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Abstract: General methods to simulate probability density functions and first passage time densities
are provided for time-inhomogeneous stochastic diffusion processes obtained via a composition of
two Gauss–Markov processes conditioned on the same initial state. Many diffusion processes with
time-dependent infinitesimal drift and infinitesimal variance are included in the considered class.
For these processes, the transition probability density function is explicitly determined. Moreover,
simulation procedures are applied to the diffusion processes obtained starting from Wiener and
Ornstein–Uhlenbeck processes. Specific examples in which the infinitesimal moments include
periodic functions are discussed.

Keywords: Gauss–Markov processes; Wiener process; Ornstein–Uhlenbeck process; first-passage
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1. Introduction

Time-inhomogeneous stochastic diffusion processes are often used to model real
dynamic systems in various scientific areas as neurosciences, population dynamics, queue-
ing systems, finance, and economics (cf., for instance, Buonocore et al. [1,2], Albano and
Giorno [3], Giorno and Spina [4], Ricciardi et al. [5], Renshaw [6]), Di Crescenzo et al. [7],
Linetsky [8], Glasserman [9]). Specifically, in Buonocore et al. [1,2], restricted Gauss–
Markov processes are used to construct inhomogeneous leaky integrate-and-fire stochastic
models for single neurons activity in the presence of a reversal hyperpolarization poten-
tial and time-varying input signals. In Albano and Giorno [3], a time-inhomogeneous
Ornstein–Uhlenbeck is considered as a model for the membrane potential activity of a sin-
gle neuron and a statistical procedure to fit the constant parameters and the time-dependent
functions is proposed. Moreover, in Giorno and Spina [4], a time-inhomogeneous Ornstein–
Uhlenbeck diffusion process with jumps is also analyzed. In Ricciardi et al. [5], special
emphasis is put on neuronal firing problems and on the description of population dynamics,
for which the first-passage time distribution and its statistics carry a fundamental relevance.
In Renshaw [6], many aspects of population dynamics are covered, including Wiener and
Ornstein–Uhlenbeck diffusion models and simulation techniques. In Di Crescenzo et al. [7],
the authors derive a heavy-traffic approximation that allows for approximating the state of
the systems by a time-non-homogeneous Wiener process subject to jumps due to catastro-
phes and random returns to the zero state due to repairs. In Linetsky [8], explicit analytical
expressions for transition densities of Brownian motion with drift, the Ornstein–Uhlenbeck
process, and affine (square-root) diffusion with one or two reflecting barriers are obtained
in the context of economics and finance. In Glasserman [9], the Monte Carlo simulation
plays an essential tool in the pricing of derivative securities and in risk management.

Mathematics 2021, 9, 818. https://doi.org/10.3390/math9080818 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6474-3952
https://orcid.org/0000-0003-2363-7496
https://doi.org/10.3390/math9080818
https://doi.org/10.3390/math9080818
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9080818
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9080818?type=check_update&version=2


Mathematics 2021, 9, 818 2 of 25

To include several aspects of the real phenomena, one is led to consider increasing com-
plex processes (cf., for instance, Di Crescenzo et al. [10], Giorno et al. [11,12], Abundo [13],
Veestraeten [14], Molini et al. [15], Lim and Muniandy [16], Jeon et al. [17]). In these
contexts, the focus is on specific probabilistic characteristics that define the behavior of
the stochastic processes as the transition distributions and the related moments as well
as the first passage time through specific time-dependent boundaries. In particular, in Di
Crescenzo et al. [10], and in Giorno et al. [11,12], new procedures for constructing transition
probability density functions and first passage time densities through constant boundaries
are proposed for generally time-inhomogeneous diffusion processes. In Abundo [13], some
asymptotic results for diffusions and Gauss–Markov process and their fractional integrals
are obtained. In Veestraeten [14], the transition and first hitting time densities and moments
for the Ornstein–Uhlenbeck process between exponential thresholds are derived. Moreover,
in Molini et al. [15], first passage time statistics, such as the survival probabilities and first
passage time densities, are obtained analytically for the Brownian motion driven by time-
dependent drift and diffusion coefficients. In Lim and Muniandy [16] and Jeon et al. [17],
some Gaussian models for anomalous diffusion are considered, and the first passage time
problem is discussed. These processes are used to model physical and biological systems.

Moreover, various efforts are direct to computational approaches (Di Nardo et al. [18],
Taillefumier and Magnasco [19], D’Onofrio and Pirozzi [20]) that also involve methods of
statistical inferences (Albano et al. [21], Albano and Giorno [22], Ramos-Ábalos et al. [23]).
Specifically, in Di Nardo et al. [18] and Taillefumier and Magnasco [19] methods to construct
first-passage-time probability density functions for Gauss–Markov processes through time-
dependent boundaries are proposed. In D’Onofrio and Pirozzi [20], the problem of escape
times from a region confined by two time-dependent boundaries is considered for a class
of Gauss–Markov processes. Moreover, numerical procedures to infer the models based on
time-inhomogeneous diffusion processes are proposed in Albano et al. [21], Albano and
Giorno [22], and Ramos-Ábalos et al. [23].

However, sometimes these strategies are not actionable or not convenient and an
approach based on the simulation of the processes is required (see, for instance, Buonocore
et al. [24,25], Tuerlinckx et al. [26], Di Crescenzo et al. [27], Giraudo et al. [28], Herrann
and Zucca [29], Headrick and Mugdadi [30], Devroye [31], Iacus [32]). In particular, in
Buonocore et al. [24,25], algorithms for the simulation of sample paths and to generate
random variates from probability density function of Gauss–Markov processes, restricted
by particular time-dependent reflecting boundaries, are proposed. Furthermore, in Tuer-
linckx et al. [26], some methods for the simulation of the Wiener process with constant
drift and variance are described and compared on two criteria: simulation speed and
accuracy of the simulation. In Di Crescenzo et al. [27], Giraudo et al. [28] and Herrann and
Zucca [29], simulation procedures to estimate first-passage-time densities are constructed.
Moreover, in Headrick and Mugdadi [30], algorithms for extending the class of general-
ized lambda distributions from univariate to multivariate data generation are presented.
Finally, Iacus [32] focuses on the simulation and inference for general stochastic differential
equations.

Random variates generation is a fundamental aspect of simulation modeling and
analysis (cf., for instance, Devroye [31]). Indeed, in real applications, the distribution of a
function of more iid (independent and identically distributed) random variables (statistics,
estimators) is often computed via the simulation only, when the resulting distribution can
not be deduced analytically. For this purpose, it is necessary to identify suitable methods
to simulate the single random variable of interest. Standard procedures, as the inverse
transformation method and the acceptance-rejection technique, often cannot be applied
successfully so that ad hoc methods are needed to generate a sample of observations and
then plot the resulting empirical histogram that can be compared with the related known
probability density. The knowledge of effective simulation methods for single random
variates generation allows for obtaining the histogram of the distribution of the statistics
and the estimators that often have analytically non-computable distributions.
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In Giorno and Nobile [33], a special class of time-inhomogeneous diffusion processes
is defined and analyzed. These processes are obtained by using the composition of two
Gauss–Markov processes conditioned to start from the same initial state. They are useful
to model dynamical systems that switch randomly between two different regimes. This
class includes diffusion processes with time-dependent infinitesimal moments for which
the transition probability density function (pdf) is a mixture of two normal densities with
weights depending on the initial condition and on a real parameter ϑ ∈ [0, 1]. General
methods to analyze the first-passage time (FPT) are given, and FPT densities are explicitly
obtained for suitable time-varying boundaries.

In the present paper, we propose theoretical and computational approaches based on
the simulation to investigate on the transition densities, on the related conditional moments
and on the FPT densities for the diffusion processes considered in [33].

