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Abstract: Black-box techniques have been applied with outstanding results to classify, in a supervised
manner, the movement patterns of Alzheimer’s patients according to their stage of the disease. How-
ever, these techniques do not provide information on the difference of the patterns among the stages.
We make use of functional data analysis to provide insight on the nature of these differences. In par-
ticular, we calculate the center of symmetry of the underlying distribution at each stage and use it to
compute the functional depth of the movements of each patient. This results in an ordering of the data
to which we apply nonparametric permutation tests to check on the differences in the distribution,
median and deviance from the median. We consistently obtain that the movement pattern at each
stage is significantly different to that of the prior and posterior stage in terms of the deviance from
the median applied to the depth. The approach is validated by simulation.

Keywords: Alzheimer’s disease; dementia; functional data analysis; functional depth; statistical data
depth; symmetry

1. Introduction

Alzheimer’s disease is a neurodegenerative condition that affects 15 million people
worldwide [1]. The evolution of the patient passes through different stages of the disease,
which, according to the Global Deterioration Scale (GDS) [2], are:

(GDS 1) no cognitive impairment,
(GDS 2) early cognitive impairment,
(GDS 3) mild cognitive impairment,
(GDS 4) mild dementia,
(GDS 5) moderate dementia,
(GDS 6) moderately severe dementia and
(GDS 7) severe dementia.

An important aspect is diagnosing when a patient evolves from his or her current
stage into the next one, which usually entails a complex physical examination carried by
the patient’s medical doctor. As an additional tool for the doctor to consider in taking that
decision, [3,4] analyzed the movement patterns of Alzheimer’s sufferers when moving
freely in a daycare facility. The objective of those papers was supervised classification,
so that given the movement patterns of a set of patients and their disease stage, the stage
of other patients could be predicted based on their movement patterns. The analysis used
neural networks applied to multivariate time series data. This is a black-box technique
that results in high success rates, 83% in [4] and 91% in [3], but does not reveal which
characteristics of the data helped with the classification. In [4], also an attempt to analyze
the data as functional data was made. However, no significant findings were obtained
that way.

Mathematics 2021, 9, 820. https://doi.org/10.3390/math9080820 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0268-3322
https://doi.org/10.3390/math9080820
https://doi.org/10.3390/math9080820
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9080820
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9080820?type=check_update&version=2


Mathematics 2021, 9, 820 2 of 17

The analyzed real data are recordings made by the accelerometer device of an An-
droid smartphone with a sampling rate of 8 Hz. These acceleration forces are measured
in the three spatial dimensions over time while the patients carry the smartphone in their
pocket. The data comprise repeated trivariate measurements on 35 patients in different
stages of Alzheimer’s disease:

• 7 patients in a mild stage of the disease (GDS 2 and 3),
• 18 patients in a moderate stage of the disease (GDS 4 and 5) and
• 10 patients in a severe stage of the disease (GDS 6 and 7).

The data are unusually complex in that the number of repeated measurements is
different for each patient, between 2 and 8, with a total of 187 measurements (187 three-
dimensional curves). Moreover, the length of the domain over which the trivariate func-
tional data are observed is different for each measurement and the grid of discretization
points is also different for each measurement.

This type of data is functional in nature, in fact, it can be viewed as longitudinal
functional data [5]. The modern research theme of functional data analysis (FDA) [6,7],
in which collections of measurements are viewed as partially observed realizations of
random functions (a natural viewpoint for e.g., growth trajectory data, brain imaging data
and handwriting data), belongs primarily to the area of non-parametric statistics and will
allow us to further develop the analysis of these data from an exploratory perspective.
This will provide information for a more interpretable model, in contrast to the widespread
black-box approaches to classification. For this, we will use the concepts of statistical
symmetry [8] and data depth [9].

Statistical depth functions provide an order for the elements of a given space X by
making use of a probability distribution P on that space. The deepest element(s) are
generally referred to as the median, coinciding with the center of symmetry of P when
a unique center of symmetry exists for some notion of symmetry. Although providing
an order in spaces of dimension higher than one is a non-trivial task, it is important because
statistics of order are the basis of many established nonparametric procedures, for instance,
inference based on ranks and the detection of outliers. Outlier detection is a necessary
preliminary stage in many statistical investigations and inference based on ranks can be
used, for example, in supervised classification and clustering.

Just as in the case of X = Rp, there is no unique definition of symmetry when
X is a function space F . Thus, in Section 2, we discuss difficulties associated with
some potential notions of symmetry for distributions on X = F and show there are
situations whereby a distribution on a functional space would be deemed symmetric with
respect to several of these notions, despite possessing important topological asymmetries.
After highlighting such difficulties, we describe the notion of functional symmetry used to
explore the Alzheimer’s dataset. Simultaneously, we will explain the complexity involved
in defining a statistical functional depth and give details of the one relevant for our
application, which allows for multivariate functional data. It will require specification
of an appropriate metric space and the aforementioned notion of functional symmetry.
In Section 3, we perform a simulation to illustrate that the notion of functional symmetry
employed is preserved through the use of derivatives. This is important as the acceleration
is the second derivative of the position with respect to the time. Section 4 provides the data
analysis and a suitable metric space for it. We finalize with a discussion in Section 5.

2. Methodology
2.1. Symmetry

Symmetry is a fundamental concept, and has been the focus of much contemplation
throughout history due to its manifestation in natural and scientific phenomena, as well as
in man-made structures. Its usage is common in modern language as a means to express
a particular type of structure or regularity, often geometric, that of exact correspondence
between parts of an object with reference to a point or axis of symmetry. Typically though,
the mathematical formalization of symmetry entails invariance under a family of measur-
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able transformations [10]. In simple geometric contexts, this might be invariance under
sign changes or under rotation.

