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Abstract: This paper aims to determine the Markovian pattern of the factors influencing social
deprivation in Mexicans with Type 2 diabetes mellitus (DM2). To this end, we develop a methodology
to meet the theoretical and practical considerations involved in applying a Hidden Markov Model
that uses non-panel data. After estimating the latent states and ergodic vectors for diabetic and
non-diabetic populations, we find that the long-term state-dependent probabilities for people with
DM2 show a darker perspective of impoverishment than the rest of the Mexican population. In
the absence of extreme events that modify the present probability structure, the Markovian pattern
confirms that people with DM2 will most likely become the poorest of Mexico’s poor.

Keywords: diabetes mellitus; social deprivation; Hidden Markov model; state-dependent probabili-
ties; ergodic vectors

1. Introduction

Diabetes is a chronic non-communicable disease that occurs when the pancreas does
not produce enough insulin (type 1), or the body cannot effectively use the insulin it
produces (type 2). Insulin is a hormone that allows glucose to enter cells and regulate it in
the bloodstream. When this process is normal, beta cells stop producing insulin once blood
glucose drops. In people with diabetes, the process does not happen this way because the
immune system mistakenly destroys beta cells (type 1), or these cells stop releasing the
amount of the hormone demanded by the body (type 2). After a latency period, excessive
glucose accumulation in diabetic patients’ blood leads to retinopathy, nephropathy, hy-
pertension, amputation of limbs, cardiovascular and neurological disorders, and, in many
cases, premature death. The disease’s causes result from genetic and environmental factors,
unhealthy lifestyles, and high-risk behaviors [1].

The number of diabetics in the world is alarming due to its growth rate. Between 1980
and 2014, their number nearly quadrupled, from 108 to 422 million, and cases are expected
to reach 552 million by 2030 if preventive measures are not taken [2,3]. Of the total number
of patients, 85–90% suffer from Type 2 diabetes mellitus (DM2), making it one of the leading
international causes of morbidity, mortality, and lost labor force productivity. The economic
costs associated with the disease are stratospheric worldwide, with $376 billion spent in
2010, while the projected figure for 2030 is $490 billion. This financial burden is heavy for
low and middle-income countries, where 75% of people with diabetes are concentrated,
and the projected growth of cases for the next 25 years is around 150% [2,3].

Mexico is a paradigmatic case of the panorama just described. According to IDF
data [2,3], the country ranks sixth globally in the prevalence of diabetes, with 11.4 million
people affected by the disease in 2012 and an estimated 17.5 million people affected by 2040.
As in the rest of the world, DM2 is the most important variant in the country, as it represents
the second cause of mortality and the first in years of healthy life lost. With a prevalence
rate of 14.8%, DM2 is also the leading cause of kidney failure, acquired blindness, and
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non-traumatic limb amputations that recently occurred in Mexico [4]. The direct and
indirect costs associated with the disease amount, on average, to USD 1.12 billion annually,
without considering the expenses derived from its complications [5]. In microeconomic
terms, these figures are equivalent to 15% of health expenses by families or, if we consider
regional disparities, a much higher percentage in the country’s southern zones, where the
disease has grown faster. According to Reference [4], DM2 growth rates in those areas were
around 138%, compared to 32.5% for its northern counterpart between 1980 and 2000.

This document focuses on studying the environmental causes of DM2 in Mexico and
aims to estimate the stationary probabilities of exposure to two populations’ social depriva-
tion: diabetics and non-diabetics. The idea is to differentiate the diabetics’ probabilistic
profile from that of the rest of Mexicans to understand their risk-factors’ specific environ-
mental conditions (very often associated with the metabolic syndrome). Among these
factors, the literature highlights those linked to the direct causes of diabetes, such as sex,
age, waist circumference, body mass index, levels of glucose, cholesterol, diastolic pressure,
hypertension, family history, sedentary lifestyle, alcoholism, smoking, main intake and
type, and regularity of diet [6].

The importance of the objective is unquestionable since, without knowledge of the
social and economic context that determines lousy eating habits or deficient access to
medical services, it is impossible to deepen our understanding of the direct causes of
diabetes. For this reason, obtaining the stationary probabilities of social deprivation
constitutes the first contribution of this document by offering a future scenario of diabetics’
social conditioning. For this purpose, we adopt a Markovian approach because the Markov
property perfectly mirrors DM2′s dynamics. Like other phenomena such as the learning
process, the spread of epidemics, or the pricing behavior of financial assets, its evolution
depends critically on the present state’s information. The random variables characterizing
the DM2′s evolution behave if they had “current absolute memory,” meaning that all
required to predict their next stages is an appropriate initial “state of the world” within a
state space and a probability distribution as a rule of change. Past states of the world do
not add relevant information to the present state in the prediction process. To illustrate
this property, let us think of a contagion model in which the probability of being infected
tomorrow depends entirely on today’s transition probabilities.

As a chronic disease, DM2 is repetitive by nature, making it also susceptible to being
studied using Markov models. These models allow a flexible sequencing of outcomes
associated with the disease’s progression or regression states through time [7]. Among
those outcomes, the costs of therapies or the results of treatments stand out. Different
variations of Markov models can evaluate the resulting transition probabilities to determine
if such therapies have been successful, according to budget restrictions at some point.

The paper’s second contribution is to meet the theoretical and practical considerations
involved in the correct use of a Markovian approach. Most applied studies rarely address
this critical issue. The proper use of any member of the Markov model’s family requires
specific justification and methodology. It is not indistinct to prefer one model over another
to analyze the same phenomenon. Results can change dramatically. This paper addresses
both types of considerations when the Hidden Markov model (HMM) uses non-panel
data, and the process parameter is a binomial distribution. The idea of the methodology
presented here is that there is no way to substantiate an adequate HMM application without
fulfilling certain theoretical and practical prerequisites. If the HMM’s results contradict the
prerequisites or vice versa, both need a review. Our methodology’s novelty lies in showing
that the HMM and its prerequisites are part of the same process. One needs the other for a
successful HMM application.

