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Abstract: In this paper, an advanced computational technique has been presented to compute
the error bounds and subdivision depth of quaternary subdivision schemes. First, the estimation
is computed of the error bound between quaternary subdivision limit curves/surfaces and their
polygons after kth-level subdivision by using l0 order of convolution. Secondly, by using the error
bounds, the subdivision depth of the quaternary schemes has been computed. Moreover, this
technique needs fewer iterations (subdivision depth) to get the optimal error bounds of quaternary
subdivision schemes as compared to the existing techniques.

Keywords: quaternary subdivision scheme; subdivision models; inequalities; convolution; error
bound; subdivision depth; curves and surfaces
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1. Introduction

Subdivision schemes are major tools in Geometric Modeling. These tools are mainly
used to produce curve and surface models. The schemes are categorized into binary, ternary,
quaternary,. . ., n-ary schemes. Presently, thousands of schemes have been introduced in
each category. All these schemes help the technologist to produce the refine models to
meet the requirements of the investors in the area of engineering. The initial sketch and
subdivision rules are the main ingredients of these schemes. The estimation of the error
bounds of the limit models from its initial sketch is one of the important tasks. Another task
is to find the number of subdivision steps (depth) required to get the user-defined tolerable
error. These two tasks are also called the distance/error between the limit model & its kth
level model and subdivision depth, respectively. In this paper, we address these tasks for
quaternary schemes. First, we give an overview of quaternary subdivision schemes (QSS)
before addressing these tasks.

In general, QSS has four rules to refine each edge of the initial polygon (sketch). These
rules are the affine combination of the points of the polygon, and they produce succes-
sively refined sketches. In the limiting case, we get the limiting model. Initially, Mustafa
and Faheem [1] introduced 4-point approximating QSS which produces C3 models. The
generalized idea of m-point approximating QSS is given by Siddiqi and Younis [2]. They
also introduced interpolating QSS in the same year [3]. A 4-point QSS is presented by
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Pervaiz [4] in 2018. Moreover, the QSS also belongs to the classes of the schemes introduced
by [5–13] in different years. So, the importance of the QSS cannot be denied. Furthermore,
the tasks of finding the error bounds and subdivision depth of models produced by QSS
are meaningful.

The first technique was introduced by Mustafa et al. [14] in 2006, then its generalized
version for QSS was presented by Mustafa et al. [15] in 2010. The further generalization
has also been done for other categories of the schemes [16]. This technique is not suitable
to use for some subdivision schemes. We also mention the drawback of this technique in
this paper. The second technique is introduced by Deng et al. [17]. It is not mature enough.
It only works for binary interpolating schemes. Its generalization to the cases of n-ary
subdivision schemes needs to be investigated.

The third technique is introduced by Moncayo and Amat [18] and Shahzad et al. [19].
It works for binary class of schemes. Its generalization for the ternary class of schemes
was introduced by Faheem et al. [20]. In this work, we are interested in generalizing the
technique for QSS.

The remaining part of the work is configured as follows: In Sections 2 and 3, we present
general inequalities to compute the error bound and subdivision depth of curve and surface
models produced by QSS, respectively. In Sections 4 and 5, we offer the applications of
these inequalities for curve and surface models, respectively. The conclusion will be drawn
in Section 6.

2. The Error Bounds and Subdivision Depth for Curve Models

If the sequence of points {pk
i ; i ∈ Z} show a succession in Rℵ, where ℵ ≥ 2 and the

index k ≥ 0 represents the subdivision level (number of iterations) then the configura-
tion of the (k + 1)th level points computed by QSS is shown in Figure 1. A generalized
mathematical form of the QSS is presented as the affine combination of the points [15],

pk+1
4i+α =

N−1

∑
m=0

aα,m pk
i+m, α = 0, 1, 2, 3. (1)

Since the combination is affine it holds

N−1

∑
m=0

aα,m = 1, α = 0, 1, 2, 3. (2)

The adjustment of the coefficients for the computation of error bound and subdivision
depth is 

eβ,m =
m
∑

l=0
(aβ,l − aβ+1,l), β = 0, 1, 2,

e3,m = a0,m −
2
∑

β=0
eβ,m,

(3)

along with the strict condition (See [15])

N−1

∑
m=0
|eβ,m| < 1, β = 0, 1, 2, 3. (4)
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(a) Interpolating (b) Approximating

Figure 1. The configuration of new points for the interpolating and approximating QSS for curves; the solid lines are the control
polygon, and the dotted lines are the refined polygon.

Here, we introduce some new notations, for m = 0, 1, . . . , N − 1, as follows
b4m = e0,m,
b4m+1 = e1,m,
b4m+2 = e2,m,
b4m+3 = e3,m.

(5)

Furthermore, to be more specific, update the track defined in [20] for the computation
of error bounds and subdivision depth. Let, at the kth level of resolution, the vector vi = pk

i
represents the approximation coefficients. Then the approximation coefficients of two
consecutive stages k and k + 1 in the reconstruction process of QSS is defined as

pk+1
i = ∑

n∈N
bi−4n pk

n = (pk;0 ? b)i, (6)

where v0
i = pk;0

i shows the kth resolution level and ′?′ shows the convolution product.
If pk;0 = {pk;0; n ≥ 0} and b = {bn; n ≥ 0} are finite vectors with length γ1 and γ2
respectively then

(pk;0 ? b)j =
min{j,γ1−1}

∑
n=max{j−(γ2−1),0}

pk;0
n bj−4n, j = 0, 1, . . . , γ1 + γ1 − 2. (7)

Now we move forward and present some results of successive convolutions for one-
dimensional array of vectors based on QSS.