We focus on symmetry in statistics, in this case, it is not the random objects themselves
to which a notion of symmetry applies, but rather their distributions. In Figure 1, essential
features of a symmetric probability distribution P are depicted, for: a space of dimension
one, X = R; a multivariate space, X = Rp; and space of functions, X = F . We explain
in detail the concept of depth later in the manuscript; however, it is worth saying that, in the
figure, symmetries in the distribution with respect to an element ζ of X are discernible
in the color, with ζ the center of symmetry. In fact, the changes in the colors show that
the datasets are ordered from the center outward.
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Figure 1. Top panels: 105 sample draws from a standard bivariate normal distribution (left) and
a dataset of raw univariate functional data (right). Bottom panel: 103 sample draws from a standard
normal distribution in dimension one. The color of the elements in each of the three plots represent
the depth based on the distance to the center of symmetry of the sample.

2.1.1. Difficulties with Notions of Functional Symmetry

The intangibility of distributions on function space leads to great difficulties in formu-
lating a well conceived notion of symmetry in this domain, as naïve point-wise extensions
of familiar notions in R or Rp ignore topological features such as continuity, contiguity
and smoothness. We illustrate the difficulties in formulating a notion of functional sym-
metry through a prototypical example of a distribution on function space, asymmetric
by construction, but symmetric with respect to many topologically apathetic notions of
functional symmetry.

For that, we make use of ([11], Example 2) where X denotes a mixture of three
processes on [0, 1], with probabilities p1 = 0.2, p2 = 0.3 and p3 = 0.5, each following a mean
zero Gaussian distribution. They differ according to the correlation length parameter m
in their covariance structure:

Cov(s, t) = e−
(s−t)2

2m2 ,

where m ∈ {1, 0.25, 0.1}.
Figure 2 depicts n = 11 typical realizations of this process, with the different panels

emphasizing the elements of the sample corresponding to the different correlation lengths.
A symmetry notion exclusive for spaces of functions should naturally consider topological
characteristics, for instance, shape and roughness. Note the difference among the three
processes in the mixture by observing the differences in the curves of the three panels
of Figure 2, from those with less curvature on the left to those with more curvature
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on the right. Thus, by making use of an appropriate metric on the functional space,
the notion of symmetry we will apply here correctly recognizes that mixtures of Gaussian
distributions like X are asymmetric.

Figure 2. Observations from a mixture of Gaussian processes on [0,1]. Mixture components are mean
zero and have covariance structure Cov(s, t) = exp{−(s− t)2/(2m2)} where m = 1 with probability
0.2, m = 0.25 with probability 0.3 and m = 0.1 with probability 0.5. Realizations corresponding to
each mixture component are highlighted in the respective panels from left (m = 1) to right (m = 0.1).

However, X is clearly symmetric around the zero function for several extensions of
multivariate symmetry; for example:

(i) X and −X are equal in law,
(ii) for any v ∈ [0, 1], the distribution of X(v), or of its derivative at v, is symmetric on R

around zero and
(iii) for any reasonable notion of symmetry in multivariate spaces, any finite linear combi-

nation of the random coefficients in the Karhunen-Loève expansion [12] of the process
X, or of its derivative process, is symmetric around the zero element.

There is no inconsistency between X not being functional symmetric and being sym-
metric with respect to plausible extensions of multivariate notions. The notions are com-
plementary. If the mixture of Gaussian distributions is asymmetric in terms of shape or
roughness, there should be a type of symmetry that is sensitive to this, as described below.

2.1.2. Metric δ-Symmetry

The notion of symmetry employed in this paper was recently defined in [11] and
is suitable for any function space, F , endowed with a metric, or pseudo-metric, which
we denote by d. For any fixed δ ∈ [0, ∞), a distribution P on F with support S is (d, δ)-
symmetric about a center

ζ(δ) := ζ(δ, P) ∈ S

if
P(Hζ(δ)

x ) ≥ 0.5− δ

for all x ∈ S, with

H
ζ(δ)
x := H

ζ(δ)
x (P) = {z ∈ S : d(z, x) ≥ max[d{x, ζ(δ)}, d{z, ζ(δ)}]}.

Denoting,

Z(δ) := Z(δ, P) = {z ∈ S : P(Hz
x) ≥

1
2
− δ for all x ∈ S}, (1)

we have that any
ζ(δ) ∈ Z(δ)
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is a center of (d, δ)-symmetry of the space F with respect to the distribution P.
The (d, δ)-symmetry induces a functional median of the space F with respect to the

distribution P, the metric median, which is

M(P) := arg min
z∈S
{δ∈ [0, ∞) : P(Hz

x) ≥ 1
2 − δ for all x ∈ S}.

A distribution on a metric function space is generally understood as symmetric if it is
(d, 0)-symmetric. The δ for which M(P) is obtained when being larger than 0 is the degree
of departure from (d, 0)-symmetry. As it occurs with the median in R, a center of (d, δ)-
symmetry is not necessarily unique (as observable from Equation (1)). Additionally, it is
functional affine invariant and has a consistent and qualitatively robust sample version [11].

This definition of symmetry shares some common ground with the notion of multi-
variate half-space symmetry in that both notions are generalizations of Equation (2) below.
Half-space symmetry is introduced in [8] for distributions on Rp, as a means to generalize
the previously existing notions of multidimensional symmetry such as central symmetry
and angular symmetry. In the particular case of p = 1, according to [8] a distribution P on
R is half-space symmetric about a center ζ if

P(Hζ
x) ≥

1
2

for all x ∈ R\ζ, with

Hζ
x :=

{
z ∈ R : |z− x| ≥ max{|x− ζ|, |z− ζ|}

}
. (2)

An important point illustrating the generality of (d, δ)-symmetry, and equivalently
of half-space symmetry, is that, in this special case of p = 1, all distributions are (d, 0)-
symmetric with center of symmetry at the median, despite not necessarily being so with
respect to more geometrically intuitive notions of symmetry.

The concept of (d, δ)-symmetry is the first one designed specifically for functional
data. Apparently, it could be applied to any metric space, however, it is indeed exclusive
to functional data in the sense that it has no useful analogue in a multivariate context.
This can be deduced from the reasoning in Section 2.1.1.