Finally, the third contribution relates to the paper’s results. In some cases, Markov
models’ application intends to provide evidence for a practical exercise and, in other cases,
to test a theoretical hypothesis. Examples of both situations are the forecast of disease
prevalence rates and the efficient market hypothesis, in which it is assumed that the prices
of financial assets follow the Markov property. Our paper falls in the second category and
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seeks to prove that diabetes expresses extreme poverty in Mexico. In particular, it reveals
that, since the general population experiences mainly deprivation in health services and
education, there is a greater probability that the number of diabetics in the country will
soon increase.

The document consists of three additional sections and the conclusions. The second
offers a brief review of the literature on the application of Markov models in the study of
diabetes. The third focuses on the prerequisites for applying any HMM using non-panel
data. The fourth section presents the HMM results: the optimal number of states, the
ergodic vectors, the sensitivity analysis of the state-dependent probabilities to changes in
risky behaviors (obesity, hypertension, alcohol consumption, and smoking), and a general
discussion on the statistical analysis results. The conclusions summarize the main findings
of the paper.

2. Literature Review

Markov models have been applied to the study of diabetes in a very similar fashion to
the general works on the subject following two paths: that is, on the one hand, to investigate
the direct causes of DM2 and, on the other hand, to explain the relationship between the
disease and the living conditions of patients (for general works, see References [6,8–10]).
Thus, we have authors who use continuous Markov models to detect states of progression
and regression of diabetes in the face of lifestyle changes [1] or Markov and Blanket-type
decision processes to predict, respectively, the influence of health management and other
behavioral factors on the complications of DM2 [11,12]. Additionally, some studies use
Markov models to predict the prevalence of diabetes according to specific sociodemo-
graphic characteristics [13] and multi-cohort models to evaluate the effects of clinical and
social variables on the disease’s evolution: normal, pre-diabetic, and diabetic [14].

These studies’ main results are auspicious because the different variants of Markov
models offer a dynamic picture of the causes of each health status patient that is hard to
obtain by other means. With the support of clustering methods, the models can assist,
for example, in the identification and treatment of groups of people exposed to high-risk
behaviors (smoking or high-fat intake) in various stages of the disease, whether or not
they have comorbidities [15]. Similarly, Markov models offer very accurate prevalence
predictions throughout the health-disease process trajectory [16] and describe, quite dili-
gently, the costs and benefits of a specific therapy on population groups with different
sociodemographic characteristics [7].

In Mexico’s particular case, the conclusions’ scope is not so broad as in the interna-
tional context due to these models’ limited application. However, even so, the results are
very significant because they not only identify similar patterns between the prevalence
and incidence rates of DM2 by sex and age group [14] but also establish an inverse rela-
tionship between their state of deprivation social status, and the condition of being or not
diabetic [17]. Specifically, in the last cited work, a relevant methodology is used for our
purposes. Based on a list of social items, the authors construct three states of deprivation
(lacking, moderate poor, and extreme poor). Using a hidden Markov model, they conclude
that rural diabetics experience a greater probability of remaining moderate and extreme
poor than non-diabetics. Despite the value of the method and the conclusion, the paper
has limitations that have to do with the authors’ information based on the Encuesta Na-
cional sobre Niveles de Vida de los Hogares (ENNVIH) [18]. This survey does not have
an exhaustive battery of questions about diabetes or data from Mexican people without
deprivation. Therefore, the conclusion is limited to the lacking or poor population. In
addition to this problem, the authors do not include the income variable in the state’s
construction, making the definition of moderate and extreme poor not comparable to that
used by the government body in charge of measuring poverty [19].

We seek to overcome these limitations using the Encuesta Nacional de Salud y Nu-
trición (ENSANUT) [20] for more recent periods (between 2000 and 2018) and a four-state
Markov model. Figure 1 shows the general model we use to make state diagrams for
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Markov chains. Given that the model’s states are recurrent and the whole chain is irre-
ducible, all the four categories into which we divide the population (non-deprived, lacking,
moderate poor, and extreme poor) interact. Non-deprived diabetics, for example, can
remain in the same state or turn into lacking diabetics or vice versa with some transition
probabilities (arrows in the figure can go around the same circle or in both directions). As
the matrices analyzed below fit this model, the diabetic and non-diabetic populations can
interchangeably worsen or improve their social deprivation probabilities before reaching
the ergodic values. There are no absorbing states.
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Figure 1. A four-state Markov model for diabetics and non-diabetics.

3. The Prerequisites for Applying the HMM Using Non-Panel Data

Figure 2 establishes that the exhaustive use of the HMM presupposes at least three
methodological stages: one before its implementation and two during and after it. The
first stage is related to the fulfillment of the HMM assumptions. Any application must
comply with theoretical and practical considerations, even though most applied research
overlooks it. The former reduces to show that the phenomenon analyzed behaves as a
homogeneous Markov chain and the latter to constructing the cohort of individuals or
households exposed to the phenomenon throughout the study period. The robustness of
the HMM results critically depends on both considerations.
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Figure 2. Methodological stages in the application of the HMM.

3.1. Theoretical Considerations in the Application of the HMM

Showing that social deprival behaves as a one-step homogeneous chain requires
weighing: (1) the deprivation modeling proposal, (2) the state-dependent probability distri-
bution, and (3) the method of calculating the hidden states and matrices associated with a
specific probability distribution. These three aspects constitute theoretical prerequisites for
applying the HMM to the diabetic and non-diabetic populations.

The first point to highlight in (1) is the family of random variables and the justification
of its dynamics as a Markov chain. Specifically, we define the random variable X as the “ex-
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posure to social deprivation” that maps the elements of the sample space Ω = {E0, . . . , E6}
on a sequence of natural numbers 1, ..., N. The sample space is made up of the events that
record exposure to no deprivation {E0} or one of the following six deprivals {E1, . . . , E6}
contained in Reference [20]: (1) educational lag, (2) null rights to medical services, (3)
inadequate access to social security, (4) housing with little space and of low quality, (5)
housing without public services, and (6) food insecurity. Since this paper is interested in
the number of deprivals not using a weighting scheme to build a poverty index, each event
has the same weight.

