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Abstract: Second-order Chebyshev–Edgeworth expansions are derived for various statistics from
samples with random sample sizes, where the asymptotic laws are scale mixtures of the standard
normal or chi-square distributions with scale mixing gamma or inverse exponential distributions. A
formal construction of asymptotic expansions is developed. Therefore, the results can be applied to a
whole family of asymptotically normal or chi-square statistics. The random mean, the normalized
Student t-distribution and the Student t-statistic under non-normality with the normal limit law
are considered. With the chi-square limit distribution, Hotelling’s generalized T2

0 statistics and
scale mixture of chi-square distributions are used. We present the first Chebyshev–Edgeworth
expansions for asymptotically chi-square statistics based on samples with random sample sizes. The
statistics allow non-random, random, and mixed normalization factors. Depending on the type of
normalization, we can find three different limit distributions for each of the statistics considered. Limit
laws are Student t-, standard normal, inverse Pareto, generalized gamma, Laplace and generalized
Laplace as well as weighted sums of generalized gamma distributions. The paper continues the
authors’ studies on the approximation of statistics for randomly sized samples.

Keywords: second-order expansions; random sample size; asymptotically normal statistics; asymp-
totically chi-square statistics; Student’s t-distribution; normal distribution; inverse Pareto distribution;
Laplace and generalized Laplace distribution; weighted sums of generalized gamma distributions

MSC: 62E17 (Primary) 62H10; 60E05 (Secondary)

1. Introduction

In classical statistical inference, the number of observations is usually known. If
observations are collected in a fixed time span or we lack observations the sample size may
be a realization of a random variable. The number of failed devices in the warranty period,
the number of new infections each week in a flu season, the number of daily customers in
a supermarket or the number of traffic accidents per year are all random numbers.

Interest in studying samples with a random number of observations has grown
steadily over the past few years. In medical research, the authors of [1–3] examines ANOVA
models with unknown sample sizes for the analysis of fixed one-way effects in order to
avoid false rejection. Applications of orthogonal mixed models to situations with samples
of a random number of observations of a Poisson or binomial distributed random variable
are presented. Based a random number of observations [4], Al-Mutairi and Raqab [5] and
Barakat et al. [6] examined the mean with known and unknown variances and the variance
in the normal model, confidence intervals for quantiles and prediction intervals for the
future observations for generalized order statistics. An overview on statistical inference
of samples with random sample sizes and some applications are given in [4], see also the
references therein.
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When the non-random sample size is replaced by a random variable, the asymptotic
features of statistics can change radically, as shown by Gnedenko [7]. The monograph
by Gnedenko and Korolev [8] deals with below limit distributions for randomly indexed
sequences and their applications.

General transfer theorems for asymptotic expansions of the distribution function of
statistics based on samples with non-random sample sizes to their analogues for samples
of random sizes are proven in [9,10]. In these papers, rates of convergence and first-order
expansion are proved for asymptotically normal statistics. The results depend on the
rates of convergence with which the distributions of the normalized random sample sizes
approach the corresponding limit distribution.

The difficulty of obtaining second-order expansions for the normalized random sample
sizes beyond the rates of convergences was overcome by Christoph et al. [11]. Second-order
expansions were proved by the authors of [11,12] for the random mean and the median
of samples with random sample sizes and the authors of [13,14] for the three geometric
statistics of Gaussian vectors, the length of a vector, the distance between two vectors
and the angle between two vectors associated with their correlation coefficient when the
dimension of the vectors is random.

The classical Chebyshev–Edgeworth expansions strongly influenced the develop-
ment of asymptotic statistics. The fruitful interactions between Chebyshev Edgeworth
expansions and Bootstrap methods are demonstrated in [15]. Detailed reviews of appli-
cations of Chebyshev–Edgeworth expansions in statistics were given by, e.g., Bickel [16]
and Kolassa [17]. If the arithmetic mean of independent random variables is consid-
ered as the statistic, only the expected value and the dispersion are taken into account
in the central limit theorem or in the Berry–Esseen inequalities. The two important
characteristics of random variables, skewness and kurtosis, have great influence on sec-
ond order expansions, provided that the corresponding moments exist. The Cornish–
Fisher inversion of the Chebyshev–Edgeworth expansion allows the approximation of
the quantiles of the test statistics used, for example, in many hypothesis tests. In [11],
Theorems 3 and 6, and [12], Corollaries 6.2 and 6.3, Cornish–Fisher expansions for the ran-
dom mean and median from samples with random sample sizes are obtained. In the same
way, Cornish–Fisher expansions for the quantiles of the statistics considered in present
paper can be derived from the corresponding Chebyshev–Edgeworth expansions.

In the present paper, we continue our research on approximations if the sample sizes
are random. To the best of our knowledge, Chebyshev–Edgeworth-type expansions with
asymptotically chi-square statistics have not yet been proven in the literature when the
sample sizes are random.

The article is structured as follows. Section 2 describes statistical models with random
numbers of observations, the assumptions about statistics and random sample sizes and
transfer propositions from samples with non-random to random sample sizes. Section 3
presents statistics with non-random sample sizes with Chebyshev–Edgeworth expansions
based on standard normal or chi-square distributions. Corresponding expansions of the
negative binomial or discrete Pareto distributions as random sample sizes are considered in
Section 4. Section 5 describes the influence of non-random, random or mixed normalization
factors on the limit distributions of the examined statistics that are based on samples with
random sample sizes. Besides the common Student’s t, normal and Laplace distributions,
inverse Pareto, generalized gamma and generalized Laplace as well as weighted sums of
generalized gamma distributions also occur as limit laws. The main results for statistic
families with different normalization factors and examples are given in Section 6. To prove
statements about a family of statistics, formal constructions for the expansions are worked
out in Section 7, which are used in Section 8 to prove the theorems. Conclusions are drawn
in Section 9. We leave four auxiliary lemmas to Appendix A.
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2. Statistical Models with a Random Number of Observations

Let X1, X2, . . . ∈ R = (−∞ ∞) and N1, N2, . . . ∈ N+ = {1, 2, . . .} be random variables
defined on a common probability space (Ω,A,P). The random variables X1, . . . , Xm denote
the observations and form the random sample with a non-random sample size m ∈ N+. Let

Tm := Tm(X1, . . . , Xm) with m ∈ N+

be some statistic obtained from the sample {X1, X2, . . . , Xm}. Consider now the sample
X1, . . . , XNn . The random variable Nn ∈ N+ denotes the random size of the underlying
sample, that is the random number of observations, depending on a parameter n ∈ N+.
We suppose for each n ∈ N+ that Nn ∈ N+ is independent of random variables X1, X2, . . .
and Nn → ∞ in probability as n→ ∞.

Let TNn be a statistic obtained from a random sample X1, X2, . . . , XNn defined as

TNn(ω) := TNn(ω)

(
X1(ω), . . . , XNn(ω)(ω)

)
for all ω ∈ Ω and every n ∈ N+.

2.1. Assumptions on Statistics Tm and Random Sample Sizes Nn

In further consideration, we restrict ourselves to only those terms in the expansions
that are used below.

We assume that the following condition for the statistic Tm with ETm = 0 from a
sample with non-random sample size m ∈ N+ is fulfilled:

Assumption 1. There are differentiable functions for all x 6= 0 distribution function F(x) and
bounded functions f1(x), f2(x) and real numbers γ ∈ {0, ±1/2,±1}, a > 1 and 0 < C1 < ∞ so
that for all integers m ≥ 1

supx

∣∣∣P(mγTm ≤ x
)
− F(x)−m−1/2 f1(x)−m−1 f2(x)

∣∣∣ ≤ C1 m−a. (1)

Remark 1. In contrast to Bening et al. [10], the differentiability of F(x), f1(x) and f2(x) is only
required for x 6= 0. In the present article, in addition to the normal distribution, the chi-square
distribution with p degrees of freedom is used as F(x), which is not differentiable in x = 0 if p = 1
or p = 2.

The distribution functions of the normalized random variables Nn ∈ N+ satisfy the
following condition:

Assumption 2. A distribution function H(y) with H(0+) = 0, a function of bounded variation
h2(y), a sequence 0 < gn ↑ ∞ and real numbers b > 0 and C2 > 0 exist so that for all integers
n ≥ 1

supy≥0

∣∣P(g−1
n Nn ≤ y

)
− H(y)

∣∣ ≤ C2n−b, for 0 < b ≤ 1,

supy≥0

∣∣P(g−1
n Nn ≤ y

)
− H(y)− n−1h2(y)

∣∣ ≤ C2n−b, for b > 1.

