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Abstract: Our purpose is to study a space Π of centered m-planes in n-projective space. Generalized
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1. Introduction

The theory of connections occupies an important place in differential geometry. The
concept of connection was introduced by T. Levi-Civita [1] as a parallel displacement
of tangent vectors of a manifold. Weyl introduced the concept of a space of the affine
connection [2]. This concept was continued in the works of Cartan [3] and Ehresmann [4].
Different ways to determine the connection were inputted by Nomizu [5], Vagner [6], and
Laptev [7]. Veblen and Whitehead [8] introduced a connection in a composite manifold.
In [9], Laptev gave an invariant definition of connections as a certain law defining the
mapping of infinitely close fibres. He also provided a well-known theoretical-group method
on the basis of the Cartan calculation.

Rashevskii [10], Nomizu [11], and Norden [12] studied affine connections. Generalized
affine connections were considered in book [13], where a relation was shown between a
generalized affine connection and a linear connection (see also [14,15]). In [16], all invariant
affine connections on three-dimensional symmetric homogeneous spaces admitting a nor-
mal connection were described; canonical connections and natural torsion-free connections
were also considered.

The theory of affine connections is widely used in physics [17–21] and by studying
geodesics [22] (see, e.g., [23–28]).

This paper is the result of the author’s research [29,30], where the concepts of gen-
eralized bundles are used (see, e.g., [31]). Principal fibering with gluing to the base was
introduced in the paper [32] and generalized principal fibering (a principal fibering with
semi-gluing to the base) was introduced in the paper [33]. Connections in the fiberings
associated with the space of centered planes were studied in [34,35]. In the present paper,
generalized affine connections associated with this space are considered.

The notion of vector, or specifically, principal bundles over a smooth manifold is one
of the central notions in modern mathematics and its applications to mathematical and
theoretical physics. In particular, all known types of physical interactions (gravitational,
electromagnetic, etc.) are described in terms of connections and other geometric structures
on vector/principal bundles on underlying manifolds. The properties of physical fields
can be formulated in terms of geometric invariants of connections such as curvature and
characteristic classes of corresponding vector/principal bundles [36].
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There are affine connections which arise in different contexts. These connections
are used in geometry for illustration of parallel transports, and they can be applied to
mechanics. Therefore, I hope this article will be of interest to geometers and physicists.

The important role of the affine connections and the previous author’s work in the
study of manifolds of planes was the motivation for writing this paper.

This paper will be arranged in the following way. Section 2 will describe the analytical
apparatus and the space of centered planes as the object of research. In Sections 3 and 4, a
review of planar and normal generalized affine connections will be given, respectively. A
brief summary of the paper is given in Section 5.

2. Analytical Apparatus and Object of Research

It is a well-known fact that projective space Pn can be represented as a quotient space
Ln+1/ ∼ of a linear space Ln+1 with respect to equivalence (collinearity) ∼ of non-zero
vectors, that is, Pn = (Ln+1 \ {0})/ ∼. Projective frame in the space Pn is a system formed
by points AI′ , I′ = 0, ..., n, and a unit point E (see [37]). In linear space Ln+1, linearly

independent vectors eI′ correspond to the points AI′ , and a vector e =
n
∑

I′=0
eI′ corresponds

to the point E. Moreover, these vectors are determined in the space Ln+1 with accuracy up
to a common factor. The unit point is specified together with the basic points, although
you do not have to mention it every time.

In the present paper, we will use the method of a moving frame (see, e.g., [38]) {A, AI},
I, ... = 1, ..., n, the derivation formulae of the vertices of which are

dA = θA + ω I AI , dAI = θAI + ω J
I AJ + ωI A,

where the form θ acts as a proportionality factor, and the structure forms ω I , ω I
J , ωI of

the projective group GP(n), effectively acting on the space Pn, and satisfying the Cartan
equations (see [39], cf. [40])

Dω I = ω J ∧ω I
J , Dω I

J = ωK
J ∧ω I

K + δI
J ωK ∧ωK + ωJ ∧ω I , DωI = ω J

I ∧ωJ .

Throughout this paper, d is the symbol of ordinary differentiation in the space Pn,
and D is the symbol of exterior differentiation. This apparatus is successfully used by
geometers in Kaliningrad (see, e.g., [41]).