The sum of these events corresponds to the set of individuals, denoted by N, that
make up the sample universe at the beginning of the survey dates (2000, 2006, 2012, 2016,
and 2018). To allow changes in the structure of events over time, we assume that X has
an inverse image for each subset of Borel B ∈ β in a given sigma-field =. The sigma-field
contains all possible combinations of the elements of Ω such that X−1(B) ∈ =, where B is
any numerical arrangement between the events.

We propose to model the dynamics of the variable X’s family as a Markov chain
because Equations (1) and (2) fit the needs of the objective of the document entirely. In
other words, the two equations that define a one-step homogeneous Markov chain {Cn}
allow us to obtain the probabilities of exposure to social deprivation from a list of deprivals
of a fixed period of 2000–2018 (Equation (1)), given that the economic conditions are such
that they do not change the probability’s structure (Equation (2)). The list of deprivals
serves as the basis for constructing a transition matrix among states belonging to a discrete
state space E.

P
{

Xn+1 = sj
∣∣X0 = si0 , X1 = si1 , . . . , Xn = sin

}
= P

{
Xn+1 = sj

∣∣Xn = sin
}

(1)

∀si0 , . . . , sin ∈ E

P
{

X1 = sj
∣∣X0 = si

}
= P

{
Xn+1 = sj

∣∣Xn = si
}

(2)

The statistical analysis performed in Section 3.2 supports this modeling proposal in
studying social deprivation in Mexico. The results of that section confirm that the transition
matrices based on observable data behave like an ergodic {Cn}. Both tables and figures
back one of the assumptions required to apply the HMM: that of considering that an
unobserved {Cn} describes the phenomenon under study with an ergodic vector as its
initial distribution. The property of ergodicity is inherent in such matrices because their
states form a final class within a closed set C such that ∑

sj∈C
P
(
si, sj

)
= 1 ∀si ∈ C. These are

regular matrices, whose vectors of stationary probabilities are estimated using Equation (3)
or exponentiating the original matrix (also called the Chapman-Kolmogorov Equation (4),
which calculates the number of stages to reach the ergodic values).

δ(j) = lim
n→∞

P
{

Xn = sj
∣∣X0 = si

}
(3)

P
{

Xn = sj
∣∣X0 = si

}
= Pn(si, sj

)
(4)

when it comes to aspect (2), it is essential to make explicit the procedure to obtain the state-
dependent probabilities nπ si . The whole process begins by proposing a set of probabilities
distribution to generate a discrete random sequence {Sn} [21]. The importance of correctly
choosing this set is that {Sn} takes specific value s with nπ si given that Cn = i, depending
on the distribution of the sequence considered. Hence, for the state-dependent probabilities
to have a proper meaning in any study, a justification about the adopted conditional
distribution must be offered. In our case, the binomial distribution choice is almost direct
because the decision process is binary. It consists of determining the probability of success
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pi (suffering a certain number of deprivals) or failure 1− pi (not suffering a certain number
of deprivals). In this way, the nπ si are calculated according to Equation (5).

P(Sn = s|Cn = i) = nπ si =

(
n
s

)
pi

s(1− pi)
n−s (5)

The state-dependent probabilities distribution (5) is ideal for binary variables, such
as deprivals. Deprivals take the value of one when there is a certain number of them
and zero in the opposite case. This way, equation (5) can assign defined values of nπ si

to each of the four states unambiguously. Another possibility of generating the state-
dependent probabilities is by using an activation function of a neural network. However,
the advantages of that function over a binomial are not clear. In any case, it must be clear
that the generating function of nπ si has to consider normal-binary and not rare events. For
that reason, values of nπ si cannot admit, for instance, a Poisson distribution.

Finally, aspect (3) refers to estimating the state-dependent probability matrix Π,
the hidden ergodic vector, and the binomial distribution parameters. On this point, it
worth noting that there are several computational methods. However, we opted for
the Expectation-Maximization (EM) algorithm for the economy of its computation. This
algorithm maximizes the conditional likelihood pseudo-function (6) in two stages. In
the first stage (stage E), the algorithm estimates the parameters of the function θ∗ = θi
and, in the second (stage M), it finds the maximum values of θ̂ for certain θ∗ and se-
lects the hidden states N̂∗, Π, and the stationary vectors using information criteria. In
this document, we set θi = 0.5 and run the total program in the R library for Markov
chains (https://cran.r-project.org/web/packages/depmixS4/index.html, accessed on 18
November 2020).

Q(θ, θ0) = Eθ0 [
T

∑
t=1

ln(P[Xt, St, θ|θ0, X1:t−1])], (6)

where Q(θ, θ0) is the conditional expected value, θ0 is the set of initial parameters (specifi-
cally, we consider 1

n as the initial value of the probabilities, in which n is the number of
assumed states), Xt is the vector of selected conditional probabilities, and St, t ∈ [1, 2, . . . , n]
is the discrete sequence [22].

3.2. Practical Considerations in the Application of HMM: Data and Treatment Method

Among the practical prerequisites, the cohort of individuals exposed to the same
phenomenon in equidistant periods stands out. Without panel data or cross-section infor-
mation divided by equal time intervals, the HMM would be of little utility because the
estimation of any phenomenon’s dynamics would present strong biases. This paper uses
Reference [20], which, unlike longitudinal surveys (such as the ENNVIH), it is not a panel
type that allows monitoring of the same households of diabetics over time. Instead, it is a
cross-sectional survey in which demographic, nutritional, and health information involves
different households in each wave (2000, 2006, 2012, 2016, and 2018).

ENSANUT [20] collects information from two questionnaires (one for health and
one for nutrition), on-site measurements (anthropometry, blood pressure, hemoglobin,
and capillary lead), and biological samples to explore undetected diseases. The sample
units are households whose respondents are divided into children (at most ten-years-old),
adolescents (11–19 years old), and adults (at least 20 years old). This paper’s information
mainly comes from the health questionnaire applied to the last group (see Table 1). Adults
belong to the survey’s universal sample for the health questionnaire consisting of 45,726
(in 2000), 48,304 (in 2006), 50,528 (in 2012), 9474 (in 2016), and 50,562 (in 2018) households
spread across Mexico’s 32 entities.

https://cran.r-project.org/web/packages/depmixS4/index.html
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Table 1. The universe of individuals aged 20 years and over in different rounds.