Lemma 1. Let p = {pn}n≥0 and b = {bn}4N−1
n=0 with bn = 0 for n ≥ 4N be finite one-

dimensional arrays of vectors. Then for QSS, the one-dimensional l0 convolution of these vectors
satisfies the following inequality

‖((. . . (((p(0) ? b)(0)) ? b)(0) ? . . . ? b)(0) ? b)‖∞ ≤ ‖p‖∞ max
j

{ bj/4l0 c

∑
m=0

|Al0
m,j|
}

, (8)

where 
A1

m,j = bj−4m,

Al0
m,j =

bj/4l0−1c
∑

p=4m
A1

m,p Al0−1
p,j , l0 ≥ 2,

(9)
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and

j ∈ Σ(l0, N) = {Ω(l0, N)− 4l0 + 1, Ω(l0, N)− 4l0 + 2, . . . , Ω(l0, N)}, (10)

Ω(l0, N) = (4l0 − 3)(4N − 1). (11)

Proof. See Appendix A.1.

Lemma 2. For QSS, the term Al0
m,j defined by (9) satisfies the following equality

Al0
m−1,j−4l0

= Al0
m,j = Al0

m+1,j+4l0
. (12)

Proof. See Appendix A.2.

Corollary 1. The term max
j

{ bj/4l0 c
∑

m=0
|Al0

m,j|
}

involved in the inequality (8) satisfies the follow-

ing equality

Bl0 = max
j

{ bj/4l0 c

∑
m=0

|Al0
m,j|
}

= max
j∈Σ(l0,N)

{ bj/4l0 c

∑
m=0

|Al0
m,j|
}

. (13)

Proof. See Appendix A.3.

Now, we present the inequalities to compute the error bound and subdivision depth
for the curve models produced by QSS.

Theorem 1. If P0 = {p0
i , i ∈ Z} is the initial polygon and Pk = {pk

i , i ∈ Z} is the polygon
obtained by QSS at kth subdivision level. Then the error bound between two successive levels is

‖Pk+1 − Pk‖∞ ≤ ψχ(Bl0)
k, (14)

where Bl0 , l0 ≥ 1 defined in (13),

χ = max
i

∥∥∥p0
i+1 − p0

i

∥∥∥, ψ = max
α

(∣∣∣∣ N−2

∑
m=0

ãα,m

∣∣∣∣, α = 0, 1, 2, 3
)

,

and 
ãα,0 =

N−1
∑

l=1
aα,l − α

4 ,

ãα,m =
N−1
∑

l=m+1
aα,l , m ≥ 1, α = 0, 1, 2, 3.

We omit the proof since it is similar to the one given in [15].

Theorem 2. If we assume the same conditions as in the Theorem 1 with the limiting curve model
P∞ then the error bounds ∇k between the limiting curve model and its kth level polygon satisfies
the inequality

∇k =
∥∥∥P∞ − Pk

∥∥∥
∞
≤ ψχ

(
(Bl0)

k

1− Bl0

)
, (15)

where l0 ≥ 1, such that Bl0 < 1.

By looking at the proof of Theorem 2.1 of [15] one may lead to prove of Theorem 2.
Given a user tolerable error ε > 0, the subdivision depth of limiting model P∞ generated
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by QSS concerning for ε is a positive integer k such that the error bound ∇k ≤ ε. In the
following theorem, we compute the subdivision depth.

Theorem 3. If we assume the same conditions as in the Theorem 2 with the user tolerable error
ε > 0 and

k ≥ logBl0

(
ε(1− Bl0)

ψχ

)
, (16)

then ∇k ≤ ε.

3. The Error Bounds and Subdivision Depth for Surface Models

In this work, we first generalize the results presented in Lemma 1 to Lemma 2 and
Corollary 1 for two-dimensional arrays then we generalize the inequalities of Theorems 1–
3 to compute the error bound and subdivision depth of the limiting tensor product surface
models generated by QSS.

For this, let Pk = {pk
i,j; i, j ∈ Z} be the polygon made by the sequence of points in Rℵ,

where ℵ ≥ 2 and the polygon Pk+1 = {pk+1
i,j ; i, j ∈ Z} be obtained by the tensor product

of the scheme (1). The graphical representation of the points at kth and (k + 1)th levels is
shown in Figure 2 whereas the mathematical form of tensor product QSS is described as

pk+1
4i+α,4j+γ =

N−1

∑
r=0

N−1

∑
s=0

aα,raγ,s pk
i+r,m+s, α, γ = 0, 1, 2, 3, (17)

where aα,r and aγ,s satisfies (2).

(a) Interpolating (b) Approximating

Figure 2. The configuration of new points for the interpolating and approximating QSS for the surface. The solid lines show one face
of coarse polygon while the dotted lines show the faces of the refined polygon.

Here we introduce new notations c = {cn}n∈N , d = {dn}n∈N for r, s = 0, 1, . . . , N − 1,
such that 

c4r = a0,N−r−1,
c4r+1 = a1,N−r−1,
c4r+2 = a2,N−r−1,
c4r+3 = a3,N−r−1 r = 0, ..., N − 1.
d4s = b0,N−s−1

d4s+1 = b1,N−s−1

d4s+2 = b2,N−s−1

d4s+3 = b3,N−s−1 s = 0, ..., N − 1.

(18)
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Since the extension of some of the results from one dimension array of vectors to two-
dimensional array is straight forward (See [15]), therefore we skip the trivial explanations
and directly come to the following result.