The paper is organized as follows. In Section 2, starting from two Gauss Markov
processes conditioned on the same initial state, we construct a continuous process Y(t)
by using the composition method. We formulate an algorithm to obtain the simulated
density and a procedure for the simulation of the sample paths of Y(t). In Section 3, we
focus on a class of time-inhomogeneous diffusion processes Z(t), whose transition pdf
identifies with the density of Y(t). In particular, for ϑ = 0 and ϑ = 1, one has Z(t) = Y(t)
for all t, so that an algorithm to simulate the FPT through a general time-dependent
boundary is formulated. Furthermore, we show that such algorithm can be generalized to
the case 0 < ϑ < 1. In Sections 4 and 5, we apply the theoretical results and the proposed
algorithms to diffusion processes obtained by the composition of Wiener processes and
Ornstein–Uhlenbeck processes, respectively, by using the statistical environment and the
language R. In both these cases, for fixed time instants, we simulate the random variable
describing Y(t), and we show that the transition pdf of the related diffusion process Z(t)
can be superimposed over the histogram of the process Y(t) obtained via the simulation
method. Moreover, for ϑ = 0 and ϑ = 1, making use of the simulation of the sample-paths,
we obtain the histogram of first passage times of Z(t) through time-dependent boundaries.
Finally, the histogram of first passage times is compared with the closed form FPT density
through special boundaries.

2. Composition Method for Gauss–Markov Processes

Let m(t), h1(t), h2(t) be C1(T)-class functions, where C1(T) denotes the set of con-
tinuously differentiable functions on T, with a T continuous parameter set, such that
h2(t) 6= 0 and r(t) = h1(t)/h2(t) is a non-negative and monotonically increasing function.
Let {Xi(t), t ≥ τ} be the Gauss–Markov processes conditioned to start from y at time τ
(see, Mehr and McFadden [34]):

Xi(t) = (−1)3−im(t) +
[
y− (−1)3−im(τ)

] h2(t)
h2(τ)

+ h2(t)W[r(t)− r(τ)]

(i = 1, 2; t ≥ τ; t, τ ∈ T; y ∈ R), (1)

where {W(t), t ≥ 0} is a standard Wiener process. The pdf fXi (x, t) of Xi(t) (i = 1, 2) is
the normal density

fXi (x, t) =
1√

2πV(t|τ)
exp

{
− [x−Mi(t|y, τ)]2

2V(t|τ)

}
, x ∈ R, t ≥ τ, (2)

with mean and variance

E[Xi(t)] = Mi(t|y, τ) = (−1)3−im(t) +
h2(t)
h2(τ)

[
y− (−1)3−i m(τ)

]
,

Var[Xi(t)] = V(t|τ) = h2(t)
[

h1(t)−
h2(t)
h2(τ)

h1(τ)
]
.

(3)
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Starting from the Gauss–Markov processes X1(t) and X2(t), conditioned to start from
y at time τ, we use the composition method (cf., for instance, Ross [35]) to construct a new
stochastic process {Y(t), t ≥ τ}.

Let 0 ≤ ϑ ≤ 1 be a real number and let X1(t) and X2(t) be the Gauss–Markov
processes conditioned to start from y at time τ, defined in (1). For any fixed t ∈ T, we
assume that Uy,τ(t) is a random variable uniform in (0, 1), independent of X1(t) and X2(t).
Then, the stochastic process {Y(t), t ≥ τ}, defined as

Y(t) =


X1(t), 0 ≤ Uy,τ(t) < Qy,τ(ϑ),

X2(t), Qy,τ(ϑ) ≤ Uy,τ(t) < 1,
(4)

with
Qy,τ(ϑ) =

ϑ

ϑ + (1− ϑ) exp
{
− 2m(τ)

v(τ) y
} , (5)

where v(t) = h1(t)h2(t), is characterized by pdf

fY(x, t) = Qy,τ(ϑ) fX1(x, t) +
[
1−Qy,τ(ϑ)

]
fX2(x, t), x ∈ R, t ≥ τ. (6)

The density fY(x, t) in (6) is a mixture, or a composition, of the two normal densities
fX1(x, t) and fX2(x, t), with means and variances given in (3). In particular, by virtue
of (4) and (6), we note that Y(t) = X2(t) and fY(x, t) = fX2(x, t) when ϑ = 0, whereas
Y(t) = X1(t) and fY(x, t) = fX1(x, t) when ϑ = 1.

In the following, we formulate an algorithm to generate random variates from the pdf (6)
by using the stochastic equations (1) and the composition method (4). Furthermore, we derive
an algorithm for the simulation of the sample paths of Y(t) via the composition method.

2.1. Simulated Pdf of the Process Y(t)

Let t ∈ T be a fixed instant and (y, τ) ∈ R× T fixed real constants. For t ≥ τ, we
obtain a random sample of N observations of Y(t), and we construct the histogram of the
random sample with the density (6) as a function of x.

We first note that W[r(t)− r(τ)] in (1) is characterized by a normal distribution with
zero mean and variance r(t)− r(τ), so that we can write W[r(t)− r(τ)] =

√
r(t)− r(τ) ξτ,t,

with ξτ,t ∼ N (0, 1). Hence, we formulate the following:

Algorithm 1
Let (y, τ) ∈ R× T be fixed real constants and t ∈ T be a fixed instant such that t ≥ τ.
STEP 1: Generate ξτ,t ∼ N (0, 1) and Uy,τ(t) ∼ U (0, 1), with Uy,τ(t) and ξτ,t independent
random numbers;
STEP 2: From (1), generate Xi(t) as

Xi(t) = (−1)3−im(t) +
[
y− (−1)3−im(τ)

] h2(t)
h2(τ)

+ h2(t)
√

r(t)− r(τ) ξτ,t

(i = 1, 2; t ≥ τ); (7)

STEP 3: Making use of (7), generate Y(t) via (4);
STEP 4: Repeat Steps 1 and 2 for N times, obtaining a random sample of size N from the
density (6). The simulated pdf is then depicted by means of a histogram as function of x.
The related sample moments can also be obtained.
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2.2. Simulation of the Sample Paths of Y(t)

We first generate the sample paths of the Gauss–Markov processes X1(t) and X2(t),
according to the stochastic equations (1) by using an exact simulation method (cf., for
instance, Kroese et al. [36]).

Let s and t be time instants, such that τ < s < t; by virtue of (1), we obtain:

Xi(t)− Xi(s)
h2(t)
h2(s)

= (−1)3−im(t)− (−1)3−im(s)
h2(t)
h2(s)

+h2(t)
{

W[r(t)− r(τ)]−W[r(s)− r(τ)]
}

(i = 1, 2). (8)

Since W[r(t) − r(τ)] −W[r(s) − r(τ)] =
√

r(t)− r(s) ξs,t, with ξs,t ∼ N (0, 1), for
τ < s < t from (8), one has:

Xi(t) = (−1)3−im(t) +
h2(t)
h2(s)

[
Xi(s)− (−1)3−im(s)

]
+h2(t)

√
r(t)− r(s) ξs,t, (i = 1, 2). (9)

For the process Y(t), from (4), one obtains:

Y(t) = Y(s)
h2(t)
h2(s)

+ Ry,τ(s, t) + h2(t)
√

r(t)− r(s) ξs,t (τ < s < t), (10)

where

Ry,τ(s, t) =



m(t)−m(s) h2(t)
h2(s)

,
0 ≤ Uy,τ(s) < Qy,τ(ϑ), 0 ≤ Uy,τ(t) < Qy,τ(ϑ),

m(t) + m(s) h2(t)
h2(s)
− 2 h2(t)

h2(τ)
m(τ),

Qy,τ(ϑ) ≤ Uy,τ(s) < 1, 0 ≤ Uy,τ(t) < Qy,τ(ϑ),

−m(t)−m(s) h2(t)
h2(s)

+ 2 h2(t)
h2(τ)

m(τ),
0 ≤ Uy,τ(s) < Qy,τ(ϑ), Qy,τ(ϑ) ≤ Uy,τ(t) < 1,

−m(t) + m(s) h2(t)
h2(s)

,
Qy,τ(ϑ) ≤ Uy,τ(s) < 1, Qy,τ(ϑ) ≤ Uy,τ(t) < 1.

