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Abstract: In this paper, the adapted (G′/G)-expansion scheme is executed to obtain exact solutions
to the fractional Clannish Random Walker’s Parabolic (FCRWP) equation. Some innovative results of
the FCRWP equation are gained via the scheme. A diverse variety of exact outcomes are obtained.
The proposed procedure could also be used to acquire exact solutions for other nonlinear fractional
mathematical models (NLFMMs).

Keywords: FCRWP; adapted (G′/G)-expansion scheme; exact solutions; fractional calculus; nonlin-
ear dynamics

1. Introduction

Nonlinear fractional mathematical models (NLFMMs) are widely employed to de-
scribe many substantial phenomena and fractional nonlinear dynamic applications in
plasma physics, mathematics, nonlinear control theory, physics, stochastic dynamical
systems, engineering, signal processing, image processing, electromagnetics, transport sys-
tems, communications, acoustics, genetic algorithms, and viscoelasticity, amongst others.
To define the exact answers to NLFMMs, many dominant and well-organized systems
have been constructed and popularized, such as the variation of the (G′/G)-expansion
scheme [1], adapted (G′/G)-expansion technique [2–5], exponential ansatz method [6],
fractional iteration algorithm [7,8], the unified method [9], the first integral technique [10],
the subequation scheme [11], improved fractional subequation scheme [12], the Jacobi el-
liptic ansatz method [13], generalized Kudryashov technique [14,15], novel extended direct
algebraic method [16], natural transform method [17], fractional sub-equation scheme [18],
exp-task scheme [19], generalized exponential rational task scheme [20], Kudryashov tech-
nique [21], sine-Gordon expansion technique [22], and the Jacobi elliptic task scheme [23].
Ma et al. [24] recently discovered a profoundly significant enlargement of the (G′/G)-
extension process, called the adapted (G′/G)-expansion process, to secure exact solutions
to NLFMMs. We used the adapted (G′/G)-expansion scheme for providing exact answers
to the fractional Clannish Random Walker’s Parabolic (FCRWP) equation in an ongoing
effort to express it using a suitable and simple process. Therefore, we effortlessly exchange
the FCRWP equation into a nonlinear partial differential equation (NPDE) or nonlinear
ordinary differential equation (NODE) via the appropriate conversion to facilitate the
process for those acquainted with fractional calculus. The main advantage of the process
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implemented in this study compared with the basic (G′/G)-extension scheme is that it
contributes additional novel exact answers, including added independent parameters.
The implemented process takes all the responses received by the basic (G′/G)-extension
scheme as a particular event, and we generate a few novel results. The exact answers
are significant for uncovering the fundamental devices of physical events. Apart from
the dynamic relevance, the exact answers to NLFMMs support numerical solvers when
comparing their results’ accuracies and help them in the stability analysis.

The remainder of this paper is organized as follows: In Section 2, we present a few
analyses of the adapted (G′/G)-expansion scheme. In Section 3, we obtain answers to
the FCRWP equation via the suggested method. In Section 4, we present some numerical
simulations of the obtained solutions. In the last section, we present our conclusions.

2. Glimpse of the Technique

First, we provide a few ideas from fractional calculus theory and then present our pro-
posed technique. For an outline of fractional calculus, we refer the reader to Refs. [25–27].
Numerous distinct varieties of fractional derivative operators have been recognized,
such as: Atangana–Baleanu derivative [28], the Mittag–Leffler matrix function [29], Caputo–
Fabrizio [30], the fractional boundary value problem with Sturm–Liouville boundary
conditions [31], the Caputo derivative [27], the fractional derivative [32], and the con-
formable derivative [33]. Now, we concisely analyze the modified Riemann–Liouville
derivative (MRLD) from the current fractional calculus recommended by Jumarie [34,35].
This leads to our study technique. Let S : [0, 1]→ < be a continuous function and β ∈ (0, 1).
The Jumarie-improved fractional derivative of order β and S might be well-defined by [36]

Dβ
x S(x) =


1

Γ(−β)

∫ x
0 (x− χ)−β−1[S(χ)− S(0)]dχ, 0 > β,

1
Γ(1−β)

d
dx

∫ x
0 (x− χ)−β[S(χ)− S(0)]dχ, 0 < β < 1,

(S(n)(x))(β− n), n ≤ β ≤ n + 1, n ≥ 1.