2.2. Statistical Depth

Just as in other disciplines, symmetry is a recurrent theme in statistics. For instance,
symmetric laws frequently arise as limit laws of empirical processes [13,14], and, as we
have just seen, the notion of symmetry helps to generalize the concept of median beyond
the one dimensional case, for which it has a simple and unambiguous definition. In
addition to being of independent interest, a notion of symmetry is required for constructing
statistical depth functions, as is clear from the property based definition of depth appearing
in [9,15]. According to this definition, the deepest element in a space X computed with
respect to a distribution P on X coincides with the center of symmetry of P when a unique
center of symmetry exists for some notion of symmetry. The other properties in this
definition are: distance invariance, strictly decreasing with respect to the deepest element,
upper semi-continuity, receptivity to convex hull width across the domain and continuity
in distribution.

Loosely speaking, statistical depth orders the elements of a space with respect to
a distribution, or a dataset (an empirical distribution). Thus, it lays the foundation for
many nonparametric and exploratory data analysis tools such as rank-based inference and
outlier detection, whose potential applications are wide ranging. We will employ statistical
functional depth here as an exploratory tool to gain insight into the movement patterns of
Alzheimer’s patients.
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2.2.1. Difficulties with Functional Depth Constructions

Refs. [16,17] report a problematic feature of certain depth constructions, both multivari-
ate depths (half-space [18], simplicial [19], projection [9]) and functional depths (band [20],
half region [21]). This feature is their degenerate behavior when applied in some common
functional spaces. Therefore, in formulating a functional depth, it does not suffice to simply
extend the finite dimension to infinity. The literature contains several instances of functional
depth (h-depth [22], random Tukey depth [23,24], modified band depth [20], modified half
region depth [21], spatial depth [25], for instance) and an axiomatic definition of functional
depth put forward in [15]. However, the above cited commonly used proposals violate at
least one of these axioms.

Recently, Ref. [11] has given a functional depth construction designed for functional metric
spaces, and not multivariate. This construction was proved to satisfy the axiomatic definition
of statistical functional depth under a mild condition on the metric. That condition is met
by most metrics, including the Lebesgue and Sovolev metrics, but not the supremum metric.
The construction, which we describe below, makes use of the set of centers of (d, δ)-symmetry.
As a result of the relation of this set with the multivariate half-space depth median, a depth
that suffers from the problem reported in [17], one might expect it to inherit this degeneracy.
However the non-vanishment of the half-space depth median ([17], Theorem 3) guarantees that
this is not the case.

2.2.2. Metric Depth

Given a (d, δ)-symmetric distribution P on a functional metric space (F , d), with Z
the set of centers, the metric depth of an element x of F with respect to a distribution P is
defined in [11] as

Dm(x, P) :=
1

Im(x, P) + 1
(3)

with

Im(x, P) :=
d(x,Z)
d(ξ, ξ ′)

:= inf
ζ∈Z

d(x, ζ)

d(ξ, ξ ′)
(4)

and
ξ := ξ(P) and ξ ′ := ξ ′(P) ∈ F

satisfying d(ξ, ξ ′) > 0 and independent of x.
This depth function computes the distance of the element of the space to the set of

centers of functional symmetry and then standardizes so that the axiomatic properties
in [15] are satisfied, under a mild condition on the metric. This is a general framework to
be specified through the distance, for instance:

(i) A distance that makes use of the distribution with respect to which the depth is
computed. In the space of continuous functions, the distance between two elements
of the space can be defined through the probability of the band determined by them.

(ii) A Sobolev distance that takes into account how rough the datum is with respect to
the functional center of symmetry.

In the context of the Alzheimer’s data, it suffices to make use of

IM(x, P) := d(x,Z) := inf
ζ∈Z

d(x, ζ) (5)

in (3) instead of (4) because, given P, d(ξ, ξ ′) is constant for every x in the space, (see [11]).

3. Illustration

The dataset of Alzheimer’s patients, analyzed later, consists of the accelerations
recorded by the accelerometer of an Android smartphone while the patients move freely
in a daycare facility. On exploring this dataset, we aim to study whether the underlying
distribution generating the data is symmetric. The acceleration is the derivative of the ve-
locity with respect to time, which, as well, is the derivative of the position with respect to
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time. Accelerometers provide directly the acceleration, without the need for differentiating
the data. However, in studying the distribution underlying the movement of Alzheimer’s
patients, it is relevant that symmetries are perpetuated through derivatives, particularly,
the first and the second.

We provide an example to illustrate that the notion of symmetry we use has the dis-
tinctive feature of inducing symmetry in other domains. Let X denote a Gaussian process
with mean zero, covariance structure

Cov(s, t) = e−
(s−t)2

m2

and correlation length m = 1 and X1, . . . , Xn, n = 1000 independent realizations drawn
from X.

For i = 1, . . . , n, we plot ∫
(Xi − ζ)(v)dv

versus ∫
(X(1)

i − ζ(1))(v)dv

in the left plot of Figure 3 and ∫
(X(1)

i − ζ(1))(v)dv

versus ∫
(X(2)

i − ζ(2))(v)dv

in the right plot of Figure 3. There, X(j)
i denotes the jth derivative of Xi, for j = 1, 2 and

i = 1, . . . , 1000.

Figure 3. Symmetries induced in the domain of the integration of a Gaussian process with correlation
length 1 minus its center of symmetry versus the integral of its first derivative (left) and of the first
derivative versus the second (right). The color represents the metric depth in Sobolev-(2,2) distance
(left) and in the Sobolev-(2,2) distance minus the L2 distance (right), with the center depicted by
a white dot.

To illustrate that our notion of symmetry has the distinctive feature of inducing
symmetry in these two domains, we compute the set of sample centers of (d, 0)-symmetry
based on the empirical distribution of X1, . . . , X1000, Pn, and the corresponding metric
depth of Xi with respect to Pn for each i = 1, . . . , n. We depict in Figure 3 the center of
symmetry as a white dot and the metric depth of each point by the color (from dark red for
high depth to dark blue for low depth).