(11)

Then, the following algorithm can be implemented:
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Algorithm 2
Let t1 < t2 < . . . < tn, with tk = τ + (k − 1)h (h > 0, k = 1, 2 . . . , n), be the set of
equidistant time instants for which the simulation of Y(t) is required.
STEP 1: Set t1 = τ and Y(t1) = Y(τ) = y;
STEP 2: For k = 2, 3, . . . , n set

Y(tk) = Y(tk−1)
h2(tk)

h2(tk−1)
+ Ry,τ(tk−1, tk) + h2(t)

√
r(tk)− r(tk−1) ξk, (12)

where ξ1, ξ2, . . . , ξn
iid
= N (0, 1) and

Ry,τ(tk−1, tk) =



m(tk)−m(tk−1)
h2(tk)

h2(tk−1)
,

0 ≤ Uk−1 < Qy,τ(ϑ), 0 ≤ Vk < Qy,τ(ϑ),

m(tk) + m(tk−1)
h2(tk)

h2(tk−1)
− 2 h2(tk)

h2(τ)
m(τ),

Qy,τ(ϑ) ≤ Uk−1 < 1, 0 ≤ Vk < Qy,τ(ϑ),

−m(tk)−m(tk−1)
h2(tk)

h2(tk−1)
+ 2 h2(tk)

h2(τ)
m(τ),

0 ≤ Uk−1 < Qy,τ(ϑ), Qy,τ(ϑ) ≤ Vk < 1,

−m(tk) + m(tk−1)
h2(tk)

h2(tk−1)
,

Qy,τ(ϑ) ≤ Uk−1 < 1, Qy,τ(ϑ) ≤ Vk < 1,

(13)

with U1, U2, . . . , Un
iid
= U (0, 1) and V1, V2, . . . , Vn

iid
= U (0, 1), being U1, U2, . . . , Un,

V1, V2, . . . , Vn and ξ1, ξ2, . . . , ξn independent random numbers.

Formula (12) is a stochastic recurrence equation: starting from Y(τ) = y that is
assumed to be known, it produces a sample path for Y(t) at the desired times t1, t2, . . . , tn.

3. Some Time-Inhomogeneous Diffusion Processes

Let {Z(t), t ∈ T} be a time-inhomogeneous diffusion process with infinitesimal drift
and infinitesimal variance

B1(x, t) =
h′2(t)
h2(t)

x +
[
m′(t)− h′2(t)

h2(t)
m(t)

] ϑ− (1− ϑ) exp
{
− 2m(t)

v(t) x
}

ϑ + (1− ϑ) exp
{
− 2m(t)

v(t) x
} , x ∈ R,

B2(t) = h2
2(t) r′(t),

(14)

where 0 ≤ ϑ ≤ 1 is a real number and m(t), h1(t), h2(t), v(t) are chosen as in Section 2. As
proved in Giorno and Nobile [33], if one of the following assumptions is satisfied:

(a) the left endpoint of T is zero, (y, τ) = (0, 0), m(τ) = h1(τ) = 0;
(b) m(t) = c h1(t), t ∈ T, c ∈ R,

The density (6) identifies with the transition pdf f (x, t|y, τ) = ∂P{Z(t) ≤ x|Z(τ) =
y}/∂x of the diffusion process Z(t). Then, in the cases (a) and (b), for all fixed t ≥ τ, one

has Z(t) d
= Y(t).

3.1. Case (a)

If the left endpoint of T is zero, (y, τ) = (0, 0), m(τ) = h1(τ) = 0, the transition pdf of
the diffusion process Z(t), with infinitesimal moments (14), is:

fZ(x, t|0, 0) =
[

ϑ + (1− ϑ) exp
{
− 2m(t)

v(t) x
}]

1√
2 π v(t)

exp
{
− [x−m(t)]2

2 v(t)

}
(x ∈ R), (15)
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and the conditional mean and variance are:

E[Z(t)|Z(0) = 0| = (2ϑ− 1)m(t),

Var[Z(t)|Z(0) = 0] = v(t) + 4 ϑ(1− ϑ)m2(t),
(16)

respectively.

3.2. Case (b)

If m(t) = c h1(t) for t ∈ T and c ∈ R, the infinitesimal moments (14) of Z(t) become:

B1(x, t) =
h′2(t)
h2(t)

x +
c B2(t)
h2(t)

ϑ− (1− ϑ) exp
{
− 2c

h2(t)
x
}

ϑ + (1− ϑ) exp
{
− 2c

h2(t)
x
} , x ∈ R

B2(t) = h2
2(t) r′(t),

(17)

and, from (6), one obtains the transition pdf:

fZ(x, t|y, τ) =
ϑ + (1− ϑ) exp

{
− 2 c

h2(t)
x
}

ϑ + (1− ϑ) exp
{
− 2c

h2(τ)
y
} 1√

2πV(t|τ)
exp

{
− [x−M1(t|y, τ)]2

2V(t|τ)

}
,

(x ∈ R), (18)

where M1(t|y, τ) and V(t|τ) are given in (3), with m(t) = c h1(t). Then, the conditional
mean and the variance of Z(t) are:

E[Z(t)|Z(τ) = y| = h2(t)
h2(τ)

y +
c V(t|τ)

h2(t)

ϑ− (1− ϑ) exp
{
− 2 c

h2(τ)
y
}

ϑ + (1− ϑ) exp
{
− 2 c

h2(τ)
y
} ,

Var[Z(t)|Z(τ) = y] = V(t|τ) +
[ c V(t|τ)

h2(t)

]2 4 ϑ (1− ϑ) exp
{
− 2 c

h2(τ)
y
}

[
ϑ + (1− ϑ) exp

{
− 2 c

h2(τ)
y
}]2 ·

(19)

Furthermore, for the time-inhomogeneous diffusion process defined in (14), let

TZ =


inft≥τ{t : Z(t) ≥ S(t)}, Z(τ) = y < S(τ),

τ, t ∈ T
inft≥τ{t : Z(t) ≤ S(t)}, Z(τ) = y > S(τ),

(20)

be the FPT of Z(t) from Z(τ) = y to the boundary S(t) ∈ C1(T) and let gZ[S(t), t|y, τ] =
∂P(TZ ≤ t)/∂t be the FPT pdf, with y 6= S(τ). The FPT pdf gZ[S(t), t|y, τ] is a solution of
the first-kind Volterra integral equation:

fZ(x, t|y, τ) =
∫ t

τ
gZ[S(u), u|y, τ] fZ[x, t|S(u), u] du,

[y < S(τ), x ≥ S(t)] or [y > S(τ), x ≤ S(t)]. (21)

Making use of (18) in (21), one obtains:

gZ[S(t), t|y, τ] =
ϑ + (1− ϑ) exp

{
− 2 c

h2(t)
S(t)

}
ϑ + (1− ϑ) exp

{
− 2c

h2(τ)
y
} gX1 [S(t), t|y, τ],

[y < S(τ)] or [y > S(τ)]. (22)
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Similarly, the FPT densities of the processes X1(t) and X2(t) are also solutions of
first-kind Volterra integral equations:

fXi (x, t|y, τ) =
∫ t

τ
gXi [S(u), u|y, τ] fXi [x, t|S(u), u] du (i = 1, 2),

[y < S(τ), x ≥ S(t)] or [y > S(τ), x ≤ S(t)]. (23)

In the case (b), the transition densities of the processes X1(t) and X2(t) satisfy the
following symmetry relation:

fX2(x, t|y, τ) = exp
{
− 2c

h2(t)
x
}

exp
{ 2c

h2(τ)
y
}

fX1(x, t|y, τ),

so that, from (23), one has:

gX1 [S(t), t|y, τ] = exp
{ 2c

h2(t)
S(t)

}
exp

{
− 2c

h2(τ)
y
}

gX2 [S(t), t|y, τ]. (24)

Hence, for the diffusion process Z(t) with infinitesimal moments (17), from (22) and (24),
one obtains

gZ[S(t), t|y, τ] = Qy,τ(ϑ) gX1 [S(t), t|y, τ] + [1−Qy,τ(ϑ)] gX2 [S(t), t|y, τ]

[y < S(τ), x ≥ S(t)] or [y > S(τ), x ≤ S(t)], (25)

where 0 ≤ ϑ ≤ 1,

Qy,τ(ϑ) =
ϑ

ϑ + (1− ϑ) exp
{
− 2c

h2(τ)
y
}

and gXi [S(t), t|y, τ] denotes the FPT density of Xi(t) through S(t) starting from Xi(τ) = y
(i = 1, 2). Equation (25) shows that gZ[S(t), t|y, τ] is a mixture of two FPT densities
gX1 [S(t), t|y, τ] and gX2 [S(t), t|y, τ]. Therefore, the random variable TZ is identically dis-
tributed as

T =

{
TX1 , 0 ≤ Uy,τ < Qy,τ(ϑ),
TX2 , Qy,τ(ϑ) ≤ Uy,τ < 1,

(26)

where TXi is the FPT of Xi(t) through S(t) for i = 1, 2 and Uy,τ ∼ U (0, 1) is independent of
TX1 and TX2 .