(1)

In addition to this representation, we preliminarily describe some properties of the
fractional MRLD, which are later implemented in this paper. A few of the convenient
procedures are assumed as:

Dβ
x A = 0(A is a constant) (2)

Dβ
x xB =

{
0, (B ≤ β− 1),

Γ(B+1)
Γ(B−β+1) xB−β, (B > β− 1).

(3)

Dβ
x (C1R(x) + C2S(x)) = C1Dβ

x R(x) + C2Dβ
x S(x), (C1 and C2 are constants) (4)

Dβ
x (R(x)S(x)) = S(x)Dβ

x R(x) + R(x)Dβ
x S(x),

S(x) =
∞
∑

A=0

(
n
A

)
R(A)(x)Dβ−A

x S(x),
(5)

Dβ
x [T(S(x))] = T′S(S) = Dβ

x S(x) = Dβ
x T(S)(Sx)

β, dβx(t) = Γ(1 + β)dx(t). (6)

We consider
P(λ, λx, λxx, λt, λtt, λxt., . . . ..) = 0, (7)

where P is a polynomial in λ and its partial derivatives.
Firstly, use the travelling variable:

λ = λ(x, t) = λ(χ), χ = p3(x−Vt), (8)
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where p3 and V are constants to be determined later. Substituting Equation (8) into
Equation (7), we obtain:

R(λ, p3λ′, p2
3λ′′ ,−p3Vλ′, p2

3V2λ′′ ,−p2
3V2λ′′ , . . . ..) = 0. (9)

Firstly, considering the ansatz form:

λ(χ) =
M

∑
i=−M

Sihi (10)

where h =
(

G′
G + λ

2

)
, |S−M|+ |SM| 6= 0, and G = G(χ) satisfy the equation.

G′′ + λG′ + µG = 0, (11)

where Si(±1,±2, . . . . . . ,±M), and λ and µ are coefficient constants defined later. Imple-
menting the homogeneous balance principle in Equation (9), the positive integer M can be
determined. From Equation (11), we find that

h̄′ = r− h̄2, (12)

where r = λ2−4µ
4 , and r is calculated by λ and µ. So, h̄ satisfies Equation (12), which produces:

h =



√
rtanh

(√
rχ
)
, r > 0;√

rcoth
(√

rχ
)
, r > 0;

1
χ , r = 0;
−
√

r tan
(√
−rχ

)
, r < 0;

−
√

r cot
(√
−rχ

)
, r < 0.

(13)

Finally, by implementing Equations (9) and (10) and collecting all terms with the same
order of h̄ together, the left-hand side of Equation (10) is converted into a polynomial in
h̄. Equating each coefficient of the polynomial to zero, we can obtain a set of algebraic
equations that can be solved to find the values of the studied method.

3. Mathematical Analysis

In this paper, we consider the FCRWP equation [37]:

∂βλ

∂tβ
− ∂λ

∂x
+ 2λ

∂λ

∂x
+

∂2λ

∂x2 = 0, t > 0, 0 < β, (14)

with λ(x, 0) = S(x). Taking the variable transformation λ(x, t) = λ(χ), χ = x− Vtβ

Γ(1+β)
in

Equation (14), we have:
−Vλ′ − λ′ + 2λλ′ − λ′′ = 0. (15)

The pole of Equation (15) is given as N = 1. Then, we find from Equation (10) that:

λ(χ) =
1

∑
i=−1

Si h̄
i (16)

Collecting the coefficient of Equation (14) and finding the resulting system, we then
find:

Group I : V = 2S0 − 1, S1 = 0, S−1 = −1
4

λ2 + µ. (17)

Substituting the above values into Equation (15), we obtain:

λ11(χ) = S0 + (−1
4

λ2 + µ)× {
√

λ2 − 4µ

2
tanh(

√
λ2 − 4µ

2
χ)}

−1

. (18)
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λ12(χ) = S0 + (−1
4

λ2 + µ)× {
√

λ2 − 4µ

2
coth(

√
λ2 − 4µ

2
χ)}

−1

. (19)

λ13(χ) = S0 + (−1
4

λ2 + µ)× (
1
χ
)
−1

. (20)

λ14(χ) = S0 + (−1
4

λ2 + µ)× {−
√

4µ− λ2

2
tan(

√
4µ− λ2

2
χ)}

−1

. (21)

λ15(χ) = S0 + (−1
4

λ2 + µ)× {−
√

4µ− λ2

2
cot(

√
4µ− λ2

2
χ)}

−1

. (22)

Group II : V = 2S0 − 1, S1 = −1, S−1 = 0. (23)

Similarly, we obtain:

λ21(χ) = S0 − {
√

λ2 − 4µ

2
tanh(

√
λ2 − 4µ

2
χ)}. (24)

λ22(χ) = S0 − {
√

λ2 − 4µ

2
coth(

√
λ2 − 4µ

2
χ)}. (25)

λ23(χ) = S0 − (
1
χ
). (26)

λ24(χ) = S0 − {−
√

4µ− λ2

2
tan(

√
4µ− λ2

2
χ)}. (27)

λ25(χ) = S0 − {−
√

4µ− λ2

2
cot(

√
4µ− λ2

2
χ)}. (28)

Group III : V = 2S0 − 1, S1 = −1, S−1 = −1
4

λ2 + µ. (29)

Similarly, we obtain:

λ31(χ) = S0 − {
√

λ2−4µ
2 tanh(

√
λ2−4µ

2 χ)}

+(− 1
4 λ2 + µ)× {

√
λ2−4µ

2 tanh(
√

λ2−4µ
2 χ)}

−1
.

(30)

λ32(χ) = S0 − {
√

λ2−4µ
2 coth(

√
λ2−4µ

2 χ)}

+(− 1
4 λ2 + µ)× {

√
λ2−4µ

2 coth(
√

λ2−4µ
2 χ)}

−1
.

(31)

λ33(χ) = S0 − (
1
χ
) + (−1

4
λ2 + µ)× (

1
χ
)
−1

. (32)

λ34(χ) = S0 − {−
√

4µ−λ2

2 tan(
√

4µ−λ2

2 χ)}

+(− 1
4 λ2 + µ)× {−

√
4µ−λ2

2 tan(
√

4µ−λ2

2 χ)}
−1

.
(33)

λ35(χ) = S0 − {−
√

4µ−λ2

2 cot(
√

4µ−λ2

2 χ)}

+(− 1
4 λ2 + µ)× {−

√
4µ−λ2

2 cot(
√

4µ−λ2

2 χ)}
−1

.
(34)