Let us denote by L2 the standard Lebesgue 2-integrable norm and by Sobolev-(2,k)
the standard Sobolev inner product norm for k derivatives. To illustrate the importance of
taking into account the topology of the elements in the support of the distribution, we use
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the Sobolev-(2,2) distance for the left panel of the figure and the Sobolev-(2,2) distance
minus the L2 distance for the right panel. Thus, the colors in the right panel, given by
the center and depth, only make use of a distance based on the first and second derivatives.

4. Application

As mentioned in the introduction, the dataset consists of the acceleration values,
in the three spatial dimensions over time, of patients that move freely in a daycare facility.
Although non-standard, these data are easily accommodated by the (d, δ)-symmetry and
the metric depth as shown below in Section 4.1. We make use of nonparametric tests
on the depth results as described in Section 4.2 and evaluate this methodology through
Monte Carlo simulations in Section 4.3. Section 4.4 summarizes and explains the real data
we analyze. The results of such analysis are in Section 4.5.

4.1. Functional Metric Space Construction

We denote by n the total number of studied patients and by xi the acceleration values
recorded for patient i, i = 1, . . . , n. As the accelerations of each patient were recorded in sep-
arate days, we have repeated measurements for each patient, we denote by ki the number
of repeated measurements for patient i and by xi1, . . . , xiki

the repeated measurements,
i = 1, . . . , n. We later refer to these repeated measurements as repetitions. Thus,

xi = (xi1, . . . , xiki
)for i = 1, . . . , n. (6)

As each measurement is a three dimensional functional datum, we have that

xik : [lik, uik]→ R3

is the kth measurement on patient i and

L(xik) := uik − lik

is the length of the domain. A particularity of this dataset is that the domain, [lik, uik], and
its length, L(xik), differ for each k = 1, . . . , ki and i = 1, . . . , n. This requires non-standard
FDA methodologies like the ones we apply here.

A characteristic of real functional data is that they are observed on a grid, not being
recorded in every point of the domain. That is, xik(t) is not recorded at each t ∈ [lik, uik],
but at each t in the finite set

Ti,k := {t1,i,k, . . . , tTi,k ,i,k}

with
lik ≤ t1,i,k < t2,i,k < · · · < tTi,k ,i,k ≤ uik,

not necessarily equally spaced. Part of the complexity of this dataset is that Ti,k differs for
each k = 1, . . . , ki and i = 1, . . . , n.

The (d, δ)-symmetry and the metric depth require of a metric functional space for
their application. Then, given any pair (xik, xj`) with k ∈ {1, . . . , ki}, ` ∈ {1, . . . , k j} and
i, j ∈ {1, . . . n}, we define our distance between xik and xj` as

dS(xik, xj`) := max{d
(
xm, xM(Vh)

)
: h ∈ [0, L(xM)− L(xm)]} (7)

where the notation xi(S) means {x(t) : t ∈ S} and, additionally,

xm := arg min{L(xik), L(xj`)},

xM := arg max{L(xik), L(xj`)}

and Vh is such that

xM(Vh) = {xM(t) : 0 ≤ t− lM − h ≤ L(xm)}.
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It is easy to see that dS(·, ·) satisfies the definition of a distance, for any distance d.
In the data analysis, for two three dimensional functional data objects

f = { f1, f2, f3}

and
g = {g1, g2, g3},

which are defined over the same domain, we take

d( f , g) = 1/3
3

∑
i=1
‖ fi − gi‖, (8)

where ‖ · ‖ is a norm, for instance the L2 norm. We then aggregate the information from
the repeated measurements as

1
kik j

ki

∑
k=1

kj

∑
`=1

dS(xik, xj`),

and use this to construct the set of centers of (d, δ)-symmetry and the metric depth as described pre-
viously.

4.2. Tests on the Statistical Depth Values

The dataset consists of patients at three different stages of the disease and the analysis
will provide a depth value for each. Let

Dm := {Dm,1, . . . Dm,lm}

be the depth values for the patients in a mild stage of the disease,

Do := {Do,1, . . . Do,lo}

the depth values for those in a moderate stage and

Ds := {Ds,1, . . . Ds,ls}

the depth values for those in a severe stage. Abusing of the notation, Dm, Do and Ds will
stand also for the corresponding depth random variables. Note that lm + lo + ls = n. We will
illustrate the methodology using Dm and Do. Analogous ideas apply to all combinations of
depths for mild, moderate and severe disease stages.

Depth values have an inherent rank structure. To test for differences between the distri-
butions of the trivariate acceleration functions, we apply two sided nonparametric tests to
the associated depth values. One of them is an omnibus test, a test that can potentially pick
any difference between two distributions with independence of the nature of the difference.
It is also important to know where the differences lie. Thus, we propose to perform two
further tests, one on the median differences and another on the scale differences. The scale
test is a test on the deviance from the median [26]. We do them on the median, as opposed
to the mean, in order to perform non-parametric robust tests. These last two tests have
hypotheses of the form

H0 : pm ≤ po
Ha : pm > po,

where pm refers respectively to the population median and the deviance from the population
median in the mild group and po is the same parameter in the moderate group.

Given Dm and Do and a statistic G, all of these tests are permutation tests [27] of
the following form:
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1. Compute the value of the statistic on the observed depth values

gobs := G(Dm, Do).

2. Compute the permutations of the lm + lo depth values between two groups, one with
lm elements and the other with lo. There is a total of

N := (lm + lo)!/(lm!lo!)

permutations.
3. Compute the value of the statistic on each of the permutations, g1, . . . , gN .
4. The resulting p-value for the test is

p := #{i = 1, . . . , N : gi ≥ gobs}/N.