In the projective space Pn, a space Π (see [34,42,43]) of all centered m-dimensional
planes is considered (cf. [44–47]). Vertices A and Aa, a, ... = 1, ..., m, of the moving frame
are placed on the centered plane, with vertex A fixed as a centre. The forms ωa, ωα, ωα

a
(α, ... = m + 1, ..., n) are the basic forms of the space Π.

Remark 1. The space Π is a differentiable manifold whose points are m-dimensional centered planes.

The technique used in the present paper was based on the Laptev–Lumiste method.
This, in turn, requires knowledge of calculating external differential forms.

3. Planar Generalized Affine Connection

Now we introduce the following definition.

Definition 1. A smooth manifold with structure equations

Dωa = ωb ∧ωa
b + ωα ∧ωa

α, Dωα = ωβ ∧ωα
β + ωa ∧ωα

a ,

Dωα
a = ω

β
b ∧ (δb

a ωα
β − δα

βωb
a)−ωα ∧ωa,

Dωa
b = ωc

b ∧ωa
c −ωc ∧ (δa

c ωb + δa
bωc)− δa

bωα ∧ωα + ωα
b ∧ωa

α

(1)

is called a generalized bundle of planar affine frames [48] and is denoted by Am2+[m](Π).
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Remark 2. The symbol m is enclosed in square brackets, since m forms ωa are included in both
basic and fibre forms. We will call the forms ωa basic-fibre.

To define an affine connection in the generalized bundle Am2+[m](Π), we extend to
it the Laptev–Lumiste method of defining group connections in principal bundles. We
transform the basic-fibre forms ωa and fibre forms ωa

b of the fibering Am2+[m](Π), using
linear combinations of the basic forms ωa, ωα, ωα

a [32] as follows:

ω̃a = ωa − Ca
bωb − Ca

αωα − Cab
α ωα

b , ω̃a
b = ωa

b − Γa
bcωc − Γa

bαωα − Γac
bαωα

c . (2)

Finding the exterior differentials of forms (2) with the help of structure equations (1)
and applying the Cartan–Laptev theorem in this generalized case, we obtain

∆Ca
b = Ca

b,cωc + Ca
b,αωα + Ca,c

b,αωα
c ,

∆Ca
α − Ca

bωb
α + Cab

α ωb + ωa
α = Ca

α,bωb + Ca
α,βωβ + Ca,b

α,βω
β
b ,

∆Cab
α = Cab

α,cωc + Cab
α,βωβ + Cab,c

α,β ω
β
c ,

∆Γa
bc − δa

bωc − δa
c ωb = Γa

bc,dωd + Γa
bc,αωα + Γa,d

bc,αωα
d ,

∆Γa
bα − Γa

bcωc
α + Γac

bαωc − δa
bωα = Γa

bα,cωc + Γa
bα,βωβ + Γa,c

bα,βω
β
c ,

∆Γac
bα + δc

bωa
α = Γac

bα,dωd + Γac
bα,βωβ + Γac,d

bα,βω
β
d ,

(3)

where Ca
b,c, ... are Pfaffian derivatives [32], and ∆ is a tensor differential operator acting

according to the law ∆Ca
b = dCa

b + Ce
bωa

e − Ca
e ωe

b (see, e.g., [49]).
We will use the following terminology (see [50]):
A substructure of a structure S is called simple if it is not a union of two substructures

of the structure S. A simple substructure is called the simplest if it, in turn, does not have
a substructure.

Statement 1. The object of a planar generalized affine connection
P
Γ= {Ca

b , Ca
α, Cab

α , Γa
bc, Γa

bα,
Γac

bα} associated with the space Π of centered planes contains two simplest tensors Ca
b , Cab

α in
a simple quasi-tensor of a connection C = {Ca

b , Ca
α, Cab

α } and two simplest subquasi-tensors
Γa

bc, Γac
bα of a simple quasi-tensor of a planar linear connection {Γa

bc, Γa
bα, Γac

bα}.
Let us take into account differential Equations (3) in the structure equations of the

connection forms (2)

Dω̃a = ω̃b ∧ ω̃a
b + Ta

bcωb ∧ωc + Ta
bαωb ∧ωα + Tac

bαωb ∧ωα
c

+Ta
αβωα ∧ωβ + Tab

αβωα ∧ω
β
b + Tabc

αβ ωα
b ∧ω

β
c ,

Dω̃a
b = ω̃c

b ∧ ω̃a
c + Ra

bcdωc ∧ωd + Ra
bcαωc ∧ωα + Rad

bcαωc ∧ωα
d

+Ra
bαβωα ∧ωβ + Rac

bαβωα ∧ω
β
c + Racd

bαβωα
b ∧ω

β
d .