4. Numerical Simulations

Ma et al. [24] introduced a process named the revised (G′/G)-extension approach
to look for the FCRWP equation’s exact structures and achieved fifteen results, shown in
Section 3. Gunner et al. [37] reported a process named the (G′/G)-extension approach to
look for the FCRWP equation’s exact structures and achieved three results. In comparing
the two methods, the revised (G′/G)-extension approach provides a more exact answer
than the (G′/G)-extension approach. In terms of additional support, the auxiliary model
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employed in the integral method is different, so the exact structures obtained are also differ-
ent. Likewise, for any NLFMM, it could be determined that the revised (G′/G)-extension
approach is much more straightforward than the other schemes. In this paper, the inte-
grable method is applied to the FCRWP equation for the first time. We confirm that no
other author has used the technique on the FCRWP equation. This paper expresses various
varieties of exact solutions of the answers for countless values of the constant coefficients.
The exact solutions are: dark soliton profiles, singular kink profiles, dark singular soliton
profiles, bright and dark lump shapes, periodic wave profiles, etc. Furthermore, we offer a
contour graph of the obtained answers, which was created by commencing binary variable
tasks. One variable is demonstrated on the horizontal and vertical axes of the contour
graph. The functional value exemplifies the color gradient and isolines. The contour graph
is a technique used to express a 3D surface on a 2D plane. This kind of graph is broadly
implemented in mathematics, physics, as well as engineering, where the contour lines
normally represent elevation. We obtained exact solutions like trigonometric, hyperbolic,
and rational function answers through the proposed procedure. The solutions to λ11(χ),
λ12(χ), λ21(χ), λ22(χ), λ31(χ), and λ32(χ) present as trigonometric function solutions;
the solutions of λ14(χ), λ15(χ), λ24(χ), λ25(χ), λ34(χ), and λ35(χ) present as hyperbolic
function solutions; and the solutions of λ13(χ), λ23(χ), and λ33(χ) present as trigonometric
function solutions. We explain the dynamic performance of the trigonometric function
answers of λ11(χ), λ12(χ), λ22(χ), and λ31(χ), which are illustrated in Figures 1–4. In par-
ticular, Figures 1–4 demonstrate the 3D shape, contour plot, and 2D graph for different
values of α for the trigonometric function answers of λ11(χ), λ12(χ), λ22(χ), and λ31(χ).
We explain the dynamic performance of the rational function answers to λ23(χ) and λ33(χ),
as illustrated in Figures 5 and 6. Figures 5 and 6 demonstrate the 3D shape, contour plot,
and 2D graph for different values of α for the rational function answers to λ23(χ) and
λ33(χ). Finally, we explain the dynamic performance of the trigonometric function answers
of λ14(χ), λ15(χ), λ25(χ), and λ34(χ) in Figures 7–10, which depict the 3D shape, contour
plot, and 2D graph for different values of α for the trigonometric function answers of λ14(χ),
λ15(χ), λ25(χ), and λ34(χ). The implemented mathematical simulations acknowledge that
the answers are of periodic wave shapes and of rational, hyperbolic, and trigonometric
categorizations. Furthermore, through observing the construction of the acquired answers,
it could be understood that the connecting fractional derivatives of parameter α perform in
the formulation of all the answers.

Figure 1. The graphical representation of the solution λ11(χ): (a) 3D shape, (b) contour plot, and (c) 2D graph.
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Figure 2. The graphical representation of the solution λ12(χ): (a) 3D shape, (b) contour plot, and (c) 2D graph.

Figure 3. The graphical representation of the solution λ22(χ): (a) 3D shape, (b) contour plot, and (c) 2D graph.

Figure 4. The graphical representation of the solution λ31(χ): (a) 3D shape, (b) contour plot, and (c) 2D graph.
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Figure 5. The graphical representation of the solution λ23(χ): (a) 3D shape, (b) contour plot, and (c) 2D graph.

Figure 6. The graphical representation of the solution λ33(χ): (a) 3D shape, (b) contour plot, and (c) 2D graph.

Figure 7. The graphical representation of the solution λ14(χ): (a) 3D shape, (b) contour plot, and (c) 2D graph
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Figure 8. The graphical representation of the solution λ15(χ): (a) 3D shape, (b) contour plot, and (c) 2D graph.

Figure 9. The graphical representation of the solution λ25(χ): (a) 3D shape, (b) contour plot, and (c) 2D graph.

Figure 10. The graphical representation of the solution λ34(χ): (a) 3D shape, (b) contour plot, and (c) 2D graph.