For the omnibus test, we apply the Kolmogorov–Smirnov test [28,29] to the depths.
The associated test statistic is

GKS(Dm, Do) := max
t∈R
|FDm(t)− FDo (t)|,

where FD(t) is the cumulative distribution of D at time t. As GKS involves an absolute
value, performing the above steps for the permutation test will result in this case on a test
for the null hypothesis of equality of distributions against the distributions being different.
For the test on the median differences, the test statistic is

GM(Dm, Do) := Med(Dm)−Med(Do),

where Med(D) denotes the median of D. For the deviance from the median test, the statistic is

GS(Dm, Do) :=
∑

i=1,...,lm

|Dm,i −Med(Dm)|

∑
i=1,...,lo

|Do,i −Med(Do)|
.

4.3. Simulation

We perform a Monte Carlo study to evaluate the performance of the methodology
described above. The following simple example was used for illustration in ([11], Example 1).
Functional random variables X are generated as

X(t) = Y cos(πt)

with Y a real random variable and t ∈ [0, 1]. As studied in [11], the distribution of X
is (d, 0)-symmetric independently of d and the choice of distribution for Y. To emulate
the different populations of patients in the Alzheimer’s data, we generate observations
Xm,1, . . . , Xm,lm from one population, Population m say, by taking Y to be standard normally
distributed. We generate, independently, observations Xo,1, . . . , Xo,lo from Population o
by drawing Y from a distribution Q, taken in turn as standard normal, standard uniform
and beta of parameters 2 and 1. We use of a grid of 50 equi-spaced points on [0, 1] and,
to emulate the Alzheimer’s data, we take lm = lo = 10.

For the analysis, we use the metric depth, based on the set of (d,0)-centers of symmetry,
with respect to the pooled sample with d taken as the Sobolev-(2,2) distance; obtaining
the depth values {Dm,1, . . . Dm,lm} and {Do,1, . . . Do,lo}. We then apply the methodology
described in Section 4.2 to these depth values. When Q is the standard normal distribution,
the distributions of Xm,j and Xo,i are the same for any i and j and we expect the tests to
reject infrequently. Specifically, we expect the proportion of rejections over the Monte Carlo
replications to be roughly equal to the nominal level of the test. When Q is one of the other
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distributions, the proportion of rejections will ideally be large, as this indicates strong
ability to distinguish between distributions of the functional random variables on the basis
of their functional depth values.

The median and deviance from the median tests used are exact permutation tests.
As the distribution test has more computational cost, we have performed an approximated
permutation test based on 1000 permutations. The proportion of Monte Carlo replications
in which the test rejects the null hypothesis of equal distributions is reported in Table 1
for each of the three scenarios. It is observable from the table that the power of rejection
is higher when the Xo,is are drawn using the beta distribution with parameters (2,1) than
when using the uniform distribution. Additionally, under the alternative, the deviance
from the median test is more powerful than the median test, which is also more powerful
than the distribution test. The low rejection rate of the distribution test under the null
hypothesis can be due to an approximated permutation test is performed.

Table 1. Rate of rejection based on 1000 repetitions for three permutation tests: distribution, median
and deviance from the median. The permutation tests for the median and deviation from the median
are exact. The permutation test for the distribution is approximated, based on 1000 permutations.
The first sample is based on the standard normal distribution, N(0,1), and the second on the N(0,1)
(first column), the uniform in the (0,1) interval, U(0,1), (second column) and the beta with parameters
(2,1), β(2,1), (third column).

N(0,1) U(0,1) β(2,1)

Distribution 0.034 0.591 0.749
Median 0.053 0.795 0.891

Deviance 0.042 0.801 0.913

4.4. The Data

The real data were measured in the patients’ natural environment rather than a con-
trolled environment as in [30]. Patients’ movements were recorded while they perform
their usual activities throughout the day under the supervision of a neuropsychologist, in a
room of a day care facility. The smartphone is oriented and placed in a pocket of the pa-
tient by the neuropsychologist. Thus, the orientation and placement of the smartphone
is never exactly the same, neither among patients nor among the different days in which
the accelerations of a particular patient are recorded.

From a purely statistical point of view, it is always advantageous to use data from
a controlled experiment. However, for the statistical classifier to be a valuable and widely
applicable diagnostic tool, it is necessary to use observational data of the type studied here.
Ref. [31] asserts that the everyday behavior of Alzheimer’s patients is detectable by using
only an accelerometer, without the need for an additional gyroscope for standardization.
For a more detailed discussion, see [4], where these data were first analyzed.

The study comprises data on n = 35 patients for whom repeated measurements are
available corresponding to different days. The repetitions ki in (6), vary between 2 and 8
depending on the patient labeled as i = 1, . . . , n. The value of ki, for each i, is displayed
in Table 2, column two, under the heading repetitions. There, the disease stage of each
patient is also shown in column three. The information obtained from these two columns
is summarized in Table 3, from which we observe that:

• 7 patients are in the mild stage of the disease with a total of 41 repetitions.
• 18 patients are in the moderate stage of the disease with a total of 100 repetitions.
• 10 patients are in the severe stage of the disease with a total of 46 repetitions.
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Table 2. Synopsis of the studied dataset. For each of the 35 patients (column i), labeled from 1 to 35,
it is displayed the number of repeated measurements (column ii), the disease stage of the patient
(column iii), the range, among the repetitions for each patient, of the time domain upper-bounds,
in seconds, (column iv) and the range, among the repetitions for each patient, of the number of grid
points (column v).