 (2)

2.2. Transfer Proposition from Samples with Non-Random to Random Sample Sizes

Assumptions 1 and 2 allow the construction of expansions for distributions of nor-
malized random-size statistics TNn based on approximate results for fixed-size normalized
statistics Tm in (1) and for the random size Nn in (2).

Proposition 1. Suppose γ ∈ {0, ±1/2,±1} and the statistic Tm and the sample size Nn satisfy
Assumptions 1 and 2. Then, for all n ∈ N+, the following inequality applies:

supx∈R

∣∣∣P(gγ
n TNn ≤ x

)
− Gn(x, 1/gn)

∣∣∣ ≤ C1 E
(

N−a
n
)
+ (C3Dn + C4) n−b, (3)
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where

Gn(x, 1/gn) =
∫ ∞

1/gn

(
F(x yγ) +

f1(xyγ)
√

gny
+

f2(xyγ)

gny

)
d
(

H(y) +
h2(y)

n

)
, (4)

Dn = sup
x

∫ ∞

1/gn

∣∣∣∣ ∂

∂y

(
F(xyγ) +

f1(xyγ)
√

gny
+

f2(xyγ)

ygn

)∣∣∣∣dy, (5)

a > 1, b > 0 and f1(z), f2(z), h2(y) are given in (1) and (2). The constants C1, C3, C4 do not
depend on n.

General transfer theorems with more terms are proved in [9,10] for γ ≥ 0.

Remark 2. The approximation function Gn(x, 1/gn) is not a polynomial in g−1/2
n and n−1/2.

The domain [1/gn, ∞) of integration in (4) depends on gn. Some of the integrals in (4) could tend
to infinity with 1/gn → 0 as n→ ∞.

The following statement clarifies the problem.

Proposition 2. In addition to the conditions of Proposition 1, let the following conditions be
satisfied on the functions H(.) and h2(.), depending on the rate of convergence b > 0 in (2):

H(1/gn) ≤ c1 g−b
n , for b > 0, (6)∫ 1/gn

0
y− 1/2dH(y) ≤ c2 g−b+1/2

n , for b > 1/2, (7)

i :
∫ 1/gn

0 y− 1dH(y) ≤ c3 g−b+1
n ,

ii : h2(0) = 0 and |h2(1/gn)| ≤ c4 n g−b
n ,

iii :
∫ 1/gn

0 y− 1|h2(y)|dy ≤ c5 n g−b
n ,

 for b > 1. (8)

Then, for the function Gn(x, 1/gn) defined in (4), one has

supx
∣∣Gn(x, 1/gn)− Gn,2(x)− I1(x, n)−I2(x, n)− I3(x, n)− I4(x, n)

∣∣ ≤ C g−b
n

with

Gn,2(x) =



∞∫
0

F(x yγ)dH(y), for 0 < b ≤ 1/2,

∞∫
0

(
F(x yγ) +

f1(x yγ)√
gny

)
dH(y) =: Gn,1(x), for 1/2 < b ≤ 1,

Gn,1(x) +
∞∫
0

f2(x yγ)
gny dH(y) +

∞∫
0

F(x yγ)
n dh2(y), for b > 1,


(9)

I1(x, n) =
∫ ∞

1/gn

f1(x yγ)
√

gny
dH(y) for b ≤ 1/2, I2(x, n) =

∫ ∞

1/gn

f2(x yγ)

gn y
dH(y) for b ≤ 1, (10)

I3(x, n) =
∫ ∞

1/gn

f1(x yγ)

n
√

gny
dh2(y) and I4(x, n) =

∫ ∞

1/gn

f2(x yγ)

n gny
dh2(y) for b > 1. (11)

Remark 3. The lower limit of integration in I1(x, n) to I4(x, n) in (10) and (11) depends on gn. If
the sample size Nn = Nn(r) is negative binomial distributed with, e.g., 0 < r < 1/2 or 1 < r < 2
and gn = r(n− 1) + 1 (see (28) below), then both I1(x, n) and I4(x, n) have order n−r and not
n1/2 or n−2, as it seems at first glance.

Remark 4. The additional conditions (6)–(8) guarantee to extend the integration range of the
integrals in (9) from [1/gn, ∞) to (0, ∞).
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Proof of Propositions 1 and 2: Evidence of Proposition 1 follows along the similar argu-
ments of the more general Transfer Theorem 3.1 in [10] for γ ≥ 0. The proof was adapted
by Christoph and Ulyanov [13] to negative γ < 0, too. Therefore, the Proposition 1 applies
to γ ∈ {0,±1/2,±1}.

The present Propositions 1 and 2 differ from Theorems 1 and 2 in [13] only by the
additional term f1(xyγ) (gny)−1/2 and the added condition (7) to estimate this additional
term. Therefore, the details are omitted her.

Remark 5. In Appendix 2 of the monograph by Gnedenko and Korolev [8], asymptotic expansions
for generalized Cox processes are proved (see Theorems A2.6.1–A2.6.3). As random sample size, the
authors considered a Cox process N(t) controlled by a Poisson process Λ(t) (also known as a doubly
stochastic Poisson process) and proved asymptotic expansions for the random sum S(t) = ∑

N(t)
k=1 Xk,

where X1, X2, . . . are independent identically distributed random variables. For each t ≥ 0, the
random variables N(t), X1, X2, . . . are independent. The above-mentioned theorems are close to
Proposition 1. The structure of the functions G2;n(.) in (4) and the bounds on the right-hand side
of inequality (3) in Proposition 1 differ from the corresponding terms in Theorems A2.6.1–A2.6.3.
Thus, the bounds contain little o-terms.

3. Chebyshev–Edgeworth Expansions Based on Standard Normal and Chi-Square
Distributions

We consider two classes of statistics which are asymptotically normal or
chi-square distributed.

3.1. Examples for Asymptotically Normally Distributed Statistics

Let X, X1, X2, . . . be independent identically distributed random variables with

E|X|5 < ∞, E(X) = µ, 0 < Var(X) = σ2,
skewness λ3 = σ−3 E(X− µ)3 and kurtosis λ4 = σ−4 E(X− µ)4 .

}
(12)

The random variable X is assumed to satisfy Cramér’s condition

lim sup|t|→∞

∣∣∣EeitX
∣∣∣ < 1. (13)

Consider the asymptotically normal sample mean:

Xm = (X1 + · · ·+ Xm)/m m = 1, 2, . . . , (14)

It follows from Petrov [18], Theorem 5.18 with k = 5, that

supx

∣∣∣P(σ−1√m(Xm − µ) ≤ x)−Φ2;m(x)
∣∣∣ ≤ Cm−3/2, (15)

with C being independent of m and second order expansion

Φ2;m(x) = Φ(x)−
(

λ3

6
√

m
H2(x) +

1
m

(λ4

24
H3(x) +

λ2
3

72
H5(x)

))
ϕ(x), (16)

where Φ(x) and ϕ(x) are standard normal distribution function and its density and Hk(x)
are the Chebyshev–Hermite polynomials

H2(x) = x2 − 1 H3(x) = x3 − 3x and H5(x) = x5 − 10x3 + 15x .

Let the random variable χ2
d be chi-square distributed with d degrees of freedom having

distribution function Gd(x) and density function gd(x):
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Gd(x) = P(χ2
d ≤ x) =

∫ x

0
gd(y)dy and gd(y) =

1
2d/2 Γ(d/2)

y(d−2)/2 e−y/2, y > 0. (17)

Next, we examine the scale-mixed normalized statistic Tm =
√

m Z/
√

χ2
m, where Z

and χ2
m are independent random variables with the standard normal distribution Φ(x)

and the chi-square distribution Gm(x), respectively. Then, the statistic Tm =
√

m Z/
√

χ2
m

follows the Student’s t-distribution with m degrees of freedom. Example 2.1 in [19] indicates∣∣∣∣∣P
(√

m Z√
χ2

m
≤ x

)
−Φ(x)− (x3 + x)ϕ(x)

4 m

∣∣∣∣∣ ≤ supx{|x5 + 2x3 + 3x|ϕ(x)}
6m2 +

6(m + 4)
m3 ≤ 30.5

m2 . (18)

Chebyshev–Edgeworth expansions of Student’s t-statistic under non-normality are
well investigated, but only Hall [20] proved these under minimal moment condition.
Let conditions (12) and (13) are satisfied for independent identically distributed random
variables X1, X2, . . . Define T∗m = m1/2(Xm − µ)/σ̂m with sample mean Xn and biased
sample variance σ̂2

m = m−1 ∑m
i=1(Xi − Xm)2. It follows from Hall [20] that for Student’s

t-statistic T∗m:

Rm(x) =
∣∣∣∣P(m1/2 Xm − µ

σ̂m
≤ x

)
−Φ(x)− ϕ(x)

(
P1(x)√

m
+

P2(x)
m

)∣∣∣∣ ≤ C m−3/2(1 + u(m)) (19)

uniformly in x, where u(m)→ 0 as m→ ∞,

P1(x) = λ3(2x2 + 1)/6 and P2(x) = x

{
λ4
12

(x2 − 3)−
λ2

3
18

(x4 + 2x2 − 3)− 1
4
(x2 + 3)

}
. (20)

Remark 6. The estimate (19) does not satisfy (1) in Assumption 1 because we do not have a
computable error bound U with |u(m)| ≤ U < ∞ for all m ∈ N+. The estimate (19) does not
satisfy (1) in Assumption 1 because we do not have a computable constant C with |u(m)| ≤ C < ∞
for all m ∈ N+, if all parameter are given. The remainder in (19) meets order condition Rm(x) =
O(m−3/2) as m→ ∞, but in the equivalent condition supxRm(x) ≤ Cm−3/2 for all m ≥ M the
values C > 0 and M > 0 are unknown. About non-asymptotic bounds and order conditions, see
the work of Fujikoshi and Ulyanov [19] (Section 1.1).