We note that, for the diffusion process Z(t) with infinitesimal moments (17) if

S(t) = a1h1(t) + a2h2(t), t ∈ T, a1, a2 ∈ R (27)

then the FPT density can be expressed in closed form as (see Giorno and Nobile [33]):

gZ[S(t), t|y, τ] =
|S(τ)− y|
r(t)− r(τ)

h2(t)
h2(τ)

dr(t)
dt

fZ[S(t), t|y, τ], [y < S(τ)] or [y > S(τ)]. (28)

with fZ(x, t|y, τ) given in (18). Moreover, the first passage of Z(t) through S(t), given in
(27), is a certain event if and only if [S(τ)− y][a1 + (−1)ic]/h2(τ) ≤ 0 for i = 1, 2.

Making use of the Algorithm 1, it is possible to obtain a random sample of N observa-
tions of Y(t) and to construct the histogram of the random sample. Such histogram can be
compared with the transition pdf (15), in the case (a), and with the transition pdf (18), in

the case (b), as a function of x, being Z(t) d
= Y(t) for all fixed t.

Applying the Algorithm 2, we can produce a sample path for Y(t) at the desired times
t1, t2, ..., tn via the composition method.

For ϑ = 0 or ϑ = 1, recalling that Z(t) = Y(t), we can obtain the following method
for the simulation of first passage times for the process Z(t) through S(t) if y < S(τ):
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Algorithm 3
Let t1 < t2 < . . . < tn be the set of distinct time instants for which the simulation of the
process Z(t) is desired.
STEP 1: Set t0 = τ, Z(t0) = y, k = 1;
STEP 2: If ϑ = 0 compute Z(tk) = X2(tk) via

Z(tk) = Z(tk−1)
h2(tk)

h2(tk−1)
−
[
m(tk)−m(tk−1)

h2(tk)

h2(tk−1)

]
+ h2(t)

√
r(tk)− r(tk−1) ξk,

whereas, if ϑ = 1, compute Z(tk) = X1(tk) via

Z(tk) = Z(tk−1)
h2(tk)

h2(tk−1)
+ m(tk)−m(tk−1)

h2(tk)

h2(tk−1)
+ h2(t)

√
r(tk)− r(tk−1) ξk,

with ξ1, ξ2, . . . , ξn independent normal random numbers.
STEP 3: If Z(tk) ≥ S(tk), then collect the first passage time tk and stop, else k← k + 1 and
go to Step 2.

The implementation of the previous procedure for N times allows for obtaining a
collection of N simulated first passage times of Z(t) through S(t). Then, the histogram of
such first passage times can be used to obtain an estimation of the FPT pdf. When y > S(τ),
in STEP 3 of Algorithm 3, it is necessary to change Z(tk) ≤ S(tk).

In the case (b), when 0 < ϑ < 1, implementing the Algorithm 3 N times for ϑ = 0
and for ϑ = 1, we obtain two collections of N simulated first passage times t2,1, . . . , t2,N
for X2(t) and t1,1, . . . , t1,N for X1(t). Recalling (26), one obtains a collection of N simulated
first passage times of Z(t) through S(t) as follows:

tk =

{
t1,k, 0 ≤ uk < Qy,τ(ϑ),
t2,k, Qy,τ(ϑ) ≤ uk < 1,

(k = 1, 2, . . . , N) (29)

where u1, u2, . . . , uN are independent uniform numbers in (0, 1). Hence, an estimation of
the FPT pdf of Z(t) through S(t) can be achieved by the histogram of the first passage
times t1, t2, . . . , tN .

For the diffusion process Z(t), the estimation of the FPT pdf via Algorithm 3 and
its generalization to the case 0 < ϑ < 1 depends on the infinitesimal moments; on the
discretization step, on the time-varying boundary and on the choice of the initial state with
respect to boundary. In some cases, the FPT densities can present heavy tails as the time
increases, so that the simple path of the stochastic process can take a long time to reach
and cross the boundary. The simulations run until STEP 3 in Algorithm 3 are satisfied, but,
in some cases, can be necessary to set a maximum simulation time in order to avoid very
long and time-expensive simulations. Of course, in this case, it is necessary to count the
realizations that do not reach the threshold and give an estimation of the success probability
in such a way as not to affect the estimation of the FPT density.

In the sequel, particular attention is dedicated to the simulation of the processes gen-
erated via the Wiener and the Ornstein–Uhlenbeck processes, with continuous parameter
set T = [0,+∞).

4. Simulation of Processes Generated via the Wiener Process

Let X1(t) and X2(t) be the time-inhomogeneous Wiener processes, with state-space in
R, conditioned to start from y at time τ:

Xi(t) = y + (−1)3−i
∫ t

τ
β(u) du + W

[∫ t

τ
σ2(u) du

]
, i = 1, 2; t ≥ τ, (30)

where β(t) and σ(t) are continuous functions, with β(t) ∈ R and σ(t) > 0. Due to (1),
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one has:

m(t) =
∫ t

0
β(u) du, h1(t) =

∫ t

0
σ2(u) du, h2(t) = 1. (31)

Making use of (31) in (14), for the diffusion process Z(t), we obtain the following
infinitesimal moments:

B1(x, t) = β(t)

ϑ− (1− ϑ) exp
{
−2 x

∫ t
0 β(u) du∫ t

0 σ2(u) du

}

ϑ + (1− ϑ) exp
{
−2 x

∫ t
0 β(u) du∫ t

0 σ2(u) du

} , B2(t) = σ2(t), (32)

with 0 ≤ ϑ ≤ 1. We note that, if ϑ = 0, Z(t) = X2(t) is the time-inhomogeneous
Wiener process with infinitesimal moments B1(t) = −β(t) and B2(t) = σ2(t), whereas,
when ϑ = 1, Z(t) = X1(t) is the time-inhomogeneous Wiener process with infinitesimal
moments B1(t) = β(t) and B2(t) = σ2(t).

We assume that β(t) 6= 0 for t ≥ 0. By choosing (y, τ) = (0, 0), from (31), one has
m(0) = h1(0) = 0, so that the assumptions (a) are satisfied; hence, from (15), one obtains:

fZ(x, t|0, 0) =
[

ϑ + (1− ϑ) exp
{
−2 x

∫ t
0 β(u) du∫ t

0 σ2(u) du

}]

× 1√
2π
∫ t

0 σ2(u) du
exp

{
−

[
x−

∫ t
0 β(u) du

]2

2
∫ t

0 σ2(u) du

}
, x ∈ R, (33)

and, making use of (31) in (16), one has:

E[Z(t)|Z(0) = 0| = (2ϑ− 1)
∫ t

0
β(u) du,

Var[Z(t)|Z(0) = 0] =
∫ t

0
σ2(u) du + 4 ϑ (1− ϑ)

[∫ t

0
β(u) du

]2
.