(4)

The components of a torsion object
P
T= {Ta

bc, Ta
bα, Tac

bα, Ta
αβ, Tab

αβ, Tabc
αβ } of a planar affine

connection are expressed by the formulae

Ta
bc = Γa

[bc] + Ca
[b,c] − Ce

[bΓa
ec], Ta

bα = Γa
bα + Cc

αΓa
cb − Cc

bΓa
cα + Ca

b,α − Ca
α,b,

Tac
bα = Γac

bα − δc
bCa

α − Ce
bΓac

eα + Cec
α Γa

eb + Ca,c
b,α − Cac

α,b,
Ta

αβ = Ca
[α,β] − Cb

[α
Γa

bβ]
, Tab

αβ = Ccb
β Γa

cα − Cc
αΓab

cβ + Ca,b
α,β − Cab

β,α,

Tabc
αβ = Ca[b,c

α,β]− Ce[bαΓac
eβ],

(5)
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and the components of the curvature object
P
R= {Ra

bcd, Ra
bcα, Rad

bcα, Ra
bαβ, Rac

bαβ, Racd
bαβ} have

the form

Ra
bcd = Γa

b[c,d] − Γe
b[cΓa

ed], Ra
bcα = Γa

bc,α − Γa
bα,c + Γd

bαΓa
dc − Γd

bcΓa
dα,

Rad
bcα = Γa,d

bc,α − Γad
bα,c + Γed

bαΓa
ec − Γe

bcΓad
eα − δd

c Γa
bα,

Ra
bαβ = Γa

b[α,β] − Γc
b[αΓa

cβ]
, Rac

bαβ = Γc,b
bα,β − Γac

bβ,α + Γdc
bβΓa

dα − Γd
bαΓac

dβ,

Racd
bαβ = Γa

b[
c,d
α,β]− Γe

b[
c
αΓad

eβ].

(6)

Remark 3. Here and in what follows, the square brackets denote alternation by extreme indices
and by pairs of indices.

Remark 4. In the generalized case, just as in the usual case, the structure equations (4) of the
connection forms (2) include the components of torsion and curvature objects expressed by the

Formulae (5) and (6). Curvature
P
R is not expressed in terms of the quasi-tensor components C and

their Pfaffian derivatives.

Theorem 1. In the space Π of centered planes, the objects of torsion
P
T and curvature

P
R of the planar

generalized affine connection are tensors containing the simplest subtensors
P

T1= {Ta
bc},

P
T2= {Tac

bα},
P

T3= {Tabc
αβ },

P
R1= {Ra

bcd},
P

R2= {Rad
bcα},

P
R3= {Racd

bαβ} and simple subtensors
P

T4= {Ta
bα, Ta

bc,

Tac
bα},

P
T5= {Tab

αβ, Tabc
αβ , Tab

cβ},
P

R4= {Ra
bcα, Ra

bcd, Rad
bcα},

P
R5= {Rac

bαβ, Racd
bαβ, Rac

bdβ}.

Proof. Prolongating Equation (3) of the components of the connection object
P
Γ and using

Formulae (5), (6) for expressions for the components of torsion and curvature objects, we
find differential congruences modulo the basic forms

∆Ta
bc ≡ 0, ∆Ta

bα − 2Ta
bcωc

α + Tac
bαωc ≡ 0, ∆Tac

bα ≡ 0,

∆Ta
αβ + Ta

b[αωb
β] + Tab

[αβ]ωb ≡ 0, ∆Tab
αβ − 2Tabc

βα ωc − Tab
cβ ωc

α ≡ 0, ∆Tabc
αβ ≡ 0,

∆Ra
bcd ≡ 0, ∆Ra

bcα − 2Ra
bcdωd

α + Rad
bcαωd ≡ 0, ∆Rad

bcα ≡ 0,

∆Ra
bαβ + Ra

bc[αωc
β] + Rac

b[αβ]ωc ≡ 0, ∆Rac
bαβ − 2Racd

bαβωd − Rac
bdβωd

α ≡ 0, ∆Racd
bαβ ≡ 0,

which these components satisfy. The obtained differential congruences prove the validity
of this theorem.