In [21], an inequality for a first order approximation is proved:

supx

∣∣∣∣P(m1/2 Xm − µ

σ̂m
≤ x

)
−Φ(x)− P1(x) ϕ(x)√

m

∣∣∣∣ ≤ C m−1, (21)

where E|X|4+ε < ∞ is required for arbitrary ε > 0 and P1(x) is defined in (20).

3.2. Examples for Asymptotically Chi-Square Distributed Statistics

The baseline distribution of the second order expansions is now the chi-square distribu-
tion Gd(x) occurring as limit distribution in different multivariate tests (see [22], Chapters 5
and 8–10, [19,23]).

At first, we consider statistic Tm = T2
0 = m tr SqS−1

m , where Sq and Sm are random
matrices independently distributed as Wishart distributions Wp(q, Ip) and Wp(m, Ip), re-
spectively, with identity operator Ip in Rp. Note that W has Wishart distribution Wp(q, Σ)
if q ≥ p and its density is

1
2pq/2 Γp(q/2) |Σ|q/2 exp

{
−1

2
tr
(

Σ−1W
)}
|W|(q−p−1)/2,

where Γp(q/2) = πp(p−1)/4 Πp
k=1 Γ

(
(q − k + 1)/2

)
(see [23], Chapter 2, for some

basic properties).
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Hotelling’s generalized T2
0 distribution allows approximation

supx

∣∣∣∣P(m tr
(

SqS−1
m

)
≤ x

)
− Gd(x)− d

4 m

(
a0Gd(x) + a1Gd+2(x) + a2Gd+4(x)

)∣∣∣∣ ≤ C m−2 (22)

(see [24], Theorem 4.1), where

d = pq, a0 = q− p− 1, a1 = −2q and a2 = q + p + 1 with a0 + a1 + a2 = 0. (23)

If Tm = χ2
d/χ2

m is a scale mixture, where χ2
d and χ2

m are independent, Tm allows
asymptotic expansion

supx

∣∣∣∣P(m χ2
d/χ2

m ≤ x
)
− Gd(x)− d

4 m

(
a0Gd(x) + a1Gd+2(x) + a2Gd+4(x)

)∣∣∣∣ ≤ C m−2 (24)

(see [25], Section 5), where now

a0 = 2− d, a1 = 2d and a2 = −(2 + d) with a0 + a1 + a2 = 0. (25)

Integration by parts gives Gk+2(x) = −2 gk+2(x)+Gk(x). Moreover, gk+2(x) = (x/k) gk(x)
for k = d and k = d + 2. Then, it follows for both statistics Zm = tr

(
SqS−1

m
)

in (22) and
Zm = χ2

d/χ2
m in (24) that

supx

∣∣∣∣P(m Zm ≤ x)− Gd(x) +
gd(x)

m

(
(a1 + a2) x

2
+

a2 x2

2 (d + 2)

)∣∣∣∣ ≤ C m−2 (26)

where the coefficients a1 and a2 are defined in (23) and (25).
The scaled mixture Tm = mχ2

4/χ2
m is considered in the works by Fujikoshi et al. [23]

(Example 13.2.2) and Fujikoshi and Ulyanov [19] (Example 2.2). The estimation given there
leads to a computable error bound:

supx

∣∣∣P(m
χ2

4
χ2

m
≤ x

)
− G4(x) +

(2 x− x2)g4(x)
2m

∣∣∣ ≤ x2|x2 − 4|e−x/2

12m2 +
12(m + 4)

m3 ≤ 65.9
m2 . (27)

Remark 7. The statistics Tm in (15), (18) and (21) satisfy Assumption 1 with the normal limit
distribution Φ(x) and in (26) and (27) with chi-square distributions Gd(x) and G4(x), respectively.

4. Chebyshev–Edgeworth Expansions for Distributions of Normalized Random
Sample Sizes

As in the articles by, e.g., Bening et al. [9,10], Christoph et al. [11,12] and Christoph
and Ulyanov [13] and Christoph and Ulyanov [14], we consider as random sample sizes Nn
the negative binomial random variable Nn(r) and the maximum of n independent discrete
Pareto random variables Nn(s) where r > 0 and s > 0 are parameters.

“The negative binomial distribution is one of the two leading cases for count models,
it accommodates the overdispersion typically observed in count data (which the Poisson
model cannot)” [26]. Moreover, ENn(r) < ∞ and P(Nn(r)/ENn(r) ≤ y) tends to the
gamma distribution Gr r(y) with identical shape and rate parameters r > 0.

On the other hand, the mean for the discrete Pareto-like variable Nn(s) does not exist,
yet P(Nn(s)/n ≤ x) tends to the inverse exponential distribution Ws(y) = e−s/y with scale
parameter s > 0.

Remark 8. The authors of [1–4,27], among others, considered the binomial or Poisson distributions
as random number N of observations. If N = Nn is binomial (with parameters n and 0 < p < 1) or
Poisson (with rate λ n, 0 < λ < ∞) distributed, then P(Nn ≤ ENnx) tends to the degenerated in
1 distribution as n→ ∞. Therefore, Assumption 2 for the Transfer Proposition 1 is not fulfilled. On
the other hand, since binomial or Poisson sample sizes are asymptotically normally distributed and
if the statistic Tm is also asymptotically normally distributed, so is the statistic TNn , too (see [28]).
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Chebyshev–Edgeworth expansions for lattice distributed random variables exist so far only with
bounds of small-o or large-O order (see [29]). For (2) in Assumption 2, computable error bounds
C2 are required because the constant C3 in (3) depends on C2 (see also Remark 6 on large-O-bounds
and computable error bounds).

4.1. The Random Sample Size Nn = Nn(r) Has Negative Binomial Distribution with Success
Probability 1/n

The sample size Nn(r) has a negative binomial distribution shifted by 1 with the
parameters 1/n and r > 0, the probability mass function

P(Nn(r) = k) =
Γ(k + r− 1)

Γ(k) Γ(r)

(
1
n

)r(
1− 1

n

)k−1
, k = 1, 2, . . . (28)

and gn = E(Nn(r)) = r (n − 1) + 1. Bening and Korolev [30] and Schluter and
Trede [26] showed

limn→∞ supy|P(Nn(r)/gn ≤ y)− Gr,r(y)| = 0, (29)

where Gr,r(y) is the gamma distribution function with its density

gr,r(y) =
rr

Γ(r)
yr−1e−ry I(0 ∞)(y), y ∈ R. (30)

In addition to the expansion of Nn(r), a bound of the negative moment E(Nn(r))−a in (3)
is required, where m−a is rate of convergence of the Chebyshev–Edgeworth expansion for
Tm in (1).

Proposition 3. Suppose that r > 0 and the discrete random variables Nn(r) have probability mass
function (28) with gn := ENn(r) = r(n− 1) + 1. Then,

supy≥0

∣∣∣∣P(Nn(r)
gn

≤ y
)
− Gr,r(y)−

h2;r(y)
n

∣∣∣∣ ≤ C2(r) n−min{r,2}, (31)

for all n ∈ N+, where the constant C2(r) > 0 does not depent on n and

h2;r(y) =
{

0, f or r < 1,
(2 r)−1 gr,r(y)

(
(y− 1)(2− r) + 2Q1

(
gn y

))
, f or r ≥ 1.