5. Conclusions

In this investigation, we successfully devised a procedure that demonstrates that this
system is well-organized and effectively acceptable for finding the exact answers to the
FCRWP equation. A wide variety of dynamical behaviors were considered in this study,
which presented in well-defined regions of mathematical physics. The most important
advantage of this method is that it can more easily reach the solutions than the other
analytical schemes for solving NLFMMs. These answers will be valuable for further studies
in mathematical physics.
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8. Ahmad, H.; Akgül, A.; Khan, T.A.; Stanimirović, P.S.; Chu, Y.M. New perspective on the conventional solutions of the nonlinear

time fractional partial differential equations. Complexity 2020, 2020, 8829017. [CrossRef]
9. Osman, M.S.; Rezazadeh, H.; Eslami, M. Traveling wave solutions for (3 + 1) dimensional conformable fractional Zakharov-

Kuznetsov equation with power law nonlinearity. Nonlinear Eng. 2019, 8, 559–567. [CrossRef]
10. Yepez-Martınez, H.; Gomez-Aguilar, J.F.; Atangana, A. First integral method for non-linear differential equations with conformable

derivative. Math. Model. Nat. Phenom. 2018, 13, 14. [CrossRef]
11. Aminikhah, H.; Sheikhani, A.H.R.; Rezazadeh, H. Sub-equation method for the fractional regularized long-wave equations with

conformable fractional derivatives. Sci. Iran. 2016, 23, 1048–1054. [CrossRef]
12. Jiang, J.; Feng, Y.; Li, S. Improved fractional sub-equation method and exact solutions to fractional partial differential equations.

J. Funct. Sp. 2020, 2020, 5840920.
13. Aslan, E.C.; Inc, M. Optical soliton solutions of the NLSE with quadratic-cubic-hamiltonian perturbations and modulation

instability analysis. Optik 2019, 196, 162661. [CrossRef]
14. Gurefe, Y. The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative.

Rev. Mex. Fısica 2020, 66, 771–781. [CrossRef]
15. Alam, M.N.; Bonyah, E.; Asad, M.F.A.; Osman, M.S.; Abualnaja, K.M. Stable and functional solutions of the Klein-Fock-Gordon

equation with nonlinear physical phenomena. Phys. Scr. 2021. accepted. [CrossRef]
16. Tozar, A.; Kurt, A.; Tasbozan, O. New wave solutions of time fractional integrable dispersive wave equation arising in ocean

engineering models. Kuwait J. Sci. 2020, 47, 22–33.
17. Ismail, G.M.; Rahim, H.R.A.; Aty, A.A.; Kharabsheh, R.; Alharbi, W.; Aty, M.A. An analytical solution for fractional oscillator in a

resisting medium. Chaos Solitons Fract. 2020, 130, 109395. [CrossRef]
18. Yepez-Martınez, H.; Gomez-Aguilar, J.F. Fractional sub-equation method for Hirota-Satsuma-coupled KdV equation and coupled

mKdV equation using the Atangana’s conformable derivative. Waves Random Complex Media 2019, 29, 678–693. [CrossRef]
19. Hosseini, K.; Mirzazadeh, M.; Rabiei, F.; Baskonus, H.M.; Yel, G. Dark optical solitons to the Biswas–Arshed equation with high

order dispersions and absence of the self-phase modulation. Optik 2020, 209, 164576. [CrossRef]
20. Ghanbari, B.; Baleanu, D. New Optical Solutions of the Fractional Gerdjikov-Ivanov Equation with Conformable Derivative.

Front. Phys. 2020, 8, 167. [CrossRef]
21. Hosseini, K.; Mirzazadeh, M.; Ilie, M.; Radmehr, S. Dynamics of optical solitons in the perturbed Gerdjikov–Ivanov equation.