Lemma 3. Let pi,j be a finite two-dimensional array of vectors and d = {dn}4N−1
n=0 , c = {cn}4N−1

n=0
with dn = cn = 0 for n ≥ 4N are one-dimensional arrays of vectors. Then, for QSS, the
two-dimensional l0 convolution satisfies the following inequality

max
i,j
|pl0

i,j| ≤ Cl0 Dl0 max
m,n
|p0

m,n|. (19)

Here

Cl0 = max
i

{ bi/4l0 c

∑
m=0

|Al0,c
m,i |
}

(20)

and

Dl0 = max
j

{ bj/4l0 c

∑
n=0

|Al0,d
n,j |
}

. (21)

where 

A1,c
m,i = ci−4m,

Al0,c
m,i =

bi/4l0−1c
∑

p=4m
A1,c

m,p Al0−1,c
p,i ,

A1,d
n,j = dj−4n,

Al0,d
n,j =

bj/4l0−1c
∑

q=4n
A1,d

n,q Al0−1,d
q,j , l0 ≥ 2,

Proof. See Appendix A.4.

Now, we present the inequalities to compute the error bound and subdivision depth
for the surface models produced by QSS. By using a similar approach of [15], one can easily
prove the Theorems 4 and 5.

Theorem 4. If P0 = {p0
i,j, i ∈ Z} is the initial polygon and Pk = {pk

i,j, i ∈ Z} is the polygon
obtained by (17). Then the error bound between two successive levels is

‖Pk+1 − Pk‖∞ ≤ ν(Cl0 Dl0)
k. (22)

Here Cl0 , Dl0 for l0 ≥ 1 is defined in (20) and (21) and ν = max
α,β

{
∑3

t=1(χt)(ψt
α,β), α, β =

0, 1, 2, 3
}

, where χt and ψt
α,β for α, β = 0, 1, 2, 3 are defined in [15].

Theorem 5. If we assume the same conditions as in the Theorem 4 with the limiting surface model
P∞ then the error bound ∇k between the limiting surface model and its kth level polygon is defined
by the inequality

∇k = ‖P∞ − Pk‖∞ ≤ ν

(
(Cl0 Dl0)

k

1− Cl0 Dl0

)
, (23)

where l0 ≥ 1, such that Cl0 Dl0 < 1.

In the following theorem, we present the subdivision depth for the surface model.
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Theorem 6. If we assume the same conditions as in the Theorem 5 with the user tolerable error
ε > 0 and if

k ≥ log(Cl0
Dl0

)

(
ε(1− Cl0 Dl0)

ν

)
, (24)

then ∇k ≤ ε.

4. Numerical Applications for Curve Models

In this section, we demonstrate the performance of our inequalities to compute error
bound and subdivision depth of the curve models. First, we compute Bl0 defined in (13) at
different values of l0.

Example 1. If the curve model is produced by a 3-point approximating QSS [2] with coefficients
a0,0 = 49

128 , a0,1 = 39
64 , a0,2 = 1

128 , a1,0 = 25
128 , a1,1 = 47

64 , a1,2 = 9
128 , a2,0 = 9

128 , a2,1 = 47
64 ,

a2,2 = 25
128 , a3,0 = 1

128 , a3,1 = 39
64 , a3,2 = 49

128 . Then for N = 3, we have

Bl0 = max
j∈Σ(l0,3)

{ bj/4l0 c

∑
m=0

|Al0
m,j|
}

.

For l0 = 1, we get

B1 = max
j∈Σ(1,3)

{ bj/4c

∑
m=0
|A1

m,j|
}

= max
j∈{8,9,10,11}

{ bj/4c

∑
m=0
|bj−4m|

}
.

Using (5) and Lemma 1, we have b = {bn}11
n=0 with bn = 0 for n ≥ 12. Hence

{b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11} =
{

24
128

,
16

128
,

8
128

,
1

128
,

8
128

,
16

128
,

24
128

,
30
128

, 0, 0, 0,
1

128

}
. (25)

Now consider

B1 = max
{ b8/4c

∑
m=0
|b8−4m|,

b9/4c

∑
m=0
|b9−4m|,

b10/4c

∑
m=0

|b10−4m|,
b11/4c

∑
m=0

|b11−4m|
}

.

This implies

B1 = max
{
|b8|+ |b4|+ |b0|, |b9|+ |b5|+ |b1|, |b10|+ |b6|+ |b2|, |b11|+ |b7|+ |b3|

}
= max

{
0 +

∣∣∣∣ 8
128

∣∣∣∣+ ∣∣∣∣ 24
128

∣∣∣∣, 0 +
∣∣∣∣ 16
128

∣∣∣∣+ ∣∣∣∣ 16
128

∣∣∣∣, 0 +
∣∣∣∣ 24
128

∣∣∣∣+ ∣∣∣∣ 8
128

∣∣∣∣, ∣∣∣∣ 1
128

∣∣∣∣+ ∣∣∣∣ 30
128

∣∣∣∣+ ∣∣∣∣ 1
128

∣∣∣∣}
=

1
4

.