(32)

Q1(y) = 1/2− (y− [y]) and [.] denotes the integer part of a number. (33)

Moreover, negative moments E(Nn(r))−a fulfill the estimate for all r > 0, α > 0

E
(

Nn(r)
)−α ≤ C(r)

{
n−min{r, α}, r 6= α
ln(n) n−α, r = α

(34)

and the convergence rate in case r = α cannot be improved.

Proof. In [10] (Formula (21)) and in [31] (Formula (11)), the convergence rate is reported
for the case r < 1. In [11] (Theorem 1), the Chebyshev–Edgeworth expansion for r > 1 is
proved. In the case r = 1, for geometric distributed random variable Nn(1) ∈ N+ with
success probability 1/n the proof is straightforward:

P(Nn ≤ n y) = 1− P(Nn ≥ [ny] + 1) = 1−
(

1− 1
n

)ny−τ

=

(
1− e−y +

e−y

n

( y
2
− τ

))
+ rn(y),

where supy |rn(y)| ≤ C n−2 and τ = ny− [ny] = 1/2− Q1(ny) ∈ [0 1). Hence, (31) holds for
r = 1.
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In [12] (Corollary 4.2), leading terms for the negative moments of E
(

Nn(r)
)−p are

derived, which lead to (34).

Remark 9. The negative binomial random variables Nn(r) satisfy (2) in Assumption 2 and the
additional conditions (6), (7) and (8) in Proposition 2 with H(y) = Gr,r(y), h2(y) = h2;r(y),
gn = ENn(r) = r(n − 1) + 1 and b = min{r 2}. The jumps of the distribution function
P(Nn(r) ≤ gn y) only affect the function Q1(.) in the term h2;r(.).

4.2. The Random Sample Size Nn = Nn(s) Is the Maximum of n Independent Discrete
Pareto Variables

We consider the continuous Pareto Type II (Lomax) distribution function

FY∗(x) = 1− (1 + (x− 1)/s)−1 for x ≥ 1.

The discrete Pareto II distribution FY(s) is obtained by discretizing the continuous Pareto
distribution FY∗(x), : P(Y(s) = k) = FY∗(k) − FY∗(k − 1), k ∈ N+ . The random vari-
able Y(s) is the discrete counterpart on the positive integers to the continuous random
variable Y∗. Both random variables Y∗ and Y(s) have shape parameter 1 and scale pa-
rameter s > 0 (see [32]). The discrete Pareto distributed Y(s) has probability mass and
distribution functions:

P(Y(s) = k) =
s

s + k− 1
− s

s + k
and P

(
Y(s) ≤ k

)
=

k
s + k

, for k ∈ N+. (35)

Let Y1(s), Y2(s), . . . be a sequence of independent random variables with the common
distribution function (35). Define

Nn(s) = max1≤j≤n Yj(s) with P(Nn(s) ≤ k) =
(

k
s + k

)n
, n ∈ N+, k ∈ N+ s > 0. (36)

The random variable Nn(s) is extremely spread over the positive integers.

Proposition 4. Consider the discrete random variable Nn(s) with distribution function (36). Then,

supy>0

∣∣∣∣P(Nn(s)
n
≤ y

)
−Ws(y)−

h2;s(y)
n

∣∣∣∣ ≤ C3(s)
n2 for all n ∈ N+ and fixed s > 0, (37)

Ws(y) = e−s/y and h2;s(y) = s e−s/y (s− 1 + 2Q1(n y)
)
/
(
2 y2), y > 0 (38)

where C3(s) > 0 does not depend on n and Q1(y) is defined in (33). Moreover,

E
(

Nn(s)
)−p ≤ C(p) n−min{p,2}, (39)

where for 0 < p ≤ 2 the order of the bound is optimal.

The Chebyshev–Edgeworth expansion (37) is proved in [11] (Theorem 4). In [12]
(Corollary 5.2), leading terms for the negative moments E

(
Nn(s)

)−p are derived for the
negative moments that lead to (39).

Remark 10. Let the random variable V(s) is exponentially distributed with rate parameter s > 0.
Then, W(s) = 1/V(s) is an inverse exponentially distributed random variable with the continuous
distribution function Ws(y) = e−s/y I(0 ∞)(y). Both Ws(y) and P(Nn(s) ≤ y) are heavy tailed
with shape parameter 1.

Remark 11. Since E
(
W(s)

)
= ∞ and E

(
Nn(s)

)
= ∞ for all n ∈ N+, we choose gn = n as

normalizing factor for Nn(s) in (37).
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Remark 12. The random sample sizes Nn(s) satisfy (2) in Assumption 2 and the additional
conditions (6)–(8) in Proposition 2 with Ws(y) = e−s/y, h2(y) = h2;s(y), gn = n and b = 2.
The jumps of the distribution function P(Nn(s) ≤ n y) only affects the function Q1(.) in the term
h2;s(.).

Remark 13. Lyamin [33] proved a bound |P(Nn(s) ≤ n y)−Ws(y)| ≤ 0.37 n−1 for integers
s ≥ 1.

5. Limit Distributions of Statistics with Random Sample Sizes Using Different
Scaling Factors

The statistic Tm from a sample with non-random sample size m ∈ N+ fulfills
condition (1) in Assumption 1. Instead of the non-random sample size m, we consider
a random sample size Nn ∈ N+ satisfying condition (2) in Assumption 2. Let gn be a
sequence with gn ↑ ∞ as n → ∞. Consider the scaling factor gγ

n Nγ∗−γ
n by the statistics

TNn with γ ∈ {0,±1/2} if F(x) = Φ(x) and γ∗ = 1/2 or γ ∈ {0,±1} if F(x) = Gu(x) and
γ∗ = 1. Then, conditioning on Nn and using (1) and (2), we have

P
(

gγ
n Nγ∗−γ

n TNn ≤ x
)
= P

(
Nγ

n TNn ≤ x (Nn/gn)
γ
)

=
∞

∑
m=1

P
(

mγTm ≤ x(m/gn)
γ
)
P(Nn = m)

(1)
≈ E

(
F(x(Nn/gn)

γ)
)
=
∫ ∞

1/gn
F(xyγ)dP(Nn/gn ≤ y)

(2)
≈
∫ ∞

1/gn
F(xyγ)dH(y). (40)

If there exists a limit distribution of P
(

gγ
n Nγ∗−γ

n TNn ≤ x
)

as n → ∞, then it has to

be a scale mixture of parent distribution F(x) and positive mixing parameter H(y):∫ ∞
0 F(xyγ)dH(y) (see, e.g., [23,34], Chapter 13, and [19] and the references therein).

Remark 14. Formula (40) shows that different normalization factors at TNn lead to different scale
mixtures of the limit distribution of the normalized statistics TNn .

5.1. The Case F(x) = Φ(x) and H(y) = Gr,r(y)

The statistics (15), (18) and (21) considered in Section 3.1 have normal approximations
Φ(x). The limit distribution for the normalized random sample size Nn(r)/ENn(r) is
the gamma distribution Gr,r(y) with density (30). We investigate the dependence of the

limit distributions in P
(

gγ
n Nn(r)1/2−γTNn(r) ≤ x

)
→
∫ ∞

0 Φ(xyγ)dGr,r(y) as n → ∞ for

γ ∈ {1/2, 0, −1/2}.
(i) If γ = 1/2, then the limit distribution is Student-s t distribution S2r(x)

having density

s2r(x) =
Γ((r + 1/2)√

2rπ Γ(r)

(
1 +

x2

2r

)−r+1/2
, r > 0, x ∈ R. (41)

(ii) If γ = 0, the standard normal law Φ(x) is the limit one with density ϕ(x).
(iii) For γ = −1/2, the generalized Laplace distributions Lr(x) occur with density

(see [13], Section 5.1.3):

lr(x) =
rr

Γ(r)

∫ ∞

0
ϕ(xy−1/2) yr−3/2e−rydy =

2 rr

Γ(r)
√

2 π

(
|x|√
2 r

)r−1/2
Kr−1/2(

√
2 r |x|). (42)

where Kα(u) is the Macconald function of order α or modified Bessel function of the third
kind with index α. The function Kα(u) is also sometimes called a modified Bessel function
of the second kind of order α. For properties of these functions, see, e.g., Chapter 51 in [35]
or the Appendix on Bessel functions in [36].
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If r ∈ N+, the so-called Sargan densities l1(x), l2(x), . . . and their distribution functions
are computable in closed forms (see Formulas (63)–(65) below in Section 7):

l1(x) = 1√
2

e−
√

2 |x| and L1(x) = 1− 1
2 e−

√
2 |x|, x > 0

l2(x) =
(

1
2 + |x|

)
e−2 |x| and L2(x) = 1− 1

2 (1 + x) e−2 |x|, x > 0

l3(x) = 3
√

6
16

(
1 +
√

6 |x|+ 2 x2
)

e−
√

6 |x| and L3(x) = 1−
(

1
2 + 5

√
6 x

16 + 3 x2

8

)
e−
√

6 |x|,

 (43)

where Lr(−x) = 1− Lr(x) for x ≥ 0.
The double exponential or standard Laplace density is l1(x) with variance 1 and distri-

bution function L1(x) given in (43). The Sargan distributions are therefore a generalisation
of the standard Laplace distribution.