Sample

Diabetes No Diabetes

2000 2956 41,151
2006 2965 42,175
2012 4490 41,787
2016 972 7643
2018 5893 37,177

Source: Own elaboration based on ENSANUT 2000–2018.

Table A1 of Appendix A displays all the information included in this study. The
table contains the definitions relevant to deprivals and variables considered in the health
questionnaires for adults and in general. Particularly, we use the information from the
section on preventive programs and medical diagnosis of chronic diseases (diabetes, hy-
pertension, and obesity) of the adult health questionnaire and the general questionnaire’s
sociodemographic data.

With all this information, we build a pseudo-panel in three steps. First, following
References [17,19], we group figures from Table 1 to the four states shown in Figure 1. These
states are defined as follows: state 0 (non-deprived), state 1 (lacking or individuals with at
least one deprival, but with income above the minimum welfare line), state 2 (moderate
poor or individuals with one or two deprivals and income below the minimum welfare
line) and state 3 (extreme poor or individuals with three or more deprivals and income
below the minimum welfare line). Data on incomes referred to as the minimum welfare
line come from Reference [19]. According to Reference [17], the optimal size to model the
population’s deprivation that suffers at least one social deprival in Mexico is three states.
Therefore, if we add the non-deprived population, then the selected number is justifiable.

The second step consists of matching the observations using the nearest neighbor
method proposed by Reference [23]. The variables chosen for matching are the sociodemo-
graphic ones listed in Table A1. The cohort resulting from this match comprises 8519 adults
(876 diabetics and 7643 non-diabetics), who are precisely those who retain the characteris-
tics most closely related throughout the period. Table 2 summarizes the basic statistics of
the sample. Since most of the deprivals, variables, and risk-factors in the table are binary,
their interpretation is easy. If we focus on the deprivals and risk-factor categories, we see
that people with diabetes are more deprived and have more comorbidities than the rest
of the population. For example, diabetics experience more educational lag (31% of them)
and obesity (53% of them) than non-diabetics (29% and 45%, respectively) on average.
Likewise, people with diabetes are less educated (4.43 years) than the rest (4.96 years) and
register larger bounded coefficients of variation (BCV) in most of the categories. If we
choose hypertension, we observe that diabetics’ BCV are almost twice that of non-diabetics
(0.85 vs. 0.46), which means that this comorbidity distribution is more dispersed for the
first group. A small proportion of diabetic people suffer more hypertension than the rest,
including both diabetics and non-diabetics.
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Table 2. Basic statistics of the sample (2000–2018).

ENSANUT 2000-2018

Full Sample Diabetes No Diabetes

Deprivations Mean Standard
Deviation BCV Mean Standard

Deviation BCV Mean Standard
Deviation BCV

Educational lag 0.31 0.40 0.42 0.34 0.42 0.44 0.29 0.38 0.41
Access to health services 0.22 0.28 0.29 0.23 0.28 0.30 0.21 0.27 0.28
Access to social security 0.24 0.34 0.35 0.26 0.36 0.37 0.22 0.32 0.36

Quality and spaces in
the home 0.14 0.32 0.36 0.15 0.34 0.38 0.14 0.31 0.34

Access to basic services
in the home 0.39 0.19 0.20 0.40 0.19 0.21 0.37 0.18 0.18

Access to food 0.40 0.42 0.48 0.41 0.45 0.51 0.39 0.40 0.47

Diabetes and some
risk-factors Mean Standard

Deviation BCV Mean Standard
Deviation BCV Mean Standard

Deviation BCV

Diabetes 0.11 0.29 0.63 – – – – – –
Obesity and overweight 0.48 0.40 0.64 0.53 0.48 0.82 0.45 0.36 0.57

Hypertension 0.21 0.42 0.49 0.23 0.50 0.85 0.18 0.39 0.46
Alcohol 0.53 0.47 0.63 0.47 0.50 0.78 0.52 0.34 0.53
Tobbaco 0.16 0.28 0.62 0.15 0.26 0.56 0.17 0.37 0.62

Sociodemographic
variables Mean Standard

Deviation BCV Mean Standard
Deviation BCV Mean Standard

Deviation BCV

Sex 0.49 0.41 0.86 – – – – – –
Age 46.32 16.66 0.33 48.34 16.15 0.28 45.65 17.33 0.38

Years of education 4.50 4.97 0.86 4.43 5.00 0.82 4.96 4.85 0.92
Single 0.25 0.37 0.69 0.25 0.37 0.69 0.24 0.37 0.66

Married 0.57 0.46 0.69 0.66 0.47 0.73 0.58 0.44 0.67
Urban zone 0.66 0.48 0.73 0.76 0.48 0.65 0.75 0.56 0.74

Source: Own elaboration based on ENSANUT [20] 2000–2018.

In the third step, we use the paired data and sample expansion factors from each
wave of Reference [20] to interpolate individuals’ sub-cohorts by the deprivation status
throughout the period. The interpolation includes the construction of a cubic spline
polynomial SP(x) for each sub-cohort in the intervals

[
xj, xj+1

]
, j = 0, 1, . . . , n− 1 subject

to the following terms:

(1) SPj
(

xj
)
= f

(
xj
)

and SPj
(

xj+1
)
= f

(
xj+1

)
∀j = 0, 1, . . . , n− 1

(2) SP′j+1
(

xj+1
)
= SPj

′(xj+1
)
∀j = 0, 1, . . . , n− 1

(3) SP′′j+1

(
xj+1

)
= SPj

′′
(
xj+1

)
∀j = 0, 1, . . . , n− 1

(4) SP′′ (x0) = SP′′ (xn) = 0

The intervals
[
xj, xj+1

]
are partitions of the domain of x over the closed set 2000 =

a ≤ x0 < x1 < . . . < xN ≤ b = 2018, whose range is composed of the N + 1 coordinates
(x0, y0), . . . , (xN , yN) of the curve yk = f (xk); k = 0, 1, . . . , N. The curve yields the deprivals
by states for each sub-cohort of adults.