For l0 = 2, we get

B2 = max
j∈Σ(2,3)

{ bj/42c

∑
m=0

|A2
m,j|
}

= max
j∈{128,129,...,143}

{ bj/16c

∑
m=0

|A2
m,j|
}

= max
j∈{128,129,...,143}

{ bj/16c

∑
m=0

∣∣∣∣ bj/4c

∑
n=4m

A1
m,n A1

n,j

∣∣∣∣}.
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This implies

B2 = max
{ b128/16c

∑
m=0

∣∣∣∣ b128/4c

∑
n=4m

A1
m,n A1

n,128

∣∣∣∣, b129/16c

∑
m=0

∣∣∣∣ b129/4c

∑
n=4m

A1
m,n A1

n,129

∣∣∣∣, b130/16c

∑
m=0

∣∣∣∣ b130/4c

∑
n=4m

A1
m,n A1

n,130

∣∣∣∣,
b131/16c

∑
m=0

∣∣∣∣ b131/4c

∑
n=4m

A1
m,n A1

n,131

∣∣∣∣, b132/16c

∑
m=0

∣∣∣∣ b132/4c

∑
n=4m

A1
m,n A1

n,132

∣∣∣∣, b133/16c

∑
m=0

∣∣∣∣ b133/4c

∑
n=4m

A1
m,n A1

n,133

∣∣∣∣,
b134/16c

∑
m=0

∣∣∣∣ b134/4c

∑
n=4m

A1
m,n A1

n,134

∣∣∣∣, b135/16c

∑
m=0

∣∣∣∣ b135/4c

∑
n=4m

A1
m,n A1

n,135

∣∣∣∣, b136/16c

∑
m=0

∣∣∣∣ b136/4c

∑
n=4m

A1
m,n A1

n,136

∣∣∣∣,
b137/16c

∑
m=0

∣∣∣∣ b137/4c

∑
n=4m

A1
m,n A1

n,137

∣∣∣∣, b138/16c

∑
m=0

∣∣∣∣ b138/4c

∑
n=4m

A1
m,n A1

n,138

∣∣∣∣, b139/16c

∑
m=0

∣∣∣∣ b139/4c

∑
n=4m

A1
m,n A1

n,139

∣∣∣∣,
b140/16c

∑
m=0

∣∣∣∣ b140/4c

∑
n=4m

A1
m,n A1

n,140

∣∣∣∣, b141/16c

∑
m=0

∣∣∣∣ b141/4c

∑
n=4m

A1
m,n A1

n,141

∣∣∣∣, b142/16c

∑
m=0

∣∣∣∣ b142/4c

∑
n=4m

A1
m,n A1

n,142

∣∣∣∣,
b143/16c

∑
m=0

∣∣∣∣ b143/4c

∑
n=4m

A1
m,n A1

n,143

∣∣∣∣}.

This further implies

B2 = max
{

λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, λ12, λ13, λ14, λ15, λ16

}
.