5.2. The Case F(x) = Gd(x) and H(y) = Ws(y) = e−s/y

The statistics considered in Section 3.2 asymptotically approach chi-square distribution
Gd(x). The limit distribution for the normalized random sample size Nn(s)/n is the inverse
exponential distribution Ws(y) = e−s/y I(0,∞)(y).

(i) If γ = 1, then the generalized gamma distribution Wd(x; 2s) occurs with density
wd(x; 2s):

wd(x; 2s) = s
( sx

2

)d/4−1/2
Kd/2−1(

√
2s x) I(0,∞)(x) (44)

where the Macconald function Kα(u) already appears in Formula (42) with different α and
argument. For α = m + 1/2, where m is an integer, the Macconald function Km+1/2(u) has
a closed form (see Formulas (63)–(65) below in Section 7). Therefore, if d = 1, 3, 5 . . . is an
odd number, then the density wd(x; 2s) may be calculated in closed form. The distribution
functions Wd(x; 2s) with density functions wd(x; 2s) for d = 1, 3, 5 and x > 0 are

w1(x; 2s) = s (2sx)−1/2 e−
√

2 s x and W1(x; 2s) = 1− e−
√

2 s x, (45)

w3(x; 2s) = s e−
√

2 s x and W3(x; 2s) = 1− e−
√

2 s x (
√

2sx + 1), (46)

w5(x; 2s) =
s
3

(
1 + 2

√
2sx
)

e−
√

2 s x and W5(x; 2s) = 1− e−
√

2 s x
(√

2sx +
2sx
3

)
. (47)

Remark 15. Functions in (45) are Weibull density and distribution functions, in (46) there are
density and distribution functions of a generalized gamma distribution, but w5(x) and W5(x) are
even more general.

The family of generalized gamma distributions contains many absolutely continuous
distributions concentrated on the non-negative half-line.

Remark 16. The generalized gamma distribution G∗(x; r, α, λ) corresponds to the density

g∗(x; r, α, λ) =
|α| λr

Γ(r)
xαr−1 e−λxα

, x ≥ 0, |α| > 0, r > 0, λ > 0, (48)

where α and r are the two shape parameters and λ the scale parameter. The density representation (48)
is suggested in the work of Korolev and Zeifman [37] or Korolev and Gorshenin [38], and many
special cases are listed therein. In addition to, e.g., Gamma and Weibull distributions (with a > 0),
inverse Gamma, Lévy and Fréche distributions (with a < 0) also belong to that family of generalized
gamma distributions.
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Remark 17. The Weibull density in (45) is w1(x; 2s) = g∗(x; 1, 1/2,
√

2s). Moreover, w3(x; 2s)
= g∗(x; 2, 1/2,

√
2s). The densities w5(x), w7(x), w9(x), . . . are weighted sums of generalized

gamma distribution with different shape parameters r, e.g.,

w5(x; 2s) =
1
3

g∗(x; 2,
1
2

,
√

2s) +
2
3

g∗(x; 3,
1
2

,
√

2s)

w9(x; 2s) =
5
35

g∗(x; 2,
1
2

,
√

2s) +
10
35

g∗(x; 3,
1
2

,
√

2s) +
12
35

g∗(x; 4,
1
2

,
√

2s) +
8
35

g∗(x; 5,
1
2

,
√

2s).

(i) If γ = 1. For better readability I have introduced for (i) and after (ii).
(ii) If γ = 0, the standard normal law Φ(x) is the limit distribution with density ϕ(x).
(iii) If γ = −1, as limit distribution the inverse Pareto distribution occurs Vd/2(x; 2s)

with shape parameter d/2, scale parameter 2 s and density vd/2(x; 2s):

Vd/2(x; 2s) =
(

x
2 s + x

)d/2
and vd/2(x; 2s) =

s d xd/2−1

(x + 2s)d/2+1 for x ≥ 0 (49)

In [39], a robust and efficient estimator for the shape parameter of the inverse Pareto
distribution and applications are given.

6. Main Results

We examine asymptotic approximations of P
(

gγ
n Nγ∗−γ

n TNn ≤ x
)

depending on the

scaling factor gγ
n Nγ∗−γ

n for γ ∈ {0,±1/2,±1}, for γ∗ = 1/2 if the statistic Tm is asymptoti-
cally normal or γ∗ = 1 if Tm is asymptotically chi-square distributed.

6.1. Asymptotically Normal Distributed Statistics with Negative Binomial Distributed
Sample Sizes

Consider first the statistics estimated in (15), (18) and (21) with the normal limiting
distribution Φ(x). They have the form∣∣∣P(√mZm ≤ x)−Φ(x)−

(
m−1/2(p0 + p2x2) + m−1(p1x + p3x3 + p5x5)Ia>1(a)

)
ϕ(x)

∣∣∣ ≤ m−a . (50)

The sample size is negative binomial Nn = Nn(r) with probability mass function (28).

Theorem 1. Let r > 0. If inequality (50) for the statistic Zm and inequality (31) for random
sample size Nn(r) with gn = ENn(r) = r(n− 1) + 1 hold, then, for all n ∈ N+, the following
expansions apply:

i: The non-random scaling factor
√

gn by statistic ZNn(r) leads to Student’s t-approximation.

supx

∣∣∣P(√gn ZNn(r) ≤ x
)
− S2r;n(x)

∣∣∣ ≤ Cr

{
n−r ln(n), r ∈ {1/2, 3/2, 2},

n−min{r,2}, r /∈ {1/2, 3/2, 2}

where

S2r;n(x) = S2r(x) +
s2r(x)
√

gn

(
p0

x2 + 2r
2r− 1

+ p2x2

)
I{r>1/2}(r)

+
s2r(x)

gn

(
p1

x(x2 + 2r)
(2r− 1)

+ p3x3 + p5
x5(2r + 1)

x2 + 2r
+

(2− r)x(x2 + 1)
4 (2r− 1)

)
I{r>1}(r), (51)

S2r(x) is Student’s t-distribution having density s2r(x), defined in (41), and pk are the
coefficients in (50).
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ii: The standard normal approximation occurs at random scaling factor
√

Nn(r) by statistic
ZNn(r):

supx

∣∣∣∣P(√Nn(r) ZNn(r) ≤ x)−Φn 2(x)
∣∣∣∣ ≤ Cr

{
n−min{r,2}, r 6= 2,
ln(n) n−2, r = 2,

(52)

where

Φn 2(x) = Φ(x) +
√

r Γ(r− 1/2)
Γ(r)
√

gn
(p0 + p2x2)ϕ(x) I{r>1/2}(r)

+
(p1x + p3 x3 + p5 x5)ϕ(x)

gn

(
ln n I{r=1}(r) +

r
r− 1

I{r>1}(r)
)

, (53)

iii: If r = 2, the mixed scaling factor g−1/2
n Nn(2) by statistic ZNn(2) leads to generalized

Laplace approximation:

supx

∣∣∣P(g−1/2
n Nn(2) ZNn(2) ≤ x

)
− L2(x)− ln;2(x)

∣∣∣ ≤ C2 ln(n) n−2 (54)

where L2(x) = 1− 1
2 (1 + x) e−2 |x|, L2(−x) = 1− L2(x) for x ≥ 0 and

ln;2(x) =
e−2|x|
√

gn

(
p0(|x|+ 1/2) + 2p2x2)

)
− e−2|x|

gn

(
p1 x + 4 p3 |x| x + 4 p5 (2x3 + |x| x)

)
. (55)

Remark 18. Analogous to (54) and (55), expansions for all r > 0 can be derived from Formulas (42)
and (63)–(66) below in Section 7, whereby closed forms can be presented only for r ∈ {1, 2, 3, . . .}.