Statement 2. Differential congruences for torsion
P
Ti and curvature

P
Ri subtensors corre-

spond to each other, i = 1, ..., 5.
Now we consider the canonical case of a planar affine connection when the tensor

components Ca
b , Cab

α of the connection quasi-tensor C vanish. In this case, ω̃a = ωa − Ca
αωα,

therefore, the left and right sides of the Formulae (3)1 and (3)3 are identically zero, and the
Equations (3)2 take the form

∆
0
C a

α + ωa
α =

0
C a

α,bωb+
0
C a

α,βωβ+
0
C a,b

α,βω
β
b ,

where zero means the equalities Ca
b = 0, Cab

α = 0 in the expressions (5) for the components
of the torsion tensor.
Statement 3. In the canonical case, the quasi-tensor C of the planar generalized affine

connection is reduced to the quasi-tensor
0
C a

α, and the connection object is simplified:
P0
Γ= {0,

0
C a

α, 0, Γa
bc, Γa

bα, Γac
bα}.
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If the tensor components Ca
b , Cab

α of the connection quasi-tensor C are equal to zero,
the expressions for the components of the torsion tensor have the form

0
T a

bc = Γa
[bc],

0
T a

bα = Γa
bα+

0
C c

αΓa
cb−

0
C a

α,b,
0
T ac

bα = Γac
bα − δc

b
0
C a

α,
0
T a

αβ =
0
C a

[α,β]−
0
C b

[α
Γa

bβ]
,

0
T ab

αβ =
0
C a,b

α,β−
0
C c

αΓab
cβ,

0
T abc

αβ = 0.
(7)

Statement 4. Thus, the torsion tensor of canonical connection is non-zero but contains zero
components Tabc

αβ .
If the torsion tensor vanishes, then from the expressions (7) we obtain

Γa
[bc] = 0, Γa

bα =
0
C a

α,b−
0
C c

αΓa
cb, Γac

bα = δc
b

0
C a

α,

0
C a

[α,β] =
0
C b

[αΓa
bβ],

0
C a,b

α,β =
0
C c

αΓab
cβ,

0
T abc

αβ = 0.

These equalities imply the following theorem.

Theorem 2. The canonical planar generalized torsion-free affine connection
P0
Γ has the properties:

(1) The simplest quasi-tensor of affine connection Γa
bc is symmetric;

(2) A planar linear connection {Γa
bc, Γa

bα, Γac
bα} is reduced to an affine subconnection Γa

bc using the

planar subfield of the quasi-tensor of the connection
0
C a

α of the space Π of centered planes, that
is, a subobject Γa

bα is covered by a subobject Γa
bc, complementing it with a linearly connection

object {Γa
bc, Γa

bα, Γac
bα} by a quasi-tensor

0
C a

α and its planar Pfaffian derivatives
0
C a

α,b;

(3) The simplest quasi-tensor Γac
bα is formed by the components of the quasi-tensor

0
C a

α;

(4) Alternating normal Pfaffian derivatives
0
C a

[α,β] of the connection quasi-tensor
0
C a

α are formed

by alternations of the convolutions of the quasi-tensor
0
C b

α and the subobject Γa
bβ of the planar

linear connection {Γa
bc, Γa

bα, Γac
bα};

(5) The Pfaffian derivatives
0
C a,b

α,β of the connection quasi-tensor
0
C a

α are formed by convolutions

of the components of the quasi-tensor
0
C a

α itself and the components of the simplest quasi-
tensor Γab

cβ.

4. Normal Generalized Affine Connection

Definition 2. A smooth manifold with structure equations

Dωa = ωb ∧ωa
b + ωα ∧ωa

α, Dωα = ωβ ∧ωα
β + ωa ∧ωα

a ,

Dωα
a = ω

β
b ∧ (δb

a ωα
β − δα

βωb
a)−ωα ∧ωa,

Dωα
β = ω

γ
β ∧ωα

γ −ωγ ∧ (δα
γωβ + δα

βωγ)− δα
βωa ∧ωa −ωα

a ∧ωa
β

(8)

is called the generalized bundle of normal affine frames [48] and is denoted by Ah2+[h](Π), where
h = n−m.

Remark 5. The symbol h is enclosed in square brackets, since n−m forms ωα are included in both
basic forms and fibre forms. We will call the forms ωα basic-fibre.