(34)

Furthermore, the assumption (b) holds if and only if

β(t) = c σ2(t), t ≥ 0, c ∈ R. (35)

In this case, from (32), the infinitesimal moments of Z(t) are:

B1(x, t) = β(t)
ϑ− (1− ϑ) e−2cx

ϑ + (1− ϑ) e−2cx , B2(t) = σ2(t), (36)

and, from (18), it follows:

fZ(x, t|y, τ) =
ϑ + (1− ϑ) e−2 c x

ϑ + (1− ϑ) e−2 c y

× 1√
2π
∫ t

τ σ2(u) du
exp

{
−

[
x− y− c

∫ t
τ σ2(u) du

]2

2
∫ t

τ σ2(u) du

}
, x, y ∈ R. (37)

Making use of (31) in (19), one has:
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E[Z(t)|Z(τ) = y| = y + c
ϑ− (1− ϑ) e−2 c y

ϑ + (1− ϑ) e−2 c y

∫ t

τ
σ2(u) du,

Var[Z(t)|Z(τ) = y] =
∫ t

τ
σ2(u) du +

[
c
∫ t

τ
σ2(u) du

]2 4 ϑ (1− ϑ) e−2 c y[
ϑ + (1− ϑ) e−2 c y

]2 · (38)

Moreover, due to (27) and (28), for the process Z(t), the FPT pdf through the boundary

S(t) = a2 + a1

∫ t

0
σ2(u) du, t ≥ 0, a1, a2 ∈ R (39)

is

gZ[S(t), t|y, τ] =
|S(τ)− y|∫ t
τ σ2(u) du

σ2(t) fZ[S(t), t|y, τ], [y < S(τ)] or [y > S(τ)], (40)

with fZ(x, t|y, τ) given in (37). Finally, the first passage of Z(t) through S(t), given in (39),
is a certain event if and only if [S(τ)− y][a1 + (−1)ic] ≤ 0 for i = 1, 2.

Example 1. We consider the diffusion process Z(t) in (32) with

β(t) = γ +
2π ν

Q
sin
(4π t

Q

)
, σ2(t) = σ2, t ≥ 0, (41)

so that
m(t) = γ t + ν sin2

(2π t
Q

)
, h1(t) = σ2 t, h2(t) = 1, t ≥ 0. (42)

Then, from (32), it follows that the infinitesimal drift and the infinitesimal variance of the
process Z(t) are

B1(x, t) =
[
γ +

2π ν

Q
sin
(4π t

Q

)] ϑ− (1− ϑ) exp
{
− 2 x

σ2

[
γ t + ν sin2

(
2π t
Q

)]}
ϑ + (1− ϑ) exp

{
− 2 x

σ2

[
γ t + ν sin2

(
2π t
Q

)]} ,

B2(t) = σ2,

(43)

with 0 ≤ ϑ ≤ 1. We suppose that (y, τ) = (0, 0), so that the assumptions (a) are satisfied. In this
case, from (7), we obtain:

Xi(t) = (−1)3−i
[
γ t + ν sin2

(2π t
Q

)]
+ σ
√

t ξt i = 1, 2; t ≥ 0, (44)

with ξt ∼ N (0, 1); hence, from (4) and (5), one has

Y(t) =


X1(t), 0 ≤ Ut < ϑ,

X2(t), ϑ ≤ Ut < 1,
(45)

and Z(t) d
= Y(t) for all fixed t ≥ 0. Algorithm 1 can be used to compare the transition pdf (33) of

Z(t), being β(t) and σ2(t) given in (41), with the histograms of the random sample of observations
of Y(t), obtained via (45), for different instants t. Specifically, in Figure 1, the histogram of a
random sample of N = 106 observations of Y(t) is obtained for different times t, by choosing β(t)
and σ2(t) as in (41), with ϑ = 0.1, γ = 1.5, σ2 = 2, ν = 0.1, Q = 1.
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Figure 1. For the process Z(t), having infinitesimal moments (32), with ϑ = 0.1, β(t) = 1.5 +

0.2 π sin(4π t) and σ2(t) = 2, the transition pdf (33) as a function of x is superimposed over a
histogram obtained via Algorithm 1 for different choices of t.

In the sequel, we denote by

C[Z(t)|Z(τ) = y] =
√

Var[Z(t)|Z(τ) = y]
|E[Z(t)|Z(τ) = y]|

the coefficient of variation. Making use of (34), in columns 2, 4, 6 of Table 1, the mean E[Z(t)|Z(0) =
0], the variance Var[Z(t)|Z(0) = 0] and the coefficient of variation C[Z(t)|Z(0) = 0] are listed
for the same values of the parameters of Figure 1 with t = 1, 5, 10, 15. The values in columns 3, 5, 7
refer to the simulation sample mean yt, variance s2

t and coefficient of variation ct, computed from the
same random sample of N = 106 observations of Y(t) used in Figure 1. The results of Figure 1 and
Table 1 show the good agreement between the probabilistic results and those obtained via simulation.

Table 1. The conditional mean, variance, and coefficient of variation of Z(t) are compared with
the estimated values yt, s2

t and ct obtained by means of Algorithm 1 with the same choices of the
parameters of Figure 1.

t E[Z(t)|Z(0) = 0] yt Var[Z(t)|Z(0) = 0] s2
t C[Z(t)|Z(0) = 0] ct

1 −1.200000 −1.201083 2.810000 2.81271 1.396921 1.396334
5 −6.0000000 −6.0033797 30.2500000 30.2705863 0.9166667 0.9164623

10 −12.0000000 −12.0057944 101.0000000 101.0350351 0.8374896 0.8372306
15 −18.0000000 −18.0080505 212.2500000 212.2809493 0.8093779 0.8090751



Mathematics 2021, 9, 818 13 of 25

Algorithm 2 permits generating sample paths of the process Y(t). Indeed, for the considered
case, from (12), setting t1 = 0, Y(t1) = 0, we have

Y(tk) = Y(tk−1) + R(tk−1, tk) + σ
√

tk − tk−1 ξk, k = 2, 3, . . . , n, (46)

where ξ1, ξ2, . . . , ξn
iid
= N (0, 1) and

R(tk−1, tk) =



m(tk)−m(tk−1), 0 ≤ Uk−1 < ϑ, 0 ≤ Vk < ϑ,

m(tk) + m(tk−1), ϑ ≤ Uk−1 < 1, 0 ≤ Vk < ϑ,

−m(tk)−m(tk−1), 0 ≤ Uk−1 < ϑ, ϑ ≤ Vk < 1,

−m(tk) + m(tk−1), ϑ ≤ Uk−1 < 1, ϑ ≤ Vk < 1,

(47)

with m(t) given in (42).
In Figure 2, a sample path of Y(t) is plotted as function of t for ϑ = 0.1 and ϑ = 0.9 by

choosing β(t) and σ2(t) as in (41), with γ = 1.5, σ2 = 2, ν = 0.1, Q = 1.
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(b) ϑ = 0.9

Figure 2. Simulated sample paths of the process Y(t), obtained via (46) with R(tk−1, tk) given in (47),
with β(t) = 1.5 + 0.2 π sin(4π t) and σ2(t) = 2.

When ϑ = 0 or ϑ = 1, Y(t) identifies with a time-inhomogeneous Wiener process Z(t).

Specifically, for ϑ = 0, Z(t) has infinitesimal moments B1(t) = −γ− 2π ν
Q sin

(
4π t
Q

)
and B2 = σ2,

whereas, when ϑ = 1, one has B1(t) = γ + 2π ν
Q sin

(
4π t
Q

)
and B2 = σ2. We recall that, for the

time-homogeneous Wiener process Z̃(t) with infinitesimal moments B̃1 = µ and B̃2 = σ2, the FTP
pdf through the constant boundary S is known in closed form:

g(S, t|y, 0) =
|S− y|

σ
√

2π t3
exp

{
− (S− y− µ t)2

2 σ2 t

}
, y 6= S. (48)

In Figure 3, for ϑ = 1, the histograms of FPT for Z(t), with γ = 1.5, ν = 0.1, Q = 1, σ2 = 2,
from Z(0) = 0 through a constant boundaries S = 5, 10 are plotted as function of t by using a
collection of N = 104 simulated first passage times obtained via Algorithm 3. The solid curves in
Figure 3 show the FPT densities of the Wiener process Z̃(t), having infinitesimal moments B̃1 = 1.5
and B̃2 = 2, from Z̃(0) = 0 through S = 5, 10, given in (48).
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Figure 3. Histograms of FPT through the boundary S for the process Z(t), given in (43), with ϑ = 1,
γ = 1.5, ν = 0.1, σ2 = 2, Q = 1, are compared with the FPT densities (solid curve) of the Wiener
process Z̃(t) with drift µ = 1.5 and infinitesimal variance σ2 = 2 from Z̃(0) = 0 through S.