Once the interpolated values have been obtained, finally, we take the equidistant
points 2006, 2012, and 2018 to distribute the adult cohort in equal time intervals. In this
way, we could convert independent cross-sectional data into an equidistant pseudo-panel
in time, which is necessary to use the HMM adequately. Tables 3 and 4 present the exercise’s
final results. These tables are the basis for building the HMM as they record the observed
transitions experienced by diabetics and non-diabetics among the four states during the
sample period.



Mathematics 2021, 9, 780 9 of 17

Table 3. Number of individuals by states of deprivation in 2006, 2012, and 2018.

Year State Individuals

Diabetics Non-Diabetics

2006 0 189 1677
1 234 2072
2 184 1602
3 269 2292

2012 0 172 1549
1 227 2034
2 179 1567
3 298 2493

2018 0 166 1504
1 225 2020
2 181 1585
3 304 2534

Source: Own elaboration based on ENSANUT [20] 2000–2018.

Table 4. A. Number of Mexican people with DM2 according to the transition matrix (2006–2018). B.
Number of Mexican people without DM2 according to the transition matrix (2006–2018).

A

States 0 1 2 3

0 79 65 18 27
1 39 59 60 76
2 21 43 45 75
3 27 58 58 126

B

States 0 1 2 3

0 832 465 235 145
1 279 649 396 748
2 177 413 406 606
3 216 493 548 1035

Source: Own elaboration based on ENSANUT [20] 2000–2018.

An interesting point about Table 4A is that they can empirically validate our modeling
proposal. The matrix form of each table makes it easier to check that observable deprivals
behave like {Cn}. The procedure compares the observed matrices with those estimated
between 2006 and 2018 for diabetics and non-diabetics. Table 5 shows the figures resulting
from the comparison after using the maximum likelihood method for 90% confidence inter-
vals (see References [24,25]). While the left part of each table contains the observed matrices
between 2006 and 2012, the right part displays the estimated matrices for 2006–2018, which
results from iterating the observed matrices one period forward. The meaning of estimated
matrices is unique here, as it only represents a heuristic resource to test the hypothetical
evolution of {Cn}. Multiplying the observed matrix in 2006–2012 by itself to obtain an
estimate of the observed matrix for the sample period of 2006–2018 is an indirect method
to verify the probabilities’ structures of both matrices. If those structures are statistically
different, then the two matrices do not belong to the same {Cn}.
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Table 5. A. Transition probabilities for Mexican people with Type 2 diabetes mellitus (DM2) (2006–2018). B. Transition
probabilities for Mexican people without DM2 (2006–2018).

A

States πi0 πi1 πi2 πi3 States πi0 πi1 πi2 πi3

0
0.3949 0.3265 0.1043 0.1742

0
0.4303 0.3197 0.1286 0.1214

(0.3717,
0.4901)

(0.2712,
0.3671)

(0.1031,
0.1569)

(0.0956,
0.1826)

(0.4119,
0.4444)

(0.3045,
0.3338)

(0.1156,
0.147)

(0.1062,
0.1398)

1
0.1588 0.2417 0.2507 0.3488

1
0.1949 0.2711 0.1548 0.3792

(0.1268,
0.2346)

(0.2294,
0.3137)

(0.1237,
0.2881)

(0.3277,
0.4374)

(0.1775,
0.2089)

(0.257,
0.2852)

(0.1364,
0.1689)

(0.3608,
0.3965)

2
0.1030 0.2345 0.2650 0.3976 2 0.1122 0.2555 0.2888 0.3435
(0.0844,
0.1425)

(0.2163,
0.2965)

(0.2434,
0.3355)

(0.2965,
0.4245)

(0.096,
0.1285)

(0.2371,
0.2685)

(0.2747,
0.305)

(0.3283,
0.3586)

3
0.0975 0.2111 0.2276 0.4638

3
0.1063 0.2300 0.2480 0.4157

(0.0831,
0.1362)

(0.1934,
0.2709)

(0.2115,
0.2883)

(0.3576,
0.4775)

(0.0911,
0.1193)

(0.2116,
0.2473)

(0.2296,
0.2611)

(0.4016,
0.4298)

Observed Transition Matrix 2006–2012 Estimated Transition Matrix 2006–2018

Stationary vector Stationary vector
π 0.2121 0.2685 0.2001 0.3193 π 0.1936 0.2635 0.2088 0.3340

Statistic χ2 = 23.184 p-value = 0.1089

B

States πi0 πi1 πi2 πi3 States πi0 πi1 πi2 πi3

0
0.4652 0.2532 0.1523 0.1292

0
0.4173 0.3270 0.1315 0.1241

(0.3896,
0.4843)

(0.2024,
0.3359)

(0.1102,
0.1959)

(0.1062,
0.1765)

(0.3907,
0.421)

(0.3035,
0.3359)

(0.1124,
0.147)

(0.1051,
0.1398)

1
0.1279 0.2909 0.2043 0.3768

1
0.1982 0.2587 0.1574 0.3857

(0.1097,
0.2122)

(0.2060,
0.3273)

(0.1864,
0.2678)

(0.3019,
0.3933)

(0.1819,
0.2111)

(0.2414,
0.2673)

(0.1386,
0.171)

(0.3652,
0.3944)

2
0.1030 0.2345 0.2767 0.3859

2
0.1090 0.2481 0.2928 0.3502

(0.0971,
0.1306)

(0.2014,
0.2707)

(0.2163,
0.3177)

(0.3477,
0.3936)

(0.0992,
0.1285)

(0.2414,
0.2707)

(0.2874,
0.3145)

(0.3466,
0.378)

3
0.0898 0.2011 0.2543 0.4549

3
0.1010 0.2186 0.2357 0.4448

(0.0533,
0.1236)

(0.1827,
0.2462)

(0.1796,
0.2664)

(0.4051,
0.5132)

(0.0933,
0.1225)

(0.2149,
0.2473)

(0.2317,
0.2631)

(0.4507,
0.4843)

Observed Transition Matrix 2006–2012 Estimated Transition Matrix 2006–2018

Stationary vector Stationary vector
π 0.2060 0.2616 0.1998 0.3326 π 0.1864 0.2552 0.2082 0.3502

Statistic χ2 = 22.706 p-value = 0.1218

Note: Number in round brackets are 95% simultaneous confidence intervals. Source: Own elaboration.