Optik 2020, 206, 164350. [CrossRef]

http://doi.org/10.1515/phys-2020-0179
http://doi.org/10.1016/j.aej.2020.01.054
http://doi.org/10.1088/1402-4896/ab6e4e
http://doi.org/10.1088/1572-9494/abd849
http://doi.org/10.1186/s13662-020-03087-w
http://doi.org/10.1016/j.rinp.2020.103462
http://doi.org/10.1155/2020/8829017
http://doi.org/10.1515/nleng-2018-0163
http://doi.org/10.1051/mmnp/2018012
http://doi.org/10.24200/sci.2016.3873
http://doi.org/10.1016/j.ijleo.2019.04.008
http://doi.org/10.31349/RevMexFis.66.771
http://doi.org/10.1088/1402-4896/abe499
http://doi.org/10.1016/j.chaos.2019.109395
http://doi.org/10.1080/17455030.2018.1464233
http://doi.org/10.1016/j.ijleo.2020.164576
http://doi.org/10.3389/fphy.2020.00167
http://doi.org/10.1016/j.ijleo.2020.164350


Mathematics 2021, 9, 801 10 of 10

22. Korkmaz, A.; Hepson, O.E.; Hosseini, K.; Rezazadeh, H.; Eslami, M. Sine-gordon expansion method for exact solutions to
conformable time fractional equations in RLW-class. J. King Saud Univ. Sci. 2020, 32, 567–574. [CrossRef]

23. Hosseini, K.; Mirzazadeh, M.; Vahidi, J.; Asghari, R. Optical wave structures to the Fokas–Lenells equation. Optik 2020, 207,
164450. [CrossRef]

24. Ma, X.; Pan, Y.; Chang, L. The modified (G′/G)-expansion method and its applications to KdV equation. Int. J. Nonlinear Sci.
2011, 12, 400–404.

25. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993.
26. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: San Diego, CA,

USA, 2006.
27. Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999.
28. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat

transfer model. Therm. Sci. 2016, 20, 763–769. [CrossRef]
29. Kumar, A.; Vats, R.K.; Kumar, A.; Chalishajar, D.N. Numerical approach to the controllability of fractional order impulsive

differential equations. Demonstr. Math. 2020, 53, 193–207. [CrossRef]
30. Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85.

[CrossRef]
31. Harjani, J.; López, B.; Sadarangani, K. Existence and uniqueness of mild solutions for a fractional differential equation under

Sturm-Liouville boundary conditions when the data function is of Lipschitzian type. Demonstr. Math. 2020, 53, 167–173. [CrossRef]
32. Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264,

65–70. [CrossRef]
33. Atangana, A.; Baleanu, D.; Alsaedi, A. New properties of conformable derivative. Open Math. 2015, 13, 889–898. [CrossRef]
34. Jumarie, G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results.

Comput. Math. Appl. 2006, 51, 1367–1376. [CrossRef]
35. Jumarie, G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-

differentiable functions. Appl. Math. Lett. 2009, 22, 378–385. [CrossRef]
36. Ganji, Z.; Ganji, D.; Ganji, A.D.; Rostamian, M. Analytical solution of time-fractional Navier–Stokes equation in polar coordinate

by homotopy perturbation method. Numer. Methods Partial Differ. Equ. 2010, 26, 117–124. [CrossRef]
37. Gunera, O.; Bekir, A.; Ünsal, Ö. Two reliable methods for solving the time fractional Clannish Random Walker’s Parabolic

equation. Optik 2016, 127, 9571–9577. [CrossRef]

http://doi.org/10.1016/j.jksus.2018.08.013
http://doi.org/10.1016/j.ijleo.2020.164450
http://doi.org/10.2298/TSCI160111018A
http://doi.org/10.1515/dema-2020-0015
http://doi.org/10.12785/pfda/010201
http://doi.org/10.1515/dema-2020-0014
http://doi.org/10.1016/j.cam.2014.01.002
http://doi.org/10.1515/math-2015-0081
http://doi.org/10.1016/j.camwa.2006.02.001
http://doi.org/10.1016/j.aml.2008.06.003
http://doi.org/10.1002/num.20420
http://doi.org/10.1016/j.ijleo.2016.07.012

	Introduction 
	Glimpse of the Technique 
	Mathematical Analysis 
	Numerical Simulations 
	Conclusions 
	References