Since bi = 0, for all i > 11, therefore we have

λ1 =

∣∣∣∣b4b11 + b8b10

∣∣∣∣+ ∣∣∣∣b0b8 + b4b7 + b6b8

∣∣∣∣+ ∣∣∣∣b0b4 + b2b8 + b3b4

∣∣∣∣+ ∣∣∣∣b0

∣∣∣∣2,

λ2 =

∣∣∣∣b5b11 + b9b10

∣∣∣∣+ ∣∣∣∣b1b8 + b5b7 + b6b9

∣∣∣∣+ ∣∣∣∣b1b4 + b2b9 + b3b5

∣∣∣∣+ ∣∣∣∣b0b1

∣∣∣∣,

λ3 =

∣∣∣∣b6b11 + b2
10

∣∣∣∣+ ∣∣∣∣b2b8 + b6b7 + b6b10

∣∣∣∣+ ∣∣∣∣b2b4 + b2b10 + b3b6

∣∣∣∣+ ∣∣∣∣b0 + b2

∣∣∣∣,

λ4 =

∣∣∣∣b7b11 + b10b11

∣∣∣∣+ ∣∣∣∣b3b8 + b6b11 + b2
7

∣∣∣∣+ ∣∣∣∣b2b11 + b3b4 + b3b7

∣∣∣∣+ ∣∣∣∣b0b3

∣∣∣∣,

λ5 =

∣∣∣∣b11b8

∣∣∣∣+ ∣∣∣∣b0b9 + b4b8 + b7b8

∣∣∣∣+ ∣∣∣∣b0b5 + b3b8 + b2
4

∣∣∣∣+ ∣∣∣∣b0b1 + b0b4

∣∣∣∣,

λ6 =

∣∣∣∣b11b9

∣∣∣∣+ ∣∣∣∣b1b9 + b5b8 + b7b9

∣∣∣∣+ ∣∣∣∣b1b5 + b3b9 + b4b5

∣∣∣∣+ ∣∣∣∣b0b5 + b2
1

∣∣∣∣,

λ7 =

∣∣∣∣b10b11

∣∣∣∣+ ∣∣∣∣b2b9 + b6b8 + b7b10

∣∣∣∣+ ∣∣∣∣b2b5 + b3b10 + b4b6

∣∣∣∣+ ∣∣∣∣b0b6 + b1b2

∣∣∣∣,

λ8 =

∣∣∣∣b2
11

∣∣∣∣+ ∣∣∣∣b3b9 + b7b8 + b7b11

∣∣∣∣+ ∣∣∣∣b3b5 + b3b11 + b4b7

∣∣∣∣+ ∣∣∣∣b0b7 + b1b3

∣∣∣∣,

λ9 =

∣∣∣∣b0b10 + b4b9 + b2
8

∣∣∣∣+ ∣∣∣∣b0b6 + b4b5 + b4b8

∣∣∣∣+ ∣∣∣∣b0b2 + b0b8 + b1b4

∣∣∣∣,
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λ10 =

∣∣∣∣b1b10 + b5b9 + b8b9

∣∣∣∣+ ∣∣∣∣b1b6 + b4b9 + b2
5

∣∣∣∣+ ∣∣∣∣b0b9 + b1b2 + b1b5

∣∣∣∣,

λ11 =

∣∣∣∣b2b10 + b6b9 + b8b10

∣∣∣∣+ ∣∣∣∣b2b6 + b4b10 + b5b6

∣∣∣∣+ ∣∣∣∣b0b10 + b1b6 + b2
2

∣∣∣∣,

λ12 =

∣∣∣∣b3b10 + b7b9 + b8b11

∣∣∣∣+ ∣∣∣∣b3b6 + b4b11 + b5b7

∣∣∣∣+ ∣∣∣∣b0b11 + b1b7 + b2b3

∣∣∣∣,

λ13 =

∣∣∣∣b0b11 + b4b10 + b8b9

∣∣∣∣+ ∣∣∣∣b0b7 + b4b6 + b5b8

∣∣∣∣+ ∣∣∣∣b0b3 + b1b8 + b2b4

∣∣∣∣,

λ14 =

∣∣∣∣b1b11 + b5b10 + b2
9

∣∣∣∣+ ∣∣∣∣b1b7 + b5b6 + b5b9

∣∣∣∣+ ∣∣∣∣b1b3 + b1b9 + b2b5

∣∣∣∣,

λ15 =

∣∣∣∣b2b11 + b6b10 + b9b10

∣∣∣∣+ ∣∣∣∣b2b7 + b5b10 + b2
6

∣∣∣∣+ ∣∣∣∣b1b10 + b2b3 + b2b6

∣∣∣∣,

λ16 =

∣∣∣∣b3b11 + b7b10 + b9b11

∣∣∣∣+ ∣∣∣∣b3b7 + b5b11 + b6b7

∣∣∣∣+ ∣∣∣∣b1b11 + b2b7 + b2
3

∣∣∣∣}.

Now using (25), we acquire

B2 = max
{
|b4b11 + b8b10|+ |b0b8 + b4b7 + b6b8|+ |b0b4 + b2b8 + b3b4|+ |b0|2, |b5b11 + b9b10|

+|b1b8 + b5b7 + b6b9|+ |b1b4 + b2b9 + b3b5|+ |b0b1|, |b6b11 + b2
10|+ |b2b8 + b6b7 + b6b10|

+|b2b4 + b2b10 + b3b6|+ |b0 + b2|, |b7b11 + b10b11|+ |b3b8 + b6b11 + b2
7|+ |b2b11 + b3b4

+b3b7|+ |b0b3|, 0 + 0 + |b0b5 + b3b8 + b2
4|+ |b0b1 + b0b4|, 0 + 0 + |b1b5 + b3b9 + b4b5|

+|b0b5 + b2
1|, 0 + 0 + |b2b5 + b3b10 + b4b6|+ |b0b6 + b1b2|, |b2

11|+ |b3b9 + b7b8 + b7b11|
+|b3b5 + b3b11 + b4b7|+ |b0b7 + b1b3|, 0 + |b0b6 + b4b5 + b4b8|+ |b0b2 + b0b8 + b1b4|,
0 + |b1b6 + b4b9 + b2

5|+ |b0b9 + b1b2 + b1b5|, 0 + |b2b6 + b4b10 + b5b6|+ |b0b10 + b1b6 + b2
2|

, 0 + |b3b6 + b4b11 + b5b7|+ |b0b11 + b1b7 + b2b3|, |b0b11 + b4b10 + b8b9|+ |b0b7 + b4b6

+b5b8|+ |b0b3 + b1b8 + b2b4|, |b1b11 + b5b10 + b2
9|+ |b1b7 + b5b6 + b5b9|+ |b1b3 + b1b9

+b2b5|, |b2b11 + b6b10 + b9b10|+ |b2b7 + b5b10 + b2
6|+ |b1b10 + b2b3 + b2b6|, |b3b11 + b7b10

+b9b11|+ |b3b7 + b5b11 + b6b7|+ |b1b11 + b2b7 + b2
3|
}

.

This implies that

B2 = max
{

1
16

,
1

16
,

1
16

,
1

16
,

1
16

,
1

16
,

1
16

,
1

16
,

1
16

,
1
16

,
1
16

,
1

16
,

1
16

,
1
16

,
1

16
,

1
16

}
=

1
16

.

Similarly, we can compute the values of Bl0 for l0 ≥ 3. For convenience, we have computed the
values up to l0 = 4, which are shown in Table 1. The subdivision depth k by Theorem 3 at different
values of Bl0 are given in Table 2.

In this work, Bl0 for l0 = 1 is equal to δ1 defined in [15]. If δ1 > 1, then the error bound of
QSS cannot be computed. However, in the proposed approach, if we increase the value of l0, the
values of Bl0 decreases until Bl0 becomes less than one. The main advantage of this approach also to
compute error bounds of those QSS, whose δ1 is greater or equal to one. As in Table 2, twenty-eight
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iterations are needed to achieve a given error tolerance 8.7× 10−19 by technique given in [15],
but by our technique, it needs only seven iterations corresponding to B4. The graphical comparison
between the results at first and fourth convolutions are demonstrated in Figure 3a.

Table 1. Values of Bl0 for l0 = 1, 2, 3, 4.

Scheme/Bl0 B1 = δ1 [15] B2 B3 B4

3-point approximating curve [2] 0.250000 0.062500 0.015625 0.003906
4-point approximating curve [1] 0.250000 0.062500 0.015625 0.003906
4-point interpolating curve [4] 0.328125 0.105957 0.034286 0.011092

Table 2. Depth of a 3-point approximating QSS curve model.

Bl0 /ε 2.45 × 10−3 9.57 × 10−7 3.74 × 10−9 1.46 × 10−11 5.7 × 10−14 2.23 × 10−16 8.7 × 10−19

B1 = δ1 [15] 4 8 12 16 20 24 28
B2 2 4 6 8 10 12 14
B3 1 3 4 5 7 8 9
B4 1 2 3 4 5 6 7

Example 2. The subdivision depth of the curve model produced by a 4-point approximating QSS [1]
are given in Table 3. The graphical view of these depths is shown in Figure 3b.