Example 2. We consider the diffusion process Z(t) in (32) with

σ2(t) = β(t) = γ +
2π ν

Q
sin
(4π t

Q

)
, t ≥ 0, (49)

where γ > 2π |ν|/Q, to ensure that B2(t) > 0 for t ≥ 0, so that, from (31), one has:

m(t) = h1(t) = γ t + ν sin2
(2π t

Q

)
, h2(t) = 1, t ≥ 0. (50)

Then, from (36), for t ≥ 0 and x ∈ R, one has:

B1(x, t) =
[
γ +

2π ν

Q
sin
(4π t

Q

)] ϑ− (1− ϑ) e−2x

ϑ + (1− ϑ) e−2x , B2(t) = γ +
2π ν

Q
sin
(4π t

Q

)
, (51)

with 0 ≤ ϑ ≤ 1. The assumption (b) is satisfies with c = 1. In this case, from (7), we obtain:

Xi(t) = y + (−1)3−i
{

γ (t− τ) + ν
[
sin2

(2π t
Q

)
− sin2

(2π τ

Q

)]}
+

√
γ (t− τ) + ν

[
sin2

(2π t
Q

)
− sin2

(2π τ

Q

)]
ξτ,t, i = 1, 2; t ≥ τ, (52)

with ξτ,t ∼ N (0, 1); hence, (4) holds with

Qy(ϑ) =
ϑ

ϑ + (1− ϑ)e−2 y , 0 ≤ ϑ ≤ 1. (53)

Since Z(t) d
= Y(t) for all fixed t ≥ 0, we use the Algorithm 1 to compare the transition

pdf (37) of Z(t) with the histograms of the random sample of observations of Y(t) for different
instants t. Specifically, in Figure 4, the histogram of a random sample of N = 106 observations of
Y(t) is obtained for different times t, by choosing (y, τ) = (0, 0), β(t) and σ2(t) as in (49), with
ϑ = 0.4, γ = 1.5, ν = 0.1, Q = 2.
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Figure 4. For the process Z(t), having infinitesimal moments (51), with (y, τ) = (0, 0) and ϑ = 0.4,
γ = 1.5, ν = 0.1, Q = 2, the transition pdf (37) as a function of x is superimposed over a histogram
obtained via Algorithm 1 for different choices of t.

For the same values of the parameters, in Table 2 for t = 1, 5, 10, 15, the conditional mean,
variance, and coefficient of variation of Z(t), evaluated via (38), are compared with the simulation
sample mean yt, variance s2

t and coefficient of variation ct, obtained making use of the same random
sample of N = 106 observations of Y(t) of Figure 4.

Table 2. For the same choices of the parameters of Figure 4, the conditional mean, variance, and
coefficient of variation of Z(t) are compared with the estimated values yt, s2

t and ct, obtained by
means of Algorithm 1.

t E[Z(t)|Z(0) = 0] yt Var[Z(t)|Z(0) = 0] s2
t C[Z(t)|Z(0) = 0] ct

1 −0.300000 −0.2997934 3.660000 3.6660900 6.377042 6.3867430
5 −1.500000 −1.497204 61.500000 61.576435 5.228129 5.241146

10 −3.000000 −2.993572 231.000000 231.231917 5.066228 5.079654
15 −4.500000 −4.489803 508.500000 508.947685 5.011099 5.024690

Furthermore, due to (39) and (40), for the diffusion process Z(t) having infinitesimal moments
(51), the FPT pdf through the boundary

S(t) = a2 + a1

[
γ t + ν sin2

(2π t
Q

)]
, a1, a2 ∈ R, γ >

2π |ν|
Q

, (54)
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is

gZ[S(t), t|y, τ] =
|S(τ)− y|

[
γ + 2π ν

Q sin
(

4π t
Q

)]
γ (t− τ) + ν

[
sin2

(
2π t
Q

)
− sin2

(
2π τ

Q

)] fZ[S(t), t|y, τ],

[y < S(τ)] or [y > S(τ)]. (55)

The first passage of Z(t) through (54) is a certain event if and only if [y < S(τ), a1 ≤
−1] or [y > S(τ), a1 ≥ 1].

From (51), for ϑ = 0, one has B1(t) = −B2(t) = −γ − 2π ν
Q sin

(
4π t
Q

)
, whereas, when

ϑ = 1, one obtains B1(t) = B2(t) = γ + 2π ν
Q sin

(
4π t
Q

)
; in both cases, Y(t) = Z(t). In Figure 5,

for some choices of ϑ, the histograms of FPT for the process (51), with γ = 1.5, ν = 0.1, Q = 2,
from Z(0) = 0 through (54), with a1 = −1.2, a2 = 2 are plotted as a function of t by using a
collection of N = 104 simulated first passage times obtained via Algorithm 3. The solid curves in
Figure 5 show the FPT densities (55) with the same values of parameters.
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Figure 5. Histograms of FPT through the boundary S(t) = 2− 1.8 t− 0.12 sin2(π t) for the process
Z(t), given in (51), are compared with the FPT densities (solid curve), given in (55), for y = 0, τ = 0
and γ = 1.5, ν = 0.1, Q = 2.



Mathematics 2021, 9, 818 17 of 25

5. Simulation of Processes Generated via the Ornstein–Uhlenbeck Process

Let X1(t) and X2(t) be the time-inhomogeneous Ornstein–Uhlenbeck processes, with
state-space in R, conditioned to start from y at time τ:

Xi(t) = y eϕ(t)−ϕ(τ) + (−1)3−ieϕ(t)[Λ(t)−Λ(τ)] + eϕ(t)W
[
Ω(t)−Ω(τ)

]
, t ≥ τ, (56)

for i = 1, 2, where

ϕ(t) =
∫ t

0
α(z) dz, Λ(t) =

∫ t

0
β(u) e−ϕ(u) du, Ω(t) =

∫ t

0
σ2(u) e−2ϕ(u)du, (57)

being α(t), β(t) and σ(t) continuous functions, with α(t) ∈ R, β(t) ∈ R and σ(t) > 0. By
virtue of (1), for t ≥ 0, one has:

m(t) = eϕ(t)Λ(t), h1(t) = eϕ(t)Ω(t), h2(t) = eϕ(t). (58)

From (14) and (58), we consider the diffusion process Z(t) with infinitesimal moments:

B1(x, t) = α(t) x + β(t)
ϑ− (1− ϑ) exp

{
−2 x

e−ϕ(t)Λ(t)
Ω(t)

}
ϑ + (1− ϑ) exp

{
−2 x

e−ϕ(t)Λ(t)
Ω(t)

} , B2(t) = σ2(t), (59)

with 0 ≤ ϑ ≤ 1. If α(t) = 0 for all t ≥ 0, then the drift in (59) is identified with that in (32).
Furthermore, if ϑ = 0, Z(t) = X2(t) is the time-inhomogeneous Ornstein–Uhlenbeck
process with infinitesimal moments B1(x, t) = α(t) x− β(t) and B2(t) = σ2(t), whereas,
when ϑ = 1, Z(t) = X1(t) is the time-inhomogeneous Ornstein–Uhlenbeck process with
infinitesimal moments B1(x, t) = α(t) x + β(t) and B2(t) = σ2(t).