Goodness-of-fit tests reject the null hypothesis that the observed and estimated prob-
ability distributions are independent. That is, the tests show that deprivals behave as
an ergodic homogeneous Markov chain {Cn} of four states between 2006 and 2018 (see
p-values and ergodic values calculated with (3) at the bottom of the two tables). What is
valuable about this result is that since the X’s family behaves like {Cn}, states’ information
is sufficient to explain the dynamics of exposure to social deprivation. To predict X’s
natural evolution, we only need states’ transition probabilities.

It is important to note that our modeling proposal and, in general, the prerequisites for
applying the HMM are valid under the assumption that {Cn} has four states. The HMM
finds a different optimal size for transition matrices, prerequisites should be rechecked
to verify whether the HMM results are meaningful or not. A well-applied HMM is not
possible without well-founded prerequisites. The HMM is a suitable tool to predict hidden
regimes’ behavior from observed data if and only if prerequisites are met [26]. One needs
the other in a double-check process.
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Since the HMM considers the data’s underlying structure, there is no way to expect the
same Table 5 information. Unlike direct (observed) Markov models, such as those behind
the mentioned tables, where the states and transition probabilities are predetermined
with the same coefficient of variation and no serial correlation, the HMM generates non-
predetermined quantities (number of states, transition probabilities, and parameters values)
with different means, variances, and correlation degrees. The HMM’s variety of results is
highly dependent on the probability distribution assumed. Hence, the greater realism of
hidden models lies precisely in the sound foundation of the prerequisites.

4. Results

After meeting the theoretical and practical considerations, stage 2 of Figure 2 es-
tablishes that the first aspect to consider is the optimal number of states. Table 6 show
that, following the Akaike (AIC) and Bayesian (BIC) information criteria, the optimal size
generated by the EM algorithm is four states for the two populations (see the lower values
of AIC and BIC). This result is relevant as it confirms that the division of states previously
assumed in Table 5 is well-founded. In other words, the hidden data matches the number
of observable states when using a binomial distribution. Therefore, we can safely assume
that the hidden states reflect the size and meaning of observable data categories.

Table 6. A. The optimal number of states for the population without DM2. B. The optimal number of
states for the population with DM2.

A

Probability Distribution Number of States Log Likelihood AIC BIC

Binomial

2 −5902.84 1546.39 1555.71
3 −7698.52 1452.48 1547.46
4 −7705.17 1099.44 1255.94
5 −7321.83 1490.76 1641.78

B

Probability Distribution Number of States Log Likelihood AIC BIC

Binomial

2 −6686.40 1424.62 1608.45
3 −7580.08 1487.91 1435.14
4 −8234.53 1232.34 1255.94
5 −6356.93 1514.81 1667.44

Source: Own elaboration.

Table 7A present the Π matrices associated with these states, which result from
applying Equations (5) and (6) to observable data. They show that the probabilities of
staying in the same state are higher in s0 and s3 than in s1 and s2, which is indicative of
the initial disparity in the social conditions of the country. However, when considering the
remaining values of nπ si , a general impoverishment profile emerges due to the potential
migration of diabetics and non-diabetics to more deprived states. In particular, individuals
who already experience some deprivations are more likely to become extreme poor than
moderate. Likewise, those who do not suffer from DM2 and do not have any deprivation
have significant probabilities of being lacking (0.3197), moderate poor (0.1286), and extreme
(0.1214). The figures for people with DM2 are slightly higher.
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Table 7. A. State-dependent probability matrices for the population without DM2. B. State-dependent
probability matrices for the population with DM2.

A
States πi0 πi1 πi2 πi3 Mean Variance

0 0.4303 0.3197 0.1286 0.1214 NA NA
1 0.1949 0.2711 0.1548 0.3792 1.462 1.021
2 0.1122 0.2555 0.2888 0.3435 3.783 2.287
3 0.1063 0.23 0.248 0.4157 5.187 2.103

Stationary vector
π 0.1936 0.2635 0.2088 0.3340

B
States πi0 πi1 πi2 πi3 Mean Variance

0 0.4173 0.3270 0.1315 0.1241 NA NA
1 0.1982 0.2587 0.1574 0.3857 1.443 1.223
2 0.1090 0.2481 0.2928 0.3502 3.525 2.653
3 0.1010 0.2186 0.2357 0.4448 5.021 2.437

Stationary vector
π 0.1864 0.2552 0.2082 0.3502

Source: Own elaboration.

In the absence of any event that alters the current probabilities’ structure, the previous
scenario likely becomes real in a period of six stages (or 24 years), which are the number
of times the hidden matrices need to be exponentiated to reach the stationary values,
according to Equation (4). Specifically, people with diabetes present a more impoverished
probabilistic profile than those who are not ill due to their lower probability of being
deprived (0.1864 vs. 0.1936) and their greater probability of becoming extreme poor
(0.3502 vs. 0.3340). The upper values of the mean of the events in state 3 confirm this
probabilistic scenario.

A remarkably similar pattern is observed when comparing these results with those of
Table 5. The values of the ergodic vectors of the observed matrices for the two populations
and the number of stages needed to reach them coincide, in general, with the quantities
calculated by the HMM. Hence, the HMM conclusions find support in the data from the
observed Markov matrices.

4.1. Statistical Differences between Diabetics and Non-Diabetics

An outstanding aspect of any Markov model is its flexibility to combine techniques
that support results beyond its original scope. Following stage 3 of Figure 2, we present
a couple of techniques to highlight diabetics’ differences from the rest of the population.
Table 8 reports the first technique’s results, which involve a multivariate analysis of variance
(MANOVA), for the two populations by the state of the chain and type of social deprivation
(state zero is excluded).

Table 8. Multivariate analysis of variance for diabetic and non-diabetic populations by states and social deprivation
(percentages).