Patient Repetitions Disease Stage Maximum Range Grid Range

1 5 moderate 3273.8–4149.3 457,352–574,918
2 3 severe 2721.6–3573.2 380,756–493,117
3 3 mild 3077.8–3679.8 426,027–508,825
4 6 mild 3168.5–3847.7 447,858–542,706
5 5 severe 2786.6–4109.3 396,699–583,914
6 3 severe 3356.4–3587.0 469,298–498,984
7 7 severe 2993.3–3878.0 426,625–545,839
8 8 mild 2610.7–3778.1 366,541–531,256
9 3 severe 3419.6–3633.7 474,456–500,270

10 6 moderate 3090.3–3952.5 427,229–547,061
11 8 mild 2718.5–3870.4 267,288–385,509
12 5 moderate 3069.8–4112.8 257,796–388,149
13 8 moderate 2802.8–5003.5 245,309–520,520
14 7 severe 3365.1–5942.7 327,976–560,693
15 7 mild 3590.9–4127.8 295,551–344,340
16 7 severe 3472.2–5452.3 327,583–496,692
17 4 mild 3405.0–4008.7 182,260–295,130
18 6 moderate 3168.1–4068.7 211,480–389,936
19 5 mild 3189.9–3667.0 298,743–339,375
20 7 moderate 2765.9–4469.5 259,898–354,498
21 5 moderate 3309.3–5427.6 322,132–521,646
22 4 severe 3465.3–5303.9 301,622–527,696
23 6 moderate 3040.7–6346.4 246,077–491,322
24 2 severe 4666.8–4666.8 399,909–399,909
25 7 moderate 3305.3–5076.6 322,957–484,066
26 4 moderate 3203.1–6108.5 281,369–590,537
27 7 moderate 3535.9–5345.0 305,482–481,180
28 3 moderate 3147.6–4033.7 307,455–376,297
29 7 moderate 3502.5–5807.5 342,543–558,649
30 4 moderate 3605.4–5908.8 266,367–537,241
31 5 moderate 3043.7–5991.5 295,878–469,712
32 6 moderate 3326.8–4494.0 320,243–419,402
33 3 moderate 3078.7–4753.0 263,053–462,177
34 6 moderate 2329.4–5002.6 215,536–529,828
35 5 severe 3143.6–4576.0 302,221–469,318

Table 3. Summary of Table 2 encapsulating the number of patients and total number of repetitions
per stage of the disease: mild, moderate and severe.

Mild Moderate Severe

Number of patients 7 18 10
Number of
repetitions 41 100 46

Furthermore, in Table 2 column four, under the heading maximum range, we have
displayed, for each patient i = 1, . . . , n,

min{uik : k = 1, . . . ki} −max{uik : k = 1, . . . ki}. (9)

Additionally, to report the size of each Ti,k, in Table 2 column five, under the heading
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grid range, we have displayed

min{Ti,k : k = 1, . . . ki} −max{Ti,k : k = 1, . . . ki}, (10)

for each patient i = 1, . . . , n. This is then a report on the range of the amount of recorded
elements of each time series, per patient.

In Figure 4, we exemplify the nature of the dataset by plotting, for three of the patients,
the recorded accelerations, in meters per second squared (m/s2), with respect to the time
in seconds (s).

• In the left column panels: the five repetitions of patient 19, who is in a mild stage of
the disease.

• In the central column panels: the six repetitions of patient 34, who is in a moderate
stage of the disease.

• In the right column panels: the five repetitions of patient 35, who is in a severe stage
of the disease.

The top row in Figure 4 corresponds to the accelerations with respect to time in the OX
coordinate axis, the middle row to the OY coordinate axis and the bottom row to the OZ
axis. It is observable from these plots that each repetition is recorded for a different length of
time, L(xik). Additionally, note that the plots show no apparent difference among the three
stages of the disease.

Figure 4. Display of the accelerations (m/s2), in the three coordinate axis (OX: top row, OY: central
row and OZ: bottom row) over the time domain (s), of the repetitions of three patients. Each patient
is in a different stage of the disease. Left column: mild stage (patient 19). Central column: moderate
stage (patient 34). Right column: severe stage (patient 35).
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4.5. Results

We find functional (d, 0)-symmetry when the Sobolev-(2,2) distance is used,
in Equation (7) through the use of Equation (8), in the complete sample as well as in the three
subsamples corresponding to different severity of dementia (mild, moderate and severe).
This is an important finding to get insight into this type of movement data as it tells us in-
formation on the symmetry of the underlying distributions. The same results are obtained
using the L2 distance due to the functional data points exhibiting little variability over
the domain, which is observable from the elements of the dataset displayed in Figure 4.

The corresponding set of centers of (d, 0)-symmetry can be used to compute the metric
depth as outlined in Section 2. Unlike most other functional depth constructions appearing
in the literature, the metric depth is known to satisfy the fifth property of the axiomatic
definition of statistical functional depth [15]. That property establishes the depth function
has to be receptive to the convex hull width across the domain. This is especially relevant
here as the elements of functional spaces show a small amount of variation over large
parts of the domain. This depth construction automatically accounts for this, giving
greater importance to the regions of the domain in which the functional data points exhibit
the most variability.

To illustrate the findings, in Figure 5 we display the IM value of the metric depth,
Equation (5), of the elements in each of the three subsets computed with respect to the center
of (d, 0)-symmetry of the complete sample (left plot) and of the three subsamples separately
(right plot). As observable from the figure, the center of (d, 0)-symmetry of the complete
sample, which takes IM value 0, belongs to the subgroup with mild dementia and coin-
cides with the center of symmetry of this subgroup when the center of (d, 0)-symmetry is
computed separately for each of the three subsamples. In fact, the patient corresponding
to the center of (d, 0)-symmetry when computed with respect to the complete sample is
the patient labeled as 3 in Table 2. When computing the center of (d, 0)-symmetry of the pa-
tients in the moderate stage of the disease, we obtain that the center of (d, 0)-symmetry
corresponds to the patient labeled as 10. For the severe stage, we obtain the patient
labeled as 9.

Figure 5. Representation of the IM depth value for the 35 Alzheimer’s patients computed with
respect to the center of symmetry of the complete sample (left plot) and of the three subsamples
separately (right plot).

From the two plots in Figure 5, it can be easily deduced that the variability of the depth
values for the mild patients is higher than that for moderate, which likewise is higher than
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for the severe patients. To check whether this is indeed the case, we perform the permuta-
tion tests on the depth commented above in Section 4.2. All the tests are exact permutation
tests in this subsection. The p-values resulting from these tests are displayed in Table 4.
We have arranged them in two cases:

• The metric depth is computed with respect to the center of (d, 0)-symmetry of the com-
plete sample. This corresponds to the left plot in Figure 5.