We assume that β(t) 6= 0 for all t ≥ 0. By choosing (y, τ) = (0, 0), from (58), one has
m(0) = h1(0) = 0; hence, the assumptions (a) are satisfied, and, from (15), one has:

fZ(x, t|0, 0) = e−ϕ(t)
[

ϑ + (1− ϑ) exp
{
−2 x

e−ϕ(t)Λ(t)
Ω(t)

}]

× 1√
2πΩ(t)

exp
{
−
[
x e−ϕ(t) −Λ(t)

]2
2 Ω(t)

}
, x ∈ R, (60)

and, making use of (58) in (16), one obtains:

E[Z(t)|Z(0) = 0| = (2ϑ− 1) eϕ(t) Λ(t),

Var[Z(t)|Z(0) = 0] = e2 ϕ(t) Ω(t) + 4 ϑ(1− ϑ) e2 ϕ(t) Λ2(t),
(61)

where ϕ(t), Λ(t) and Ω(t) are given in (57). Moreover, the assumption (b) holds if and
only if

β(t) = c e−ϕ(t)σ2(t), t ≥ 0, c ∈ R. (62)

In this case, from (59), the infinitesimal moments of Z(t) are:

B1(x, t) = α(t) x + β(t)
ϑ− (1− ϑ) exp

{
−2 c x e−ϕ(t)}

ϑ + (1− ϑ) exp
{
−2 c x e−ϕ(t)}

, B2(t) = σ2(t), (63)

with 0 ≤ ϑ ≤ 1, and, from (18), one has
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fZ(x, t|y, τ) =
ϑ + (1− ϑ) exp{−2 c x e−ϕ(t)}
ϑ + (1− ϑ) exp{−2 c y e−ϕ(τ)}

e−ϕ(t)√
2π [Ω(t)−Ω(τ)]

× exp
{
−
[
x e−ϕ(t) − y e−ϕ(τ) − c [Ω(t)−Ω(τ)]

]2
2 [Ω(t)−Ω(τ)]

}
, x, y ∈ R. (64)

Making use of (58) in (19), one obtains:

E[Z(t)|Z(τ) = y| = y eϕ(t)−ϕ(τ) + c eϕ(t)[Ω(t)−Ω(τ)]
ϑ− (1− ϑ) exp

{
−2 c y e−ϕ(τ)

}
ϑ + (1− ϑ) exp

{
−2 c y e−ϕ(τ)

} ,

Var[Z(t)|Z(τ) = y] = e2ϕ(t) [Ω(t)−Ω(τ)] + c2 e2ϕ(t)[Ω(t)−Ω(τ)]2 (65)

×
4 ϑ (1− ϑ) exp

{
−2 c y e−ϕ(τ)

}[
ϑ + (1− ϑ) exp

{
−2 c y e−ϕ(τ)

}]2 ,

with ϕ(t), Λ(t) and Ω(t) defined in (57). Furthermore, due to (27) and (28), the FPT pdf of
the process Z(t) through the boundary

S(t) = eϕ(t)
[

a2 + a1Ω(t)
]
, t ≥ 0, a1, a2 ∈ R (66)

is

gZ[S(t), t|y, τ] =
|S(τ)− y| e−ϕ(t)−ϕ(τ)

Ω(t)−Ω(τ)
σ2(t) fZ[S(t), t|y, τ], [y < S(τ)] or [y > S(τ)], (67)

with fZ(x, t|y, τ) given in (64). Finally, the first passage of Z(t) through S(t), given in (66),
is a certain event if and only if [S(τ)− y][a1 + (−1)ic] ≤ 0 for i = 1, 2.

Example 3. We consider the diffusion process Z(t) in (59) with

α(t) = α, β(t) = β, σ2(t) = σ2, t ≥ 0. (68)

Therefore, from (57), one has

ϕ(t) = α t, Λ(t) =
β

α
(1− e−α t), Ω(t) =

σ2

2α
(1− e−2α t), t ≥ 0, (69)

so that

m(t) =
β

α
(eα t − 1), h1(t) =

σ2

2α
(eαt − e−αt), h2(t) = eαt, t ≥ 0. (70)

Then, from (59), it follows that the infinitesimal moments of Z(t) are

B1(x, t) = α x + β

ϑ− (1− ϑ) exp
{
− 4 β x

σ2(1 + eα t)

}
ϑ + (1− ϑ) exp

{
− 4 β x

σ2(1 + eα t)

} , B2(t) = σ2, (71)

with 0 ≤ ϑ ≤ 1. We suppose that (y, τ) = (0, 0), so that the assumptions (a) are satisfied.
From (60), one has:

fZ(x, t|0, 0) =
[
ϑ + (1− ϑ) exp

{
− 4 β x

σ2(1 + eα t)

}]√ α

π σ2 (e2αt − 1)

× exp
{
−

α
[
x− β

α (e
α t − 1)

]2
σ2(e2αt − 1)

}
, x ∈ R. (72)
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We note that, for α < 0, the process Z(t) admits a steady-state density:

WZ(x) = lim
t→+∞

fZ(x, t|0, 0) =
[
ϑ + (1− ϑ) exp

{
−4 β x

σ2

}]
×
√
|α|

πσ2 exp
{
−|α|

σ2

(
x− β

|α|

)2}
, x ∈ R. (73)

From (7), we have:

Xi(t) = (−1)3−i β
eα t − 1

α
+ σ

√
e2α t − 1

2α
ξt, i = 1, 2; t ≥ 0, (74)

with ξt ∼ N (0, 1). Recalling (4) and (5), Y(t) is given in (45) with Xi(t) given in (74) and

Z(t) d
= Y(t) for all fixed t ≥ 0.
In Figure 5, we compare the transition densities (72) of Z(t) with the histograms of the random

sample of observations of Y(t) for different instants t, obtained by using Algorithm 1. The histogram
of a random sample of N = 106 observations of Y(t) is obtained for different times t, by choosing
ϑ = 0.1, α = −0.2, β = 1.5, σ2 = 2.0. The dashed curves in Figure 5 show the steady-state
density (73) for the same choices of parameters.

For the same values of the parameters, in Table 3 for t = 1, 5, 10, 15, the conditional mean,
variance, and coefficient of variation of Z(t), evaluated via (61), are compared with the simulation
sample mean yt, variance s2

t and coefficient of variation ct, obtained making use of the same random
sample of N = 106 observations of Y(t) of Figure 6.
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Figure 6. For the process Z(t) having infinitesimal moments (71), with ϑ = 0.1, α = −0.2, β = 1.5,
σ2 = 2, the transition pdf (72) as a function of x is superimposed over a histogram obtained via
Algorithm 1 for different choices of t. The dashed curves indicate the steady-state pdf given in (73).
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Table 3. For the same choices of the parameters of Figure 6, the conditional mean, variance, and
coefficient of variation of Z(t) are compared with the estimated values yt, s2

t and ct, obtained by
means of Algorithm 1.

t E[Z(t)|Z(0) = 0] yt Var[Z(t)|Z(0) = 0] s2
t C[Z(t)|Z(0) = 0] ct

1 −1.087615 −1.088598 2.313785 2.316015 1.398576 1.397987
5 −3.7927234 −3.7949015 12.4147457 12.4236120 0.9290044 0.9288026

10 −5.1879883 −5.1906403 20.0482345 20.0579186 0.8630562 0.8628236
15 −5.7012776 −5.7040871 23.2714247 23.2806625 0.8461343 0.8458854

Applying the Algorithm 2, we generate sample paths of the process Y(t). For the considered
case, from (12), by setting t1 = 0, Y(t1) = 0, we have:

Y(tk) = Y(tk−1) eα(tk−tk−1) + R(tk−1, tk) + σ eα tk

√
e−2α tk−1 − e−2α tk

2 α
ξk, (75)

where ξ1, ξ2, . . . , ξn
iid
= N (0, 1) and

R(tk−1, tk) =



m(tk)−m(tk−1) eα(tk−tk−1), 0 ≤ Uk−1 < ϑ, 0 ≤ Vk < ϑ,

m(tk) + m(tk−1) eα(tk−tk−1), ϑ ≤ Uk−1 < 1, 0 ≤ Vk < ϑ,

−m(tk)−m(tk−1) eα(tk−tk−1), 0 ≤ Uk−1 < ϑ, ϑ ≤ Vk < 1,

−m(tk) + m(tk−1) eα(tk−tk−1), ϑ ≤ Uk−1 < 1, ϑ ≤ Vk < 1,

(76)

with m(t) given in (70).
In Figure 7, a sample path of Y(t) is plotted as function of t for ϑ = 0.1 and ϑ = 0.9 by

using (75) with α = −0.2, β = 1.5 and σ2 = 2.
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Figure 7. Simulated sample paths of the process Y(t) obtained via (75), where R(tk−1, tk) is given
in (76) with α = −0.2, β = 1.5 and σ2 = 2.