Table 3. Depth of a 4-point approximating QSS curve model.

Bl0 /ε 4.41 × 10−4 1.72 × 10−6 6.73 × 10−9 2.63 × 10−11 1.03 × 10−13 4.01 × 10−16 1.57 × 10−18

B1 = δ1 [15] 4 8 12 16 20 24 28
B2 2 4 6 8 10 12 14
B3 1 3 4 5 7 8 9
B4 1 2 3 4 5 6 7

Example 3. The subdivision depths of the curve model produced by a 4-point interpolating QSS [4]
for Bl0 , l0 ≥ 1 (see Table 1) are shown in Table 4. From Table 4, we can observe that the number
of iterations k (subdivision depth) decreases with the increase of l0 (order of convolution) to obtain
a user given error tolerance. This is the main reason for the reduction of computational cost as
compared to the technique given by [15]. The graphical analysis can be seen in Figure 3c.

Table 4. Depth of a 4-point interpolating QSS curve model.

Bl0 /ε 1.12 × 10−3 1.24 × 10−5 1.38 × 10−7 1.53 × 10−9 1.7 × 10−11 1.88 × 10−13 2.09 × 10−15

B1 = δ1 [15] 4 8 12 16 21 25 29
B2 2 4 6 8 10 12 14
B3 1 3 4 5 7 8 9
B4 1 2 3 4 5 6 7
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(a) 3-point approximating QSS [2]

(b) 4-point approximating QSS [1]

(c) 4-point interpolating QSS [4]

Figure 3. The comparison between various convolutions for curve case.
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5. Numerical Applications for Surface Models

Now we demonstrate the performance of our results to compute error bound and
subdivision depth of the surface models. First, we compute the term Cl0 Dl0 for l0 ≥ 1 by
using (20) and (21). These are shown in Table 5. We see that the values of Cl0 Dl0 decrease
with the increase of l0. This is the advantage of our approach.

Table 5. The values of Cl0 Dl0 for l0 = 1, 2, 3, 4.

Scheme/Cl0 Dl0 C1D1 = δ2 [15] C2D2 C3D3 C4D4

3-point QSS for surface [2] 0.250000 0.062500 0.015625 0.003906
4-point QSS for surface [1] 0.264140 0.065694 0.016672 0.004209
4-point QSS for surface [4] 0.389648 0.140310 0.049504 0.017476

Example 4. The subdivision depths of the surface model produced by the tensor product of a 3-point
approximating QSS [2] are given in Table 6. The values are computed by using the Theorem 6. The
graphical representation is shown in Figure 4a.

Table 6. Depth of the 3-point approximating QSS surface model.

Cl0 Dl0 /ε 7.8 × 10−4 3.05 × 10−6 1.19 × 10−8 4.65 × 10−11 1.82 × 10−13 7.1 × 10−16 2.77 × 10−18

C1D1 = δ2 [15] 4 8 12 16 20 24 28
C2D2 2 4 6 8 10 12 14
C3D3 1 3 4 5 7 8 9
C4D4 1 2 3 4 5 6 7

Example 5. The subdivision depths of the surface model produced by the tensor product of a 4-point
approximating QSS [1] are shown in Table 7. Also, these depths are graphically shown in Figure 4b.

Table 7. Depth of the 4-point approximating QSS surface model.

Cl0 Dl0 /ε 1.51 × 10−3 6.36 × 10−6 2.68 × 10−8 1.13 × 10−10 4.74 × 10−13 1.99 × 10−15 8.4 × 10−18

C1D1 = δ2 [15] 4 8 13 17 21 25 29
C2D2 2 4 6 8 10 12 14
C3D3 1 3 4 5 7 8 9
C4D4 1 2 3 4 5 6 7

Example 6. The subdivision depth of a 4-point interpolating QSS surface model [4] corresponding
to Cl0 Dl0 , l0 ≥ 1 (see Table 5) is shown in Table 8. The graphical view of the first and fourth
convolutions is given in Figure 4c.

Table 8. Depth of a 4-point interpolating QSS surface model.

Cl0 Dl0 /ε 6.22 × 10−3 1.09 × 10−4 1.9 × 10−6 3.32 × 10−8 5.81 × 10−10 1.01 × 10−11 1.77 × 10−13

C1D1 = δ2 [15] 5 9 13 18 22 26 31
C2D2 2 4 6 8 10 12 14
C3D3 1 3 4 5 7 8 9
C4D4 1 2 3 4 5 6 7
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(a) 3-point tensor product QSS [2]

(b) 4-point tensor product QSS [1]

(c) 4-point tensor product QSS [4]

Figure 4. The comparison between different convolutions for the surface case.
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6. Conclusions

An advance computational technique has been developed to compute the error bounds
of the quaternary subdivision model from its control polygon at kth level. This technique
also predict the number of iterations (subdivision depth) which are required to reach user-
defined error tolerance. This technique is the modified version of the technique presented
in [15]. When the technique of [15] fails to work then the proposed technique can work by
increasing the convolution steps. Moreover, we need fewer iterations to get the optimal
subdivision depth as compared to the existing techniques.

Appendix A

Here, we present the proofs of results given in Section 2 and 3.

Appendix A.1. Proof of Lemma 1

Proof. To prove this result, we start with the case of (l0 = 1) and (l0 = 2) convolutions
then a general case will be derived.

• Case l0 = 1

From (7), we obtain a relation given as follows

(p(0) ? b)j =
bj/4c

∑
n=0

pnbj−4n, (A1)

where b.c indicates the integer part of ′.′, this implies

|(p(0) ? b)j| =
∣∣∣∣∣ bj/4c

∑
n=0

pnbj−4n

∣∣∣∣∣ ≤ ‖p‖∞

bj/4c

∑
n=0
|bj−4n|.