• The metric depth is computed with respect to the center of (d, 0)-symmetry of each of
the three subsamples separately. This corresponds to the right plot in Figure 5.

For each of the two cases, we have included in the table the p-values resulting of
testing whether each two groups of distributions are equal against the alternative in which
they differ. The heading of the table is for the greater than alternative instead of not equal
so the resulting p-value will coincide, as explained in Section 4.2. Additionally, the table
includes a test on which the median on a stage of the disease is less or equal than in the next
stage against the alternative in which it is greater and an equivalent test but on the deviation
from the median.

Table 4. p-values resulting from performing the permutation test on the depth to find distribution,
median and deviance from the median differences. The top three rows refer to the tests performed
on depth values computed with respect to the complete sample while the bottom three to tests
performed on depth values computed for each of the three stages separately. Thus, Complete sample is
for using the depth values of the pooled sample and Subsamples for using the depth values computed
with respect to each sample separately. The alternative hypothesis for each test is greater than, but for
the distribution case that coincides with the not equal alternative. p-values resulting in a rejection at
0.05 significance level are emphasized in bold.

Ha : pmild > pmoderate pmoderate > psevere

Complete Sample

Distribution 0.0202 0.0027
Median 0.8090 0.0158

Deviance 0.0339 0.0030

Subsamples

Distribution 0.6672 0.0001
Median 0.8242 0.0140

Deviance 0.0320 0.0332

The results in Table 4 show a significant difference on the distribution for three out of
the four run tests. However, we can say that there is a significant difference in the distribu-
tion in the four cases, as the deviance from the median test is able to detect the difference
every time. The median test also detects a difference when studying the pair moderate
and severe. However, no such difference is detected with the pair mild and moderate.
For this case of the median test with the pair mild and moderate, it is worth saying that
neither a rejection is obtained for the less than alternative nor for the not equal alternative,
although the p-values decrease.

5. Discussion

Many modern datasets consist of functional observations, i.e., data most naturally
viewed as realizations of random functions. Typical examples of such data include gene
expression levels over time, blood oxygen levels throughout the volume of the brain and, as
used for illustration in the present work, accelerations of Alzheimer’s patients when mov-
ing freely in a daycare facility. The ease of recording such data make it practically useful,
although they present difficulties for its analysis due to their unusual features. Notably:

• There are a different number of recordings for each patient.
• Each recording is over a different time domain.
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• Each recording is observed over a different grid.

Our functional data analysis based on new notions of functional symmetry and depth
introduced in [11] applies without complications in this setting. This notion of functional
symmetry has the advantage of being truly conceived for functional data and it adapts
to the characteristics of the data, through the metric. Thus, it is not an extension of
a multivariate notion like the others existing in the literature. The instance of depth used,
the metric depth, does have two advantages over the others in the literature:

• The involved center of symmetry is a truly functional center of symmetry.
• It is the only existing instance of depth that satisfies the notion of statistical func-

tional depth.

Most existing data of this type are recorded in a controlled environment such as a lab-
oratory and not just by the use of a smartphone in a quite free environment. This dataset,
however, has been previously used in [3,4] with the aim of performing supervised classifi-
cation. There, black-box techniques were applied and so the objective in this paper has been
to understand the characteristic(s) that differentiate among the distributions of the stages
of Alzheimer’s disease. The proposed methodology is able to distinguish between patients
at different stages of the disease based on the accelerometer data. In particular, we found
that the distribution of acceleration differs between each stage of the disease. We observe
that those differences are mainly due to scale differences. As for ensuring the validity of
the methodology used, in addition to the broad results covered in [11], we have provided
a simulation study to emulate the analysis performed on the real data when the ground
truth is known. Analogous to the performed analysis based on the recorded accelerations,
future research could include an analysis on the velocities.

Author Contributions: Conceptualization, A.N.-R.; Formal analysis, A.N.-R., H.B. and G.F.; Super-
vision, A.N.-R.; Writing—original draft, A.N.-R. and H.B. All authors have read and agreed to the
published version of the manuscript.

Funding: For A.N.-R., this research was funded by grant number MTM2017-86061-C2-2-P of the Span-
ish Ministry of Science, Innovation and Universities. H.B was supported by the EPSRC under grant
number EP/P002757/1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We are thankful to the Association of Relatives of Alzheimer’s patients in Cantabria,
Spain, for the Alzheimer’s dataset.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
This paper contains the below abbreviations:

FDA Functional Data Analysis
GDS Global Deterioration Scale

References
1. Mayeux, R.; Sano, M. Treatment of Alzheimer’s disease. N. Engl. J. Med. 1999, 341, 1670–1679. [CrossRef]
2. Reisberg, B.; Ferris, S.H.; de Leon, M.J.; Crook, T. The Global Deterioration Scale for assessment of primary degenerative dementia.

Am. J. Psychiatry 1982, 139, 1136–1139. [PubMed]
3. Bringas, S.; Salomón, S.; Duque, R.; Lage, C.; Montaña, J.L. Alzheimer’s Disease stage identification using deep learning models.

J. Biomed. Inform. 2020, 109, 103514. [CrossRef] [PubMed]
4. Nieto-Reyes, A.; Duque, R.; Montaña, J.L.; Lage C. Classification of Alzheimer’s patients through ubiquitous computing. Sensors

2017, 17, 1679. [CrossRef] [PubMed]
5. Park, S.Y.; Staicu, A.M. Longitudinal functional data analysis. STAT Int. Stat. Inst. 2015, 4, 212–226. [CrossRef]
6. Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2006.
7. Ramsay, J.O.; Silverman, B.W. Functional Data Analysis; Springer Series in Statistics; Springer: New York, NY, USA, 2005.

http://doi.org/10.1056/NEJM199911253412207
http://www.ncbi.nlm.nih.gov/pubmed/7114305
http://dx.doi.org/10.1016/j.jbi.2020.103514
http://www.ncbi.nlm.nih.gov/pubmed/32711124
http://dx.doi.org/10.3390/s17071679
http://www.ncbi.nlm.nih.gov/pubmed/28753975
http://dx.doi.org/10.1002/sta4.89