Deprivation State 1 State 2 State 3

µ1 − µ2 p-Value µ1 −µ2 p-Value µ1 − µ2 p-Value

Educational lag 0.215 0.000 0.136 0.013 −0.129 0.274
Access to health services 0.271 0.001 0.114 0.345 −0.293 0.102
Access to social security 0.285 0.000 0.290 0.435 0.439 0.761

Quality and spaces in the home −0.148 0.137 0.026 0.871 −0.096 0.585
Access to basic services in the home 0.051 0.600 0.031 0.858 0.028 0.864

Access to food −0.002 0.372 0.015 0.245 0.067 0.049

Source: Own elaboration.
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The data in columns two to four represent the mean differences (µ1 − µ2) associated
with each social deprival. A positive value of (µ1 − µ2) indicates a greater exposure
of people with diabetes to such deprival. The figures show that people with diabetes
experience a more significant educational lag and less access to quality services in health
and social security than those who do not suffer from the disease in states 1 and 2 (in
the latter, it only applies to the educational lag). Table 9 shows that these differences are
especially significant in access to quality health services in state 1 since, in this case, people
with diabetes experience greater exposure than non-diabetics in a percentage that ranges
between 0.061% and 0.562%. It is followed in importance by the educational lag and poor
access to social security services. There are no statistically significant differences between
the two populations in the rest of the social deprivals, as shown by the p-values in Table 8
or the Bonferroni simultaneous intervals in Table 9.

Table 9. Bonferroni simultaneous intervals for diabetic and non-diabetic populations by states and
social deprivation (percentages) at a 95% confidence.

Deprivation State 1 State 2 State 3

Educational lag (0.035, 0.396) (0.045, 0.316) (−0.31, 0.051)
Access to health services (0.061, 0.562) (−0.177, 0.405) (−0.583, 0.002)
Access to social security (0.197, 0.372) (−0.202, 0.378) (−0.351, 0.527)

Quality and spaces in the home (−0.238, 0.059) (−0.064, 0.116) (−0.186, 0.007)
Access to basic services in the home (−0.039, 0.064) (−0.019, 0.044) (−0.04, 0.015)

Access to food (−0.037, 0.034) (−0.021, 0.051) (−0.031, 0.103)

Source: Own elaboration.

To what extent do these deprivals and the adoption of certain risky behaviors affect
the probability of being diabetic? To answer this question, we use the second technique, a
multinomial logit model in which the independent variables are some of the direct causes
of the disease (tobacco and alcohol consumption and overweight or obesity), and the
dependent variable Y is defined as:

Y =

{
j i f the person is diabetic and presents the deprival j
m + j i f the person is not diabetic and presents the deprival j,

where m are social deprivations, j = 1, 2, . . . , m. Formally, the conditional probability is
estimated using:

P
[
Y = i

∣∣X] = F
(
Y′ i
)
,

where F is the logistic cumulative probability distribution, X is a vector of independent
variables X1, X2, . . . , Xp, and Y′ i is a latent variable that determines the realization of
the variable Y at a specific value i = 1, 2, . . . , 2m. Usually, the level of the variable Y′ i is
estimated according to a linear specification of the form.

Y′ i = Xβi + εi,

in which βi are the coefficients calculated for the ith category of variables X and εi is the
random disturbance, i = 1, 2, . . . , 2m. The marginal effect of the variable Xk, k = 1, 2, . . . , p,
on Y′ i is expressed as:

∂P
∂Xk

=
∂F(Y′ i)

∂Xk
.

Table 10 shows the marginal effects of DM2′s risk-factors on the probability of being
diabetic or not being diabetic by social deprivation and the corresponding p-values and
confidence interval at the 95% level. The data indicates that when the individual presents
an educational lag, poor access to health services, and food insecurity, the marginal effects
of direct causes are statistically significant, but not in the other cases. Thus, for example, if
the individual experiences educational lag, then the direct causes increase the probability of
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acquiring diabetes by 0.38% (obesity or overweight), 0.326% (hypertension), 0.34% (alcohol
consumption), 0.22% (tobacco consumption), and a similar occurrence happens with the
other two deprivals.

Table 10. Marginal effects on the probability of being diabetic (multinomial logit model) by type of
clinical risk and social deprivation.

Risk-Factors Coefficient p-Value Confidence Interval (95%)

Lack due to educational lag

Obesity and overweight 0.380 0.000 (0.171, 0.851)
Hypertension 0.326 0.043 (0.195, 0.485)

Alcohol 0.340 0.000 (0.127, 0.775)
Tobacco 0.220 0.000 (0.084, 0.501)

Lack of access to health services

Obesity and overweight 0.395 0.000 (0.191, 0.879)
Hypertension 0.298 0.004 (0.205, 0.379)

Alcohol 0.365 0.000 (0.133, 0.835)
Tobacco 0.249 0.000 (0.115, 0.556)

Lack of access to social security

Obesity and overweight −0.165 0.635 (−0.066, 0.267)
Hypertension 0.054 0.987 (−0.981, 0.789)

Alcohol −0.541 0.426 (−0.168, 0.595)
Tobacco −0.327 0.525 (−0.157, 0.565)

Lack of quality and spaces in the home

Obesity and overweight 0.287 0.280 (−0.263, 0.837)
Hypertension 0.184 0.296 (−0.418, 0.745)

Alcohol 0.157 0.242 (−0.317, 0.631)
Tobacco 0.208 0.271 (−0.323, 0.739)

Lack of access to basic services in the home

Obesity and overweight 0.287 0.392 (−0.481, 1.055)
Hypertension 0.132 0.456 (−0.181, 0.255)

Alcohol 0.157 0.342 (−0.514, 0.828)
Tobacco 0.208 0.355 (−0.488, 0.904)

Lack of access to food

Obesity and overweight 0.215 0.000 (0.106, 0.207)
Hypertension 0.279 0.008 (0.163, 0.371)

Alcohol 0.316 0.000 (0.133, 0.261)
Tobacco 0.278 0.000 (0.087, 0.171)

Source: Own elaboration.

When interpreting the results in Table 10, one must be very cautious. They do not
mean, for example, that educational lag conditions behavior in consumption of alcohol
or tobacco. Rather, the results mean that adults with an educational lag have a greater
probability of developing DM2 when they are obese, hypertensive, smoke, and drink
alcohol. The specific contribution of these risky behaviors varies by type of deprivals.