To define an affine connection in the generalized bundle Ah2+[h](Π) we extend to it
the Laptev–Lumiste method. We transform the basic-fibre forms ωα and fibre forms ωα

β of
the fibering Ah2+[h](Π) using linear combinations of the basic forms ωα, ωα

a , ωa

ω̃α = ωα − Lα
a ωa − Lα

βωβ − Lαa
β ω

β
a , ω̃α

β = ωα
β − Γα

βaωa − Γα
βγωγ − Γαa

βγω
γ
a . (9)
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Finding the exterior differentials of forms (9) by using structure equations (8) and
applying the Cartan–Laptev theorem in this generalized case, we get

∆Lα
a = Lα

a,bωb + Lα
a,βωβ + Lα,b

a,βω
β
b ,

∆Lα
β + Lαa

β ωa − Lα
a ωa

β = Lα
β,aωa + Lα

β,γωγ + Lα,a
β,γω

γ
a ,

∆Lαa
β = Lαa

β,bωb + Lαa
β,γωγ + Lαa,b

β,γ ω
γ
b ,

∆Γα
βa − δα

βωa = Γα
βa,bωb + Γα

βa,γωγ + Γα,b
βa,γω

γ
b ,

∆Γα
βγ − Γα

βaωa
γ + Γαa

βγωa − δα
βωγ − δα

γωβ = Γα
βγ,aωa + Γα

βγ,µωµ + Γα,a
βγ,µω

µ
a ,

∆Γαa
βγ − δα

γωa
β = Γαa

βγ,bωb + Γαa
βγ,µωµ + Γαa,b

βγ,µω
µ
b .

(10)

Statement 5. The object of normal generalized affine connection
N
Γ= {Lα

a , Lα
β, Lαa

β , Γα
βa, Γα

βγ,
Γαa

βγ} associated with the space of centered planes contains two simplest subtensors Lα
a , Lαa

β

of a simple tensor of connection L = {Lα
a , Lα

β, Lαa
β } and two simplest subquasi-tensors Γα

βa,
Γαa

βγ of a simple quasi-tensor of normal linear connection {Γα
βa, Γα

βγ, Γαa
βγ}.

We substitute the differential Equations (10) into the structure equations of the con-
nection forms (9)

Dω̃α = ω̃β ∧ ω̃α
β + Tα

abωa ∧ωb + Tα
βaωβ ∧ωa + Tαb

aβ ωa ∧ω
β
b

+Tα
βγωβ ∧ωγ + Tαa

βγωβ ∧ω
γ
a + Tαab

βγ ω
β
a ∧ω

γ
b ,

Dω̃α
β = ω̃

γ
β ∧ ω̃α

γ + Rα
βabωa ∧ωb + Rα

βγaωγ ∧ωa + Rαb
βaγωa ∧ω

γ
b

+Rα
βγµωγ ∧ωµ + Rαa

βγµωγ ∧ω
µ
a + Rαab

βγµω
γ
a ∧ω

µ
b .

(11)

The components of a torsion object
N
T= {Tα

ab, Tα
βa, Tαb

aβ , Tα
βγ, Tαa

βγ, Tαab
βγ } of normal affine

connection are expressed by the formulae

Tα
ab = Lα

[a,b] − Lβ

[aΓα
βb], Tα

βa = Γα
βa + Γα

γβŁγ
a − Lγ

βΓα
γa − Lα

a,β + Lα
β,a,

Tαb
aβ = Lα,b

a,β − Lαb
β,a − Γαb

γβLγ
a + Lγb

β Γα
γa + δb

a δα
β − δb

a Lα
β,

Tα
βγ = Lα

[β,γ] + Γα
[βγ]
− Lµ

[β
Γα

µγ]
,

Tαa
βγ = Lα,a

β,γ + Γαa
βγ − Lµ

βΓαa
µγ + Lµa

γ Γα
µβ − Lαa

γ,β, Tαab
βγ = Lα[a,b

β,γ] + Γα
µ[

a
βLµb

γ ],

(12)

and the curvature object
N
R= {Rα

βab, Rα
βγa, Rαb

βaγ, Rα
βγµ, Rαa

βγµ, Rαab
βγµ} has components

Rα
βab = Γα

β[a,b] + Γα
γ[aΓγ

βb], Rα
βγa = Γα

βγ,a − Γα
βa,γ − Γα

µaΓµ
βγ + Γα

µγΓµ
βa,

Rαb
βaγ = Γα,b

βa,γ − Γαb
βγ,a + Γα

µaΓµb
βγ − Γαb

µγΓµ
βa − δb

a Γα
βγ,

Rα
βγµ = Γα

β[γ,µ] + Γα
η[γ

Γη

βµ]
, Rαa

βγµ = Γα,a
β[γ,µ] − Γαa

βγ,µ + Γα
ηγΓηa

βµ − Γαa
ηµΓη

βγ,

Rαab
βγµ = Γα

β[
a,b
γ,µ] + Γα

η [
a
γΓηb

βµ].