Then

|(p(0) ? b)j| = max|(p(0) ? b)j| ≤ max

(
‖p‖∞

bj/4c

∑
n=0
|bj−4n|

)
= ‖p‖∞ max

( bj/4c

∑
n=0
|A1

n,j|
)

,

where bj−4n = A1
n,j. Thus

‖(p(0) ? b)j‖∞ ≤ ‖p‖∞ max

( bj/4c

∑
n=0
|A1

n,j|
)

. (A2)

• Case l0 = 2

From (A1), we acquire

((p(0) ? b)(0) ? b)j =
bj/4c

∑
m=0

(p(0) ? b)mbj−4m =
bj/4c

∑
m=0

( bm/4c

∑
n=0

pnbm−4n

)
bj−4m.

This implies
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((p(0) ? b)(0) ? b)j = p0(b0bj + b1bj−4 + b2bj−8 + b3bj−12 + b4bj−16 + . . . + bb j
4 c

b0)

+ p1(b0bj−16 + b1bj−20 + . . . + b0bb j
4 c−4

) + p2(b0bj−32 + b1bj−36 + . . .

+ b0bb j
4 c−8

) + . . . + pb j
42 c

b0b0

= p0

( bj/4c

∑
n=0

bnbj−4n

)
+ p1

( bj/4c

∑
n=4

bn−4bj−4n

)
+ p2

( bj/4c

∑
n=8

bn−8bj−4n

)
+ . . .

+ p j
42

( bj/4c

∑
n=4b j

42 c

b
n−4b j

42 c
bj−4n

)

=
bj/42c

∑
m=0

pm

( bj/4c

∑
n=4m

bn−4mbj−4n

)
=
bj/42c

∑
m=0

pm

( bj/4c

∑
n=4m

A1
m,n A1

n,j

)
=
bj/42c

∑
m=0

pm A2
m,j,

where

A2
m,j =

bj/4c

∑
n=4m

A1
m,n A1

n,j. (A3)

So

|((p(0) ? b)(0) ? b)j| =
∣∣∣∣∣ bj/42c

∑
m=0

pm A2
m,j

∣∣∣∣∣.
This implies

‖((p(0) ? b)(0) ? b)j‖∞ ≤ ‖p‖∞ max
j

{ bj/42c

∑
m=0

|A2
m,j|
}

. (A4)

• The general case

Applying the same argument, we acquire the reformulations for lth
0 convolution as

follows

((. . . (((p(0) ? b)(0)) ? b)(0) ? . . . ? b)(0) ? b)j =
bj/4l0 c

∑
m=0

pm Al0
m,j,

where Al0
m,j is defined recursively by

A1
m,j = bj−4m,

Al0
m,j =

bj/4l0−1c
∑

p=4m
A1

m,p Al0−1
p,j , l0 ≥ 2.

(A5)

Hence

‖((. . . (((p(0) ? b)(0)) ? b)(0) ? . . . ? b)(0) ? b)‖∞ ≤ ‖p‖∞ max
j

{ bj/4l0 c

∑
m=0

|Al0
m,j|
}

. (A6)

Appendix A.2. Proof of Lemma 2

Proof. Here, we start from an induction process over l0.

• Case l0 = 1

A1
m,j = bj−4m = bj+4−4(m+1) = A1

m+1,j+4, (A7)
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similarly
A1

m+1,j = bj−4(m+1) = A1
m,j−4. (A8)

From (A3), we have

A2
m,j =

bj/4c

∑
n=4m

A1
m,n A1

n,j.

Using (A7), we have

A2
m,j =

bj/4c

∑
n=4m

A1
m,n A1

n+1,j+4,

then after replacing n by n− 4, we acquire

A2
m,j =

bj/4+4c

∑
n=4(m+1)

A1
m,n−4 A1

n−3,j+4.

Using (A8)

A2
m,j =

bj/4+4c

∑
n=4(m+1)

A1
m+1,n A1

n,j+42 = A2
m+1,j+42 .

We suppose that it is true for an integer l0 = M that is

AM
m,j = AM

m+1,j+4M . (A9)

Now, we will prove the statement for

• Case l0 = M + 1

Consider

AM+1
m,j =

bj/4Mc

∑
n=4m

A1
m,n AM

n,j.

By using (A9), we acquire

AM+1
m,j =

bj/4Mc

∑
n=4m

A1
m,n AM

n+1,j+4M .

Now, replace n by n− 4

AM+1
m,j =

bj/4M+4c

∑
n=4(m+1)

A1
m,n−4 AM

n−3,j+4M .

Using (A8) and (A9), we have

AM+1
m,j = AM+1

m+1,j+4M+1 .

Similarly we can prove
AM+1

m,j = AM+1
m−1,j−4M+1 .

Hence
Al0

m−1,j−4l0
= Al0

m,j = Al0
m+1,j+4l0

.

This completes the proof.
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Appendix A.3. Proof of Corollary 1

Proof. Assume that b = {b0, b1, . . . , b4N−1}, with N ∈ N and Ω(l0, N) = (4l0 − 3)(4N− 1).
Then for j > Ω(l0, N) and by using Lemma 1, we acquire

Al0
0,j = 0. (A10)

Similarly for j > Ω(l0, N) + m4l0 and using Lemma 2, we have

Al0
m,j = 0. (A11)

Finally, using (A10) and (A11), we get (13).

Appendix A.4. Proof of Lemma 3

Proof. To prove the proposed result, we start with the case of (l0 = 1)th and (l0 = 2)th
convolutions then we discuss the general case.