The statistics from Section 3.1 are considered with different normalization factors as
applications of Theorem 1:

Corollary 1. Let the conditions of Theorem 1 be satisfied:

i: In the case of the Student’s t-statistic Z/
√

χ2
m estimated in (18), one has (51) with

p0 = p2 = p5 = 0 and p1 = p3 = 1/4 using non-random scaling factor
√

gn:

supx

∣∣∣∣∣∣P
 √gn Z√

χ2
Nn(r)

≤ x

− S2r(x; n)

∣∣∣∣∣∣ ≤ Cr

{
n−min{r,2}, r 6= 2,
ln(n) n−2, r = 2,

where

S2r(x; n) = S2r(x)− s2r(x)
2r(x + x3)− (2− r)x(x2 + 1)

4(2r− 1) gn
I{r>1}(r)

ii: In the case of Student’s one-sample t-test statistic under non-normality Tm = (Xm − µ)/σ̂m
estimated in (21) with a = 1, the first-order approximation defined in (52) for 0 < r ≤ 1 and
(53) with p0 = λ3/6 and p2 = λ3/3 using random scaling factor

√
Nn(r) leads uniformly

in x to:

∣∣∣∣P(√Nn(r) TNn(r) ≤ x)−Φ(x) +
√

r Γ(r− 1/2)λ3(2x2 + 1)
6 Γ(r)

√
gn

ϕ(x)
∣∣∣∣ ≤ Cr

 n−min{r,1}, r 6= 1,

ln(n) n−1, r = 1.

iii: Considering sample mean Xm estimated in (15), one has (55) with p0 = −p2 = λ3/6,
p1 = λ4/8− 5λ2

3/24, p3 = −λ4/24 + 5λ2
3/36, and p5 = −λ2

3/72 using mixed scaling
factor g−1/2

n Nn(2):

supx

∣∣∣P(g−1/2
n Nn(2) XNn(2) ≤ x

)
− L2(x)− l2;n(x)

∣∣∣ ≤ C2 ln(n) n−2,
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where the generalized Laplace distributions L2(x) is defined in (43) and

l2;n(x) =
λ3 e−2|x|

6
√

gn

(
2x2 − |x| − 1/2

)
+

e−2|x|

36 gn

(
λ4 (9 x− 6 x |x|) + 12λ2

3 (4 x3 + 18 x |x| − 15x)
)

.

Remark 19. The approximating functions in the expansions for P
(

gγ
n Nn(r)1/2−γTNn(r) ≤ x

)
with the statistics estimated in (15), (18) and (21) can only be given in closed form for all r > 0
in the case of non-random (γ = 1/2) or random (γ = 0) normalization factors. In the case of the
mixed (γ = −1/2) normalization factor, only for positive integer r closed forms are available, while
in the other cases Macconald functions are involved.

6.2. Asymptotically Chi-Square Distributed Statistics with Pareto-Like Distributed Sample Sizes

Consider now the statistics, estimated in (26) and (27) with limit chi-square distribu-
tions. They have the form∣∣∣P(mTm ≤ x)− Gd(x)−m−1(q1x + q2x2)gd(x)

∣∣∣ ≤ C(s)m−2 . (56)

The sample size is the Pareto-like random variable Nn = Nn(s) with probability mass
function (35).

Theorem 2. Let s > 0 and (36) be the distribution function of the random sample size Nn = Nn(s).
If for the statistic Tm the inequality (56) with limiting chi-square distribution Gd(x) and the
inequality (37) with gn = n for the random sample size Nn(s) hold, then for all n ∈ N+ one has
the following approximation:

i: The non-random scaling factor n by TNn(s) leads to the limiting generalized gamma distribu-
tions.

supx>0

∣∣∣P(n TNn(s) ≤ x
)
−Wd ; n(x; 2s)

∣∣∣ ≤ C(s) n−2 ln n for d = 1 and d = 3, (57)

W1 ; n(x; 2s) = W1(x; 2s) + n−1 w1(x; 2s)
(

q1 x
(

1 +
√

2sx
)
+ q2 x2 − (s− 1) x (

√
2sx + 1)

4 s

)
(58)

and

W3 ; n(x; 2s) = W3(x; 2s) + n−1 w3(x; 2s)

(
q1

x
√

2sx
2s

+ q2 x2 − (s− 1) x2

2
√

2sx

)
. (59)

where the limit law Wd(x; 2s) with density wd(x; 2s) for d = 1 and d = 3 are given in (45)
and (46).

ii: The random scaling factor Nn(s) by TNn(s) induces the limiting chi-square distribution.

supx

∣∣∣∣P(Nn(s) TNn(s) ≤ x)− Gd(x)− gd(x)
s n

(
q1 x + q2 x2

)∣∣∣∣ ≤ C(s)
ln n
n2 , (60)

iii: Limiting inverse Pareto distributions occur at mixed scaling factor n−1 N2
n(s) by TNn(s).

supx>0

∣∣∣∣P(N2
n(s)
n

TNn(s) ≤ x
)
−Vd/2(x; 2s)− 1

n
vd/2;n(x; 2s)

∣∣∣∣ ≤ C(s)
ln n
n2 ,

where

vd/2;n(x; 2s) = vd/2(x; 2s)

(
q1

x(d + 2)
x + 2s

+ q2
x2(d + 4)(d + 2)

(x + 2s)2 +
(s− 1) x (2 + d)

2 (x + 2s)

)
(61)

with inverse Pareto distribution Vd/2(x; 2s) having shape parameter d/2, scale parameter 2 s
and density vd/2(x; 2s) defined in (49).



Mathematics 2021, 9, 775 15 of 28

Remark 20. Analogous to (57), expansions for all d ∈ N+ can be derived from Formulas (44),
(63)–(65) and (69) below in Section 7, whereby closed forms can be given for d ∈ {1, 3, 5, . . .}.

The statistics from Section 3.2 are considered with different normalization factors as
applications of Theorem 2.

Corollary 2. Let the conditions of Theorem 2 be satisfied.

i: Let χ2
d/χ2

m be scale mixture, estimated in (24), where χ2
d and χ2

m are independent. Then,
using non-random scaling factor, n limiting generalized gamma distributions occur with
q1 = (d− 2)/2 and q2 = −1/2 in (58) and (59):

supx>0

∣∣∣P(n tr
(

χ2
d/χ2

Nn(s)

)
≤ x

)
−Wd ; n(x; 2s)

∣∣∣ ≤ C(s) n−2 ln n, for d = 1 and d = 3,

W1 ; n(x; 2s) = W1(x; 2s) + n−1 w1(x; 2s)

(
− x

(
1 +
√

2sx
)
− x2

2
− (s− 1) x (

√
2sx + 1)

4 s

)
x > 0 and

W3 ; n(x; 2s) = W3(x; 2s) + n−1 w3(x; 2s)
(

x
4s

√
2sx− x2

2
− (s− 1) x2

2
√

2sx

)
, x > 0,

where the limit law Wd(x; 2s) with density wd(x; 2s) for d = 1 and d = 3 are given in (45)
and (46).

ii: For the scaled mixture χ2
4/χ2

m estimated in (27), one gets the limiting chi-square distribution
with a random scaling factor Nn(s) in (60) with q1 = 1 and q2 = 1/2:

supx

∣∣∣∣P(Nn(s) χ2
4/χ2

Nn(s) ≤ x)− Gd(x)− gd(x)
s n

(
x− x2/2)

)∣∣∣∣ ≤ C(s)
ln n
n2 ,

iii: In the case of the Hotelling’s generalized T2
0 statistic T2

0 = m tr
(
SqS−1

m
)

estimated in (22),
one has the limiting inverse Pareto distributions with mixed scaling factor n−1 N2

n(s) by
tr
(

SqS−1
Nn(s)

)
. Here, (61) holds with q1 = (p + 1− q)/2 and q2 = (p + 1 + q)/(2d + 4).

supx>0

∣∣∣∣P(N2
n(s)
n

tr
(

SqS−1
Nn(s)

)
≤ x

)
−Vd/2(x; 2s)− 1

n
vd/2;n(x; 2s)

∣∣∣∣ ≤ C(s)
ln n
n2 ,

and

vd/2;n(x; 2s) = vd/2(x; 2s)

(
(p + 1− q) x(d + 2)

2(x + 2s)
+

(p + 1 + q)x2(d + 4)
2(x + 2s)2 +

(s− 1) x (2 + d)
2(x + 2s)

)

where the inverse Pareto distribution Vd/2(x; 2s) with shape parameter d/2, scale parameter
2 s and density vd/2(x; 2s) is defined in (49).

Remark 21. For the statistics estimated in (26) and (27), the approximating functions in the

expansions for P
(

gγ
n Nn(s)1−γTNn(s) ≤ x

)
can only be given in closed form for all integer d in the

case of non-random (γ = 1) or random (γ = 0) normalization factors. In the case of the mixed
(γ = −1) normalization factor, only for odd integer d in closed form can be presented; for even
integer d, the Macconald functions are involved.