(13)

Remark 6. In the generalized case, as in the usual case, the structure Equations (11) of the connec-
tion forms (9) include the components of torsion and curvature objects expressed by Formulae (12)

and (13). The curvature
N
R is not expressed in terms of the quasi-tensor L components and their

Pfaffian derivatives.

Theorem 3. In the space Π of centered planes, the torsion
N
T and curvature

N
R objects of normal affine

connection are tensors containing the simplest subtensors
N
T1= {Tα

ab},
N
T2= {Tαb

aβ},
N
T3= {Tαab

βγ },
N
R1= {Rα

βab},
N
R2= {Rαb

βaγ},
N
R3= {Rαab

βγµ} and simple subtensors
N
T4= {Tα

βa, Tα
ab, Tαb

aβ},
N
T5= {Tαa

βγ,

Tαab
βγ , Tαa

bγ},
N
R4= {Rα

βγa, Rα
βab,Rαb

βaγ},
N
R5= {Rαa

βγµ, Rαab
βµγ, Rαa

βbµ}.
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Proof. Prolongating Equations (10) of the components of the connection object
N
Γ and

using the Formulae (12) and (13) for the expressions of the components of the torsion and
curvature objects, we find the differential congruences

∆Tα
ab ≡ 0, ∆Tα

βa + 2Tα
abωb

β − Tαb
aβ ωb ≡ 0, ∆Tαb

aβ ≡ 0,

∆Tα
βγ − Tα

[βaωa
γ] + Tαa

[βγ]ωa ≡ 0, ∆Tαa
βγ − 2Tαab

γβ ωb − Tαa
bγωb

β ≡ 0, ∆Tαab
βγ ≡ 0,

∆Rα
βab ≡ 0, ∆Rα

βγa + 2Rα
βabωb

γ − Rαb
βaγωb ≡ 0, ∆Rαb

βaγ ≡ 0, ∆Rαab
βγµ ≡ 0,

∆Rα
βγµ − Rα

β[γaωa
µ] + Rαa

β[γµ]ωa ≡ 0, ∆Rαa
βγµ − 2Rαab

βµγωb − Rαa
βbµωb

γ ≡ 0,

which are satisfied by the components of these objects. The theorem is thereby proved.

Statement 6. Differential congruences for torsion
N
Ti and curvature

N
Ri subtensors corre-

spond to each other, i = 1, ..., 5.
We consider a canonical case of normal affine connection when the connection tensor

L vanishes. In this case, ω̃α = ωα, that is, transformation of basic-fibre forms ωα is not

converted, and the connection object is simplified:
N0
Γ = {0, 0, 0, Γα

βa, Γα
βγ, Γαa

βγ}. If we take
into account the equalities Lα

a = 0, Lα
β = 0, Lαa

β = 0 in expressions (12) for the components
of the torsion tensor, then

0
T α

ab = 0,
0
T α

βa = Γα
βa,

0
T αb

aβ = δb
a δα

β,
0
T α

βγ = Γα
[βγ],

0
T αa

βγ = Γαa
βγ,

0
T αab

βγ = 0.

These equalities indicate the validity of the following theorem.

Theorem 4. In the canonical case, the torsion tensor of a normal affine connection contains zero
components Tα

ab, Tαab
βγ ; the components Tα

βa, Tαa
βγ coincide with the corresponding components of the

connection object; components Tα
βγ are alternations of analogous components of a connection object;

and components Tαb
aβ are equal to the product of the Kronecker symbols.

Corollary 1. The canonical normal generalized affine connection associated with the space of
centered planes is always with torsion. Thus, this connection is a canonical connection of the second
kind (see [51], cf. [52]).

5. Conclusions

This paper studied planar and normal generalized affine connections, which are
associated with the space of centered planes in projective space Pn. It was shown that,
by using the Cartan–Laptev–Lumiste theory, the torsion tensor of a canonical planar
generalized affine connection is non-zero but contains zero components, and the canonical
normal generalized affine connection is always with torsion. Moreover, some properties
have been obtained for the canonical planar generalized torsion-free connection.

It is important to emphasize that affine connections are very popular in various kinds
of research [53,54], and, therefore, we hope that this paper will be useful for geometers.
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