Probability predictions must
be recalibrated on measurements as an inherent part of the forecasting phase since projec-
tions estimate the potential condition of model variables rather than current real-world
measurable variables. Forecasters should issue estimates of the conditional probability
distribution of the future observed quantity given the available sample of ensemble pre-
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dictions. Furthermore, we introduced a new family of statistical models to provide the
best description of COVID-19 events. We applied the proposed method to COVID-19 daily
cases data and COVID-19 daily deaths data of Egypt and Saudi Arabia, and observed that
the proposed model fitted the COVID-19 daily cases data and the COVID-19 daily deaths
data very closely.
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