7. Formal Construction of the Expansions

Expansions of the statistics considered in (15), (18), (21), (26) and (27) have
the structure:

G(x) + g(x)
(

m−1/2 P1(x; j∗1 ) + m−1 P2(x; j∗2 )
)
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with g(x) = G′(x) and polynomials P1(x; j∗1 ), P2(x; j∗2 ) of degrees j∗1 and j∗2 , respectively.
Here, G(x) = Φ(x) or G(x) = P(χ2

d ≤ x).
We calculate the integrals with k = 1, 2 and j = 0, 1, . . . , j∗k :

J1(x; γ) =
∫ ∞

0
G(xyγ)dH(y) and J2(x; γ, k, j) = xj

∫ ∞

0
yγ j−k/2g(xyγ)dH(y).

The limit distributions of the random sizes Nn are H(y) = Gr,r(y) and H(y) = Ws(y) =
e−s/y with corresponding second approximation h2(y).

We use the following formulas several times: Formula 2.3.3.1 in [40]

Mα(p) =
∞∫

0

yα−1e−p ydy
y=1/z
=

∞∫
0

z−α−1e−p/zdz = Γ(α) p−α α > 0, p > 0. (62)

and Formula 2.3.16.1 in [40] with real α and p, q > 0:

K∗α(p, q) =
∫ ∞

0
yα−1 e−py−q/ydy = 2

(
q
p

)α/2
Kα(2

√
p q), (63)

where the Macconald function Kα(u) already appears in Formula (42) with different α
and argument.

For α = m + 1/2, where m is an integer, the Macdonald function Km+1/2(u) has a
closed form (see Formulas 2.3.16.2 and 2.3.16.3 in [40] with p, q > 0):

K∗m+1/2(p, q) = K∗∗m (p, q) if m is an integer, (64)

where

K∗∗m (p, q) =
∫ ∞

0
ym−1/2 e−py−q/ydy =


(−1)m√π ∂m

∂pm
(

p−1/2 e−2
√

p q ), m = 0, 1, 2, . . . ,

(−1)−m
√

π
p

∂−m

∂q−m e−2
√

p q, m = 0,−1,−2, . . .
(65)

7.1. The Case G(x) = Φ(x) and H(y) = Gr,r(y)

Consider statistics that meet the condition (50).
Let J1(x; γ) =

∫ ∞
0 Φ(x yγ)dGr,r(y) with γ ∈ {0,±1/2}. Then, J1(x; γ) = Φ(x) for

γ = 0 and

∂

∂x
J1(x; γ) =

rr

Γ(r)
√

2π

∞∫
0

yr+γ−1e−(x2y2γ/2+r y)dy

=
rr

Γ(r)
√

2 π


Mr+1/2

(
r
(
1 + x2/(2r)

))
, for γ = 1/2,

K∗r−1/2(r, x2/2) = 2
(

x2

2r

)r/2−1/4
Kr−1/2(

√
2rx), for γ = −1/2.

(66)

If r > 0 is an integer number then using (64) with m = r− 1, the density of J1(x;−1/2) can
be calculated with (65) in a closed form.

Let γ ∈ {0,±1/2}. Let k = 1, 2 and j = 0, 1, . . . , 5 be the exponents at m−k/2 and xj

in (50), respectively.

J2(x; γ, k, j) =
rr xj

Γ(r)
√

2 π

∫ ∞

0
yjγ+r−1−k/2e−(x2y2γ/2+ry)dy

=
rr xj

Γ(r)
√

2π


Mj/2+r−k/2

(
r
(
1 + x2/(2r)

))
, for γ = 1/2,

e−x2/2 Mr−k/2(r), for γ = 0,

K∗r−(j+k)/2(r, x2/2), for γ = −1/2.

(67)
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In (50) k + j are odd integers. If r > 0 is an integer, then K∗r−(j+k)/2(r, x2/2) =

K∗∗r−(j+k+1)/2(r, x2/2).
Define p∗j = pj I2(x; γ, k, j) with coefficient pj from (50) and calculate the terms in (67):

γ = 1/2, k = 1 : p∗0 =
p0(2r + x2)

2r− 1 s2r(x), p∗2 = p2x2 s2r(x),

k = 2 : p∗1 =
p1x(x2 + 2r)

2r− 1 s2r(x), p∗3 = p3x3 s2r(x), p∗5 = p5
x5(2r + 1)

x2 + 2r
s2r(x),

γ = −1/2, k = 1, r = 2 : p∗0 = p0 (|x|+ 1/2) e−2|x|, p∗2 = p2 2 x2 e−2|x|,

k = 2, r = 2 : p∗1 = p1 2 x e−2|x|, p∗3 = p3 4 |x| x e−2|x|, p∗5 = p5 4 (2x3 + x|x|) e−2|x|,

γ = 0, k = 1, 2, j = 0, 1, 2, 3, 5 : p∗j = pj xj ϕ(x) rk/2 Γ(r− k/2)/Γ(r),


(68)

7.2. The Case G(x) = Gd(x) and H(y) = Ws(y) = e−s/y

Consider statistics that meet the condition (56). Let J1(x; γ) =
∫ ∞

0 Gu(x yγ)sy−2e−s/ydy,
γ ∈ {0,± 1}. Then, J1(x; 0) = Gu(x) and

∂

∂x
J1(x; γ) = s

∫ ∞

0
yγ−2 gu(x yγ) e−s/ydy =

s xd/2−1

2d/2Γ(d/2)

∫ ∞

0
yγd/2−2e−x yγ/2−s/ydy, γ = ± 1 .

Let γ = 1. Using (63) with α = d/2− 1, p = x/2 and q = s, we find

∂

∂x
J1(x; 1) = s

∞∫
0

y gu(x y) e−s/ydy =
s xd/2−1

2d/2Γ(d/2)

∞∫
0

yd/2−2e−x y/2−s/ydy

=
s xd/2

2d/2Γ(d/2)
K∗d/2−1(x/2, s) = s

( sx
2

)d/4−1/2
Kd/2−1(

√
2s x).

If d = 1, 3, 5, . . . is an odd number, using the closed form K∗∗m (p, q) in (65) with m =
(d− 3)/2, p = x/2 and q = s, then J1(x; 1) = Wd(x, 2s) and its density wd(x; 2s) may be
calculated in closed form:

wd(x; 2s) =
∂

∂x
J1(x; 1) =

s xd/2−1

2d/2−1Γ(d/2)
K∗∗(d−3)/2(x/2, s) for d = 1, 3, 5, . . . (69)

The distribution functions Wd(x; 2s) and their densities wd(x; 2s) for d = 1, 3, 5 are given
in (45)–(47).

If γ = −1, we use (62) with α = d/2+ 1, p = (x + 2s)/2, q = s and the substitution
y = 1/z:

∂

∂x
J1(x;−1) =

s xd/2−1

2d/2Γ(d/2)

∫ ∞

0
y−d/2−2e−(x/2+s)/ydy

y=1/z
=

s xd/2−1

2d/2Γ(d/2)

∞∫
0

zd/2e−(x+2s) z/2dz

=
s xd/2−1 Γ(d/2 + 1) 2d/2+1

2d/2Γ(d/2)(x + 2s)d/2+1 =
s d xd/2−1

(x + 2s)d/2+1 =
s d
x2

(
1 +

2 s
x

)−d/2−1
= vd/2(x; 2s). (70)

where vd/2(x; 2s) is the density of the inverse Pareto distribution defined in (49).
Suppose γ ∈ {0,±1}. Let j = 1, 2 be the exponent at xj in (56). Then, by (65) for

positive odd numbers d with α = j + (d− 7)/2, p = x/2, q = s if γ = 1, by (62) with
α = 2, p = s for γ = 0 and with α = j + d/2− 1, p = (x + 2s)/2 for γ = −1:
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J2(x; γ, 2, j) =
s xj

2d/2Γ(d/2)

∫ ∞

0
yjγ−3(xyγ)d/2−1 e−(xyγ/2+s/y)dy

=
s xj+d/2−1

2d/2Γ(d/2)

∫ ∞

0

yγ(j+d/2−1)−3

exyγ/2+s/y dy =
s xj+d/2−1

2d/2Γ(d/2)


K∗∗j+(d−7)/2(x/2, s), γ = 1,

e−x/2 M2(s), γ = 0,

Mj+1+d/2
(
(x + 2s)/2

)
, γ = −1.

(71)

If d is not an odd number, K∗∗j+(d−7)/2(x/2, s) in (71) has to be replaced by K∗j+d/2−3(x/2, s),

which may be calculated with (63) where the Macdonald functions Kj+d/2−3(
√

2sx)
are involved.