4.2. Discussion

The previous results present similarities and differences concerning those reported
by the literature, especially by Reference [17]. We agree with those authors that stationary
probabilities of becoming extreme poor are higher in diabetics than in non-diabetics. These
probabilities are associated with an educational lag and problems of access to medical
services and social security. Nevertheless, we differ from them when they argue that
differences between the two populations are significantly distinct in all the states and that
there is no strong statistical correlation between social deprivals and the direct causes of
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DM2. As we make clear in Tables 8–10, people with DM2 experience more exposure to
the three deprivals mentioned practically only in state 1, and that two of these deprivals,
together with food insecurity, increase the probability of acquiring the disease when the
individual consumes tobacco or alcohol and is obese and hypertensive.

Other studies addressing health or lifestyle intervention treatment predictors in people
with diabetes also share these latter results. Using a machine learning approach, Selig-
man [27] found that social factors, such as education, are good predictors of DM2′s direct
causes. Derevitskii [15] states that smoking significantly affects DM2′s complications in
patients’ trajectories analyzed as Markov chains. Sanchez [28] conclude that intervention
in human behavior helps diabetic older adults improve their quality of life. Factors identi-
fying human behavior (posture, nutritional habits, daily activity, duration, and location)
are extracted from a hidden Markov model. Finally, Radcliff [29] uses Markov transition
matrices to assert that nutrition education with behavioral coaching programs is effective
and efficient in preventing or delaying DM2-associated consequences of obesity.

Unfortunately, these papers concentrate on studying the intermediate steps of a
Markov chain and do not perform analyses on the ergodic values. This omission prevents
us from comparing our results with other experiences. In this sense, the methodology
used for constructing the stationary matrices in Tables 5 and 7 constitutes a novelty in the
literature on diabetes. This methodology allows us to obtain the same stationary social
deprivation pattern employing either direct (Table 5) or hidden matrices (Table 7). The
differences between both types of ergodic matrices are insignificant, even though their
transition probabilities’ calculation uses different methods (maximum likelihood in the
direct and the EM algorithm in the hidden model). Thus, we can safely conclude that ceteris
paribus, Mexican people with diabetes will become extreme poor around 2050 because the
prerequisites for applying the HMM coincide with the model’s results.

5. Conclusions and Future Work

The paper develops a methodology to study social deprivation in diabetic and non-
diabetic populations using HMM. The idea is to differentiate the probabilistic profile of
the exposure to deprivation in both populations to understand the disease’s economic and
social context. For this, the paper proposes some theoretical and practical considerations,
leading to implementing the model correctly. Compliance with these considerations is
unavoidable for any HMM user.

The main conclusion from the statistical analyses is that, in the absence of events that
alter the 2006–2018 period’s probability structure, it is highly likely that people with DM2
have a greater probability of becoming extreme poor than the rest of the population. This
probabilistic scenario combined with some risky behaviors, such as tobacco and alcohol
consumption, hypertension, or obesity, increases the probability of acquiring DM2. The lack
of medical supervision services or education to know how to exercise or eat properly makes
low-income families a natural target for chronic diseases. Thus, creating a probabilistic
scenario is essential for understanding the context that forces individuals to adopt risky
behaviors for their health.

A future research agenda on the subject should include two critical aspects: the
inclusion of new variables and the link between the direct causes of diabetes and social
deprivation. The new variables to consider are sex, age, residence, and income deciles,
due to their importance in explaining the new disease trends in Mexico. Adolescent and
adult DM2 require different treatments because patients experience them differently by sex,
urban and rural areas, and economic strata. For example, uneducated, extreme poor women
have greater DM2 prevalence rates than extreme poor men in urban zones but not in some
rural zones [17]. Additionally, it is necessary to perform an in-depth study of household
members’ cultural and genetic backgrounds to learn about their social propensity to
diseases. Knowing the family’s cultural environment or the parents’ diabetic history is
essential for understanding the intimate links between DM2 and social deprivation.
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Appendix A

Table A1. Variables and definitions used in this study (2000–2018).

Variables Definition

Educational lag * An adult who does not have compulsory basic education (complete elementary and
secondary education).

Access to health services * An individual who does not have an affiliation to receive medical services from a public
or private institution.

Access to social security * The person who does not have employment benefits, AFORE (AFORE is the Retirement
Savings Fund Administration System), or another retirement service.

Quality and spaces in the home *
A person who lives in a house whose floors, roofs, and walls are made up of waste

material, cardboard sheet, mud or bark, reed, bamboo, palm, metallic or asbestos sheet,
and the ratio of people per room is greater than 2.5.

Access to basic services in the home *

A person who gets the water from a well, river, lake, stream, pipe, or piped water is
obtained by hauling it from another home, public tap, or hydrant. People who do not

have a drainage service or the drainage is connected to a pipe that leads to a river, lake,
sea, ravine, or crevasse also fall in this category. They usually do not have electricity, and

the fuel they use to cook or heat food is firewood or charcoal.

Access to food * People who present one or more food insecurity characteristics in the last three months.

Diabetes * People with a diagnosis of DM2.

Obesity and overweight * People with a body mass index above the healthy thresholds recommended by the World
Health Organization and the Ministry of Health in Mexico.

Hypertension * People with a diagnosis of high blood pressure or hypertension.

Alcohol * People who consume alcohol above the median of the population.

Tobacco * People who smoke cigarettes above the median of the population.

Sex * Male or female (male takes number 1 and female 0).

Age Age of the person.

Years of education The number of years of education.

Marital status * The person is single, married, divorced, widowed, or separated.

Rural zone * An area with less than 2500 inhabitants.

Urban zone * An area with more than 2500 inhabitants.

Federal entity State of residence in Mexico.

Municipality Municipality of residence in Mexico.

Location Localities of residence in Mexico.

Source: Own elaboration based on ENSANUT [20] (2018) and CONEVAL [30] (2016). Note. The asterisk* indicates that the variable is a
dummy, taking the value 1 if the condition is met or 0 otherwise.
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