• Case l0 = 1

Consider an arbitrary sequence of vectors pi,j. Then we have

p1
i,j = (p0;0 ? cd)i,j =

bi/4c

∑
m=0

bj/4c

∑
n=0

p0
m,nci−4mdj−4n,

where we are taking A1,c
m,i = ci−4m and dj−4n = A1,d

n,j for c and d. Thus

p1
i,j = (p0;0 ? cd)i,j =

[i/4]

∑
m=0

bj/4c

∑
n=0

p0
m,n A1,c

m,i A
1,d
n,j .

This implies

max
i,j
|p1

i,j| = max
i,j

∣∣∣∣ bi/4c

∑
m=0

bj/4c

∑
n=0

p0
m,n A1,c

m,i A
1,d
n,j

∣∣∣∣,
≤ max

i,j

bi/4c

∑
m=0

bj/4c

∑
n=0
|A1,c

m,i||A
1,d
n,j |max

m,n
|p0

m,n|. (A12)

Consider

C1 = max
i

{ bi/4c

∑
m=0
|A1,c

m,i|
}

and

D1 = max
j

{ bj/4c

∑
n=0
|A1,d

n,j |
}

,

then from (A12), we obtain

max
i,j
|p1

i,j| ≤ C1D1 max
m,n
|p0

m,n|.

• Case l0 = 2

Now, after applying two time convolution, we obtain

p1
m,n = (p0;0 ? cd)m,n = ((p1;0 ? cd) ? cd)i,j.
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This implies

p1
i,j =

bi/4c

∑
m=0

bj/4c

∑
n=0

(p1;0 ? cd)i,jci−4mdj−4n

=
bi/4c

∑
m=0

bj/4c

∑
n=0

( bm/4c

∑
p=0

bn/4c

∑
s=0

p0
p,scm−4pdn−4s

)
ci−4mdj−4n.

This again implies that

p1
i,j =

bi/42c

∑
m=0

bj/42c

∑
n=0

p0
m,n

bi/4c

∑
r=4m

cr−4mci−4r

bj/4c

∑
q=4n

dq−4ndj−4q

=
bi/42c

∑
m=0

bj/42c

∑
n=0

p0
m,n

bi/4c

∑
r=4m

A1,c
m,r A1,c

r,i

bj/4c

∑
q=4n

A1,d
n,q A1,d

q,j .

Which implies

p2
i,j =

bi/42c

∑
m=0

bj/42c

∑
n=0

p0
m,n A2,c

m,i A
2,d
n,j .

Now

max
i,j
|p2

i,j| = max
i,j

∣∣∣∣ bi/42c

∑
m=0

bj/42c

∑
n=0

p0
m,n A2,c

m,i A
2,d
n,j

∣∣∣∣,
≤ max

i,j

bi/42c

∑
m=0

bj/42c

∑
n=0

∣∣∣∣A2,c
m,i

∣∣∣∣∣∣∣∣A2,d
n,j

∣∣∣∣max
m,n

∣∣∣∣p0
m,n

∣∣∣∣. (A13)

Consider

C2 = max
i

{ bi/42c

∑
m=0

∣∣∣∣A2,c
m,i

∣∣∣∣}
and

D2 = max
j

{ bj/42c

∑
n=0

∣∣∣∣A2,d
n,j

∣∣∣∣},

then we get
max

i,j
|p2

i,j| ≤ C2D2 max
m,n
|p0

m,n|.

• The general case

By the same strategy, we acquire reformulations for (l0)th convolutions given in the
following

pl0
i,j = (pl0−l0;0 ? cd)m,n = (. . . (((pl0−1;0 ? cd) ? cd) ? . . . ? cd) ? cd)i,j.

This implies

pl0
i,j =

bi/4l0 c

∑
m=0

bj/4l0 c

∑
n=0

p0;0
m,n Al0,c

m,i Al0,d
n,j =

bi/4l0 c

∑
m=0

bj/4l0 c

∑
n=0

p0
m,n Al0,c

m,i Al0,d
n,j ,

where

Al0,c
m,i =

bi/4l0−1c

∑
p=4m

A1,c
m,p Al0−1,c

p,i
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and

Al0,d
n,j =

bj/4l0−1c

∑
q=4n

A1,d
n,q Al0−1,d

q,j .

Thus

max
i,j
|pl0

i,j| = max
i,j

∣∣∣∣ bi/4l0 c

∑
m=0

bj/4l0 c

∑
n=0

p0
m,n Al0,c

m,i Al0,d
n,j

∣∣∣∣,
≤ max

i,j

bi/4l0 c

∑
m=0

bj/4l0 c

∑
n=0

∣∣∣∣Al0,c
m,i

∣∣∣∣∣∣∣∣Al0,d
n,j

∣∣∣∣max
m,n

∣∣∣∣p0
m,n

∣∣∣∣. (A14)

Now consider

Cl0 = max
i

{ bi/4l0 c

∑
m=0

|Al0,c
m,i |
}

and

Dl0 = max
j

{ bj/4l0 c

∑
n=0

|Al0,d
n,j |
}

,

then, from (A14), we obtain

max
i,j
|pl0

i,j| ≤ Cl0 Dl0 max
m,n
|p0

m,n|,

where

max
i,j

{ bi/4l0 c

∑
m=0

bj/4l0 c

∑
n=0

|Al0,d
n,j ||A

l0,c
m,i |
}

= max
i,j∈Σ(l0,N)

{ bi/4l0 c

∑
m=0

bj/4l0 c

∑
n=0

|Al0,d
n,j ||A

l0,c
m,i |
}

. (A15)
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