Mathematics 2021, 9, 820 17 of 17

8. Zuo, Y.; Serfling, R. On the performance of some robust nonparametric location measures relative to a general notion of
multivariate symmetry. J. Statist. Plann. Inference 2000, 84, 55–79. [CrossRef]

9. Zuo, Y.; Serfling, R. General notions of statistical depth function. Ann. Statist. 2000, 28, 461–482. [CrossRef]
10. Kallenberg, O. Probabilistic Symmetries and Invariance Principles; Probability and Its Applications; Springer: New York, NY, USA, 2005.
11. Nieto-Reyes, A.; Battey, H. A topologically valid construction of depth for functional data. J. Multivar. Anal. 2021, 184, 104738.
12. Fukunaga, K.; Koontz, W.L.G. Application of the Karhunen-Loève Expansion to Feature Selection and Ordering. IEEE Trans. Com-

put. 1970, 19, 311–318. [CrossRef]
13. Dudley, R.M. Uniform Central Limit Theorems; Cambridge Studies in Advanced Mathematics, Series Number 63; Cambridge

University Press: Cambridge, UK, 1999.
14. Hall, P. Two-sided bounds on the rate of convergence to a stable law. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete

1981, 57, 349–364. [CrossRef]
15. Nieto-Reyes, A.; Battey, H. A topologically valid definition of depth for functional data. Stat. Sci. 2016, 31, 61–79. [CrossRef]
16. Chakraborty, A.; Chaudhuri, P. On data depth in infinite dimensional spaces. Ann. Inst. Stat. 2014, 66, 303–324. [CrossRef]
17. Dutta, S.; Ghosh, A-K.; Chaudhuri, P. Some intriguing properties of Tukey’s halfspace depth. Bernoulli 2011, 17, 1420–1434.

[CrossRef]
18. Tukey, J. Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians, Vancouver, BC,

Canada, 21–29 August 1974; Canadian Mathematical Congress: Montreal, QC, Canada, 1975; pp. 523–531.
19. Liu, R.Y. On a notion of data depth based on random simplices. Ann. Statist. 1990, 18, 405–414. [CrossRef]
20. López-Pintado, S.; Romo, J. On the concept of depth for functional data. J. Amer. Statist. Assoc. 2009, 104, 718–734. [CrossRef]
21. López-Pintado, S.; Romo, J. A half-region depth for functional data. Comput. Statist. Data Anal. 2011, 55, 1679–1695. [CrossRef]
22. Cuevas, A.; Febrero, M.; Fraiman, R. Robust estimation and classification for functional data via projection-based depth notions.

Comput. Statist. 2007, 22, 481–496. [CrossRef]
23. Cuesta-Albertos, J.A.; Nieto-Reyes, A. The random Tukey depth. Comput. Statist. Data Anal. 2008, 52, 4979–4988. [CrossRef]
24. Cuesta-Albertos, J.A.; Nieto-Reyes, A. Functional Classification and the Random Tukey Depth: Practical Issues. In Combining Soft

Computing and Statistical Methods in Data Analysis; Borgelt, C., González-Rodríguez, G., Trutschnig, W., Lubiano, M.A., Gil, M.Á.,
Grzegorzewski, P., Hryniewicz, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 123–130.

25. Chakraborty, A.; Chaudhuri, P. The spatial distribution in infinite dimensional spaces and related quantiles and depths.
Ann. Statist. 2014, 42, 1203–1231. [CrossRef]

26. Richter, S.J.; McCann, M.H. Permutation tests of scale using deviances. Commun. Stat. Simul. Comput. 2017, 46, 5553–5565.
[CrossRef]

27. Higgins, J.J. An Introduction to Modern Nonparametric Statistics; Brooks/Cole: Pacific Grove, CA, USA, 2003.
28. Kolmogorov, A. Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuar. 1933, 4, 83–91.
29. Smirnov, N. Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 1948, 19, 279–281. [CrossRef]
30. Ijmker T.; Lamoth, C.J.C. Gait and cognition: The relationship between gait stability and variability with executive function

in persons with and without dementia. Gait Posture 2012, 35, 126–130. [CrossRef]
31. Kirste, T.; Hoffmeyer, A.; Koldrack, P.; Bauer,A; Schubert, S.; Schroeder, S; Teipel, S. Detecting the effect of Alzheimer’s disease on

everyday motion behavior. J. Alzheimer’s Dis. 2014, 38, 121–132. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0378-3758(99)00142-1
http://dx.doi.org/10.1214/aos/1016218226
http://dx.doi.org/10.1109/T-C.1970.222918
http://dx.doi.org/10.1007/BF00534829
http://dx.doi.org/10.1214/15-STS532
http://dx.doi.org/10.1007/s10463-013-0416-y
http://dx.doi.org/10.3150/10-BEJ322
http://dx.doi.org/10.1214/aos/1176347507
http://dx.doi.org/10.1198/jasa.2009.0108
http://dx.doi.org/10.1016/j.csda.2010.10.024
http://dx.doi.org/10.1007/s00180-007-0053-0
http://dx.doi.org/10.1016/j.csda.2008.04.021
http://dx.doi.org/10.1214/14-AOS1226
http://dx.doi.org/10.1080/03610918.2016.1165844
http://dx.doi.org/10.1214/aoms/1177730256
http://dx.doi.org/10.1016/j.gaitpost.2011.08.022
http://dx.doi.org/10.3233/JAD-130272
http://www.ncbi.nlm.nih.gov/pubmed/24077435

	Introduction
	Methodology
	Symmetry
	Difficulties with Notions of Functional Symmetry
	Metric -Symmetry

	Statistical Depth
	Difficulties with Functional Depth Constructions
	Metric Depth


	Illustration
	Application
	Functional Metric Space Construction
	Tests on the Statistical Depth Values
	Simulation
	The Data
	Results

	Discussion
	References