When ϑ = 0 or ϑ = 1, Y(t) identifies with a time-homogeneous Ornstein–Uhlenbeck process
Z(t). In particular, for ϑ = 0, Z(t) has infinitesimal moments B1(x) = α x − β and B2 = σ2,
whereas, when ϑ = 1, one has B1(x) = α x + β and B2 = σ2. We recall that, for the time-
homogeneous Ornstein–Uhlenbeck process Z̃(t) with infinitesimal moments B̃1(x) = α x + β and
B̃2 = σ2, the FTP pdf through the constant boundary S = −β/α is known in closed form:

g
(
− β

α
, t|y, 0

)
=

2 eα t |y + β/α|
σ
√

π

(
α

e2α t − 1

)3/2
exp
{
−α e2α t (y + β/α)2

σ2 (e2α t − 1)

}
, y 6= −β/α. (77)

In Figure 8, for ϑ = 1, the histograms of FPT for Z(t), with β = 1.5, σ2 = 2, α = −0.1 on
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the left and α = −0.2 on the right, from Z(0) = 0 through the constant boundary S = 15 (on
the left) and S = 7.5 (on the right) are plotted as a function of t by using a collection of N = 104

simulated first passage times obtained via Algorithm 3. The solid curves in Figure 8 refer to the
closed expression of FPT densities for the Ornstein–Uhlenbeck process from Z(0) = 0 through
S = −β/α, given in (77).
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Figure 8. Histograms of FPT through the boundary S for the process Z(t), given in (43), with ϑ = 1,
β = 1.5, σ2 = 2, are compared with the FPT densities (solid curve) of the Ornstein–Uhlenbeck process
from Z(0) = 0 through S = −β/α.

Example 4. Let Z(t) be the diffusion process having infinitesimal drift and infinitesimal variance
given in (59) with

α(t) = α, σ2(t) = γ +
2π ν

Q
sin
(4π t

Q

)
, β(t) = e−αt σ2(t), t ≥ 0, (78)

where γ > 2π |ν|/Q. Therefore, from (57), one has

ϕ(t) = α t,

Λ(t) = Ω(t) = γ
1− e−2αt

2α
− νπ e−2αt

4π2 + α2Q2

[
2π cos

(4π t
Q

)
+ αQ sin

(4π t
Q

)
− 2π e2 α t

]
,

(79)

so that, from (58), one has:

m(t) = h1(t) = eα t Ω(t), h2(t) = eαt, t ≥ 0. (80)

From (63), one has

B1(x, t) = α x + e−αt
[
γ +

2π ν

Q
sin
(4π t

Q

)] ϑ− (1− ϑ) exp
{
−2 x e−α t}

ϑ + (1− ϑ) exp
{
−2 x e−α t}

,

B2(t) = γ +
2π ν

Q
sin
(4π t

Q

)
,

(81)

with γ > 2π |ν|/Q. The assumption (b) is satisfied with c = 1. In this case, from (7), we obtain:

Xi(t) = y eα (t−τ) + (−1)3−i eαt[Ω(t)−Ω(τ)
]
+ eαt

√
Ω(t)−Ω(τ) ξτ,t, t ≥ τ, (82)

where ξτ,t ∼ N (0, 1). Then, (4) holds with

Qy,τ(ϑ) =
ϑ

ϑ + (1− ϑ) exp
{
−2 e−ατ y

} , 0 ≤ ϑ ≤ 1. (83)



Mathematics 2021, 9, 818 22 of 25

Being Z(t) d
= Y(t) for all fixed t ≥ 0, Algorithm 1 can be used to compare the transition

pdf (64) of Z(t) with the histograms of the random sample of observations of Y(t) for different
instants t. Specifically, in Figure 9, the histogram of a random sample of N = 106 observations of
Y(t) is obtained for different times t, by choosing α(t), β(t) and σ2(t) as in (78), with (y, τ) =
(0, 0) and ϑ = 0.1, α = −0.2, γ = 1.5, ν = 0.1, Q = 2. Note that Figure 9c,d are mirrored to
Figure 9a,b, respectively.
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Figure 9. For the process Z(t) having infinitesimal moments (81), with (y, τ) = (0, 0) and α = −0.2,
γ = 1.5, ν = 0.1, Q = 2, the transition pdf (64) as a function of x is superimposed over a histogram
obtained via Algorithm 1 for different choices of t.

For the same values of the parameters with ϑ = 0.1, in Table 4, for t = 1, 5, 10, 15 the
conditional mean, variance, and coefficient of variation of Z(t), evaluated via (65), are compared
with the simulation sample mean yt, variance s2

t and coefficient of variation ct, obtained making use
of the same random sample of N = 106 observations of Y(t) of Figure 9.

Table 4. For the same choices of the parameters of Figure 9 with ϑ = 0.1, the conditional mean,
variance, and coefficient of variation of Z(t) are compared with the estimated values yt, s2

t and ct,
obtained by means of Algorithm 1.

t E[Z(t)|Z(0) = 0] yt Var[Z(t)|Z(0) = 0] s2
t C[Z(t)|Z(0) = 0] ct

1 −1.191974 −1.192894 2.019084 2.021058 1.192094 1.191757
5 −6.9575706 −6.9605112 30.4288148 30.4284625 0.7928388 0.7924993

10 −21.4721848 −21.4793776 262.9543652 262.8009005 0.7552343 0.7547302
15 −59.3090545 −59.3271807 1982.3207516 1980.5425005 0.7506992 0.7501332

Furthermore, for the diffusion process Z(t) having infinitesimal moments (81), the FPT pdf
through the boundary
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S(t) = eα t
{

a2 + a1γ 1−e−2αt

2α − a1νπ e−2αt

4π2+α2Q2

[
2π cos

(
4π t
Q

)
+ αQ sin

(
4π t
Q

)
− 2π e2 α t

]}
, (84)

with a1, a2 ∈ R and γ > 2π |ν|/Q, is

gZ[S(t), t|y, τ] = |S(τ)−y| e−α(t+τ)

Ω(t)−Ω(τ)

[
γ + 2π ν

Q sin
(

4π t
Q

)]
fZ[S(t), t|y, τ],

[y < S(τ)] or [y > S(τ)], (85)

with Ω(t) defined in (79). The first passage of Z(t) through (84) is a certain event if and only if
[y < S(τ), a1 ≤ −1] or [y > S(τ), a1 ≥ 1].

We note that, when ϑ = 0 or ϑ = 1, Y(t) identifies with a time-inhomogeneous Ornstein–
Uhlenbeck process Z(t). In particular, for ϑ = 0, Z(t) has infinitesimal moments B1(x, t) =

α x − e−α tB2(t) and B2(t) = γ + 2π ν
Q sin

(
4π t
Q

)
, whereas, when ϑ = 1, one has B1(x, t) =

α x + e−α t B2(t) and B2(t) = γ + 2π ν
Q sin

(
4π t
Q

)
. For different values of ϑ, the histograms of FPT

for the diffusion process Z(t), having infinitesimal moments (81), with (y, τ) = (0, 0), α = −0.2,
γ = 1.5, ν = 0.1, Q = 2, a1 = −1.2, a2 = 2, are plotted as a function of t by using a collection
of N = 104 simulated first passage times obtained via Algorithm 3. For the same choices of the
parameters, the solid curves in Figure 10 show the FPT densities (85).
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Figure 10. Histograms of FPT through the boundary (84) for Z(t), having infinitesimal moments (81),
are compared with the FPT densities (solid curve) in (85), with Ω(t) defined in (79), for (y, τ) = (0, 0),
α = −0.2, γ = 1.5, ν = 0.1, Q = 2, a1 = −1.2, a2 = 2.
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6. Conclusions

Starting from two Gauss–Markov processes conditioned on the same initial state, we
have constructed a continuous process Y(t) via the composition method. We focused on a
class of time-inhomogeneous diffusion processes Z(t), whose transition pdf identifies with
the density of Y(t). We have applied the theoretical results and the proposed simulation
algorithms to diffusion processes obtained by the composition of Wiener processes and
Ornstein–Uhlenbeck processes. For fixed time instants, we have simulated the random
variable describing Y(t), and we have shown that the transition pdf of the diffusion process
Z(t) can be superimposed over the histogram of the process Y(t), obtained by using the
simulation method. Finally, the histogram of first passage times is compared with the
closed form FPT density through special boundaries.
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