Define q∗j = qj I2(x; γ, 2, j) for j = 1, 2 with the coefficient qj from (56). Calculating the
corresponding terms in (71) we find

γ = 1, d = 1 : q∗1 = q1 x (2s)−1
(

1 +
√

2sx
)

w1(x), q∗2 = q2 x2w1(x),

γ = 1, d = 3 : q∗1 = q1 (2s)−1 x
√

2sx w3(x), q∗2 = q2 x2 w3(x),

γ = −1 : q∗1 = q1
x(d + 2)
x + 2s vd/2(x; 2s), q∗2 = q2

x2(d + 4)(d + 2)
(x + 2s)2 vd/2(x; 2s),

γ = 0 : q∗1 = q1 x s−1 gd/2(x) q∗21 = q2 x2 s−1 gd/2(x)


(72)

8. Proof of Theorems

We find from Lemmas A1 and A2 that Dn in (5) in Proposition 1 is bounded and the
integrals in (10) and (11) in Proposition 2 have the necessary convergence rates. It remains
to calculate the integrals in (9).

Proof of Theorem 1. Let F(x) = Φ(x), H(y) = Gr,r(y) and h2(y) = h2;r(y) defined
in (32).

Suppose J1(x; γ) =
∫ ∞

0 Φ(x yγ)dGr,r(y) with γ ∈ {0,± 1/2}, which are the limit

distributions in (9) for P
(

gγ
n Nn(r)1/2−γ ZNn(r) ≤ x

)
under the condition of Theorem 1.

Then, J1(x; γ) = Φ(x) for γ = 0. It follows from (66), (62) for γ = 1/2 and (65) for
γ = −1/2 that

∂

∂x
J1(x; γ) =


s2 r(x) = Γ(r + 1/2)√

2 rπ Γ(r)

(
1 + x2

2 r

)−(r+1/2)
, γ = 1/2 with J1(x; 1/2) = S2r(x),

ϕ(x) = 1√
2 π

e−x2/2, γ = 0 with J1(x; 0) = Φ(x),

l2(x) =
(

1
2 + |x|

)
e−2 |x|, r = 2, γ = −1/2, with J1(x;−1/2) = L2(x),

(73)

where s2 r(x) is the density of Student’s t-distribution with 2 r degrees of freedom and l2(x)
is the density of a generalized Laplace distribution.

Integral J2(x; γ) =
∫ ∞

0 y−1/2 (p0 + p2 x2 y2γ
)

ϕ(x yγ) dGr,r(y) is the integral by g−1/2
n

in the expansion (9). Then, using (67) and (68) with k = 1, we obtain

J2(x; γ) = p0 J2(x; γ, 1, 0) + p2 J2(x; γ, 1, 2) = p∗0 + p∗2 , (74)

Integral J3(x; γ) =
∫ ∞

0 y−1 (p1x yγ + p3x3 y3γ + p5x5 y5γ
)

ϕ(x yγ) dGr,r(y) is the integral
by g−1

n in the expansion (9). Then, using again (67) and (68) with k = 2, we obtain

J3(x; γ) = p1 J2(x; γ, 2, 1) + p3 J2(x; γ, 2, 3) + p5 J2(x; γ, 2, 5) = p∗1 + p∗3 + p∗5 (75)

Integration by parts in the last integral by n−1 in (9) for γ = ±1/2 and r > 1 leads to

J4(x; γ) =
∫ ∞

0
Φ(xyγ)dh2,r(y) = −

γ x rr

2 r
√

2 π Γ(r)

∫ ∞

0

yγ+r−2

ex2y2γ/2+r y

(
(y− 1)(2− r) + 2Q1

(
gn y

))
dy.



Mathematics 2021, 9, 775 19 of 28

Suppose γ = 1/2. We find from (62)

J4(x; 1/2) =
x rr (2− r)

4r
√

2 π Γ(r)

(
Mr−1/2(r + x2/2)−Mr+1/2(r + x2/2)

)
− J∗4 (x; 1/2)

=
(2− r)x(x2 + 1)

4 r (2r− 1)
s2r(x)− J∗4 (x; 1/2).

with

J∗4 (x; 1/2) =
xrr−1

2
√

2πΓ(r)

∫ ∞

0
yr−3/2 e−(r+x2/2)y Q1

(
gny
)

dy, (76)

where Q1(y) is defined in (33). It follows from Lemma A3 that for r > 1

supx n−1|J∗4 (x; 1/2)| ≤ c(r) n−r.

Hence, because of 0 ≤ g−1
n − (rn)−1 ≤ (ngn)−1 for r ≥ 1, we obtain∣∣∣∣ 1

n

∫ ∞

0
Φ(x
√

y)dh2(y)−
(2− r)x(x2 + 1)

4 (2r− 1)gn
s2r(x)

∣∣∣∣ ≤ 1
n
|J∗4 |+

C(r)
n gn

≤ c1(r) n−min{r 2}. (77)

For γ = −1/2, we only consider the case r = 2, which results in J4(x;−1/2) = 0 and

J∗4 (x;−1/2) =
x

2
√

2π

∫ ∞

0
y−1/2 Q1

(
gny
)

e−(2y+x2/(2y)) dy, (78)

where supx n−1 J∗4 (x;−1/2) ≤ C n−2 is proved in Lemma A3.
If γ = 0, then J4(x; 0) = Φ(x) (h2;r(∞)− h2;r(0)) = 0 since Q1(0) = 1/2.
The proof of Theorem 1 follows from (73)–(75) and (77) and Lemma A3.

Proof of Theorem 2. Let F(x) = Gd(x), H(y) = Ws(y) = e−s/y and h2(y) = h2;s(y) de-
fined in (32).

Suppose J1(x; γ) =
∫ ∞

0 Gd(x yγ)s y−2e−s/ydy with γ ∈ {0,± 1} which are the limit

distributions in (9) for P
(

gγ
n Nn(s)1/2−γ ZNn(s) ≤ x

)
under the condition of Theorem 2.

Then, J1(x; γ) = Gd(x) for γ = 0. It follows from (69) and (65) for γ = 1 and (70) for
γ = −1 that

∂

∂x
J1(x; γ) =



w1(x; 2s) = s (2sx)−1/2 e−
√

2 s x γ = 1 with J1(x; 1) = W1(x),

w3(x; 2s) = s e−
√

2 s x γ = 1 with J1(x; 1) = W3(x),

ϕ(x) = 1√
2 π

e−x2/2, γ = 0 with J1(x; 0) = Φ(x),

vd/2(x; 2s) = s d xd/2−1

(x + 2s)d/2+1 γ = −1, with J1(x;−1/2) = Vd/2(x; 2s),

where w1(x; 2s) is the Weibull density (see (45)), w3(x; 2s) is the generalized gamma den-
sity0 (see (46)) and vd/2(x; 2s) is the density of the inverse Pareto distribution Vd/2(x; 2s)
defined in (49).

Integral J2(x; γ) =
∫ ∞

0 y−1 (q1x yγ + q2x2 y2γ
)

gd/2(x yγ) sy−2e−s/ydy is the integral
by g−1

n in the expansion (9). Then, the use of (71) and (72) leads to

J2(x; γ) = q1 J2(x; γ, 2, 1) + q3 J2(x; γ, 2, 3) = q∗1 + q∗3 .

Integration by parts in the last integral by n−1 in (9) for γ = ±1 leads to



Mathematics 2021, 9, 775 20 of 28

J3(x; γ, d) =
∫ ∞

0
Gd(xyγ)dh2;s(y) = J4(x; γ, d) + J∗4 (x; γ, d),

J4(x; γ, d) = − s (s− 1) γ xd/2

2d/2+1 Γ(d/2)

∫ ∞

0
yγ d/2−3 e−xyγ/2−s/ydy = − s (s− 1) γ xd/2

2d/2+1 Γ(d/2)
K∗∗(γd−5)/2(x/2, s),

J∗4 (x; γ, d) = − s γ xd/2

2d/2 Γ(d/2)

∫ ∞

0
yγ d/2−3 e−xyγ/2−s/yQ1

(
n y
)
dy, (79)

where Q1(y) is defined in (33). Suppose γ = 1. We get with (65)

J4(x; 1, 1) = − (s− 1) x (
√

2sx + 1)
4 s

w1(x; 2s) and J4(x; 1, 3) = − (s− 1) x2

2
√

2sx
w3(x; 2s)

For γ = −1 using (65), we see that

J4(x;−1, d) =
s (s− 1) xd/2

√
2sx

21+d/2 Γ(d/2)
M(d+4)/2

(
(x + 2s)/2

)
=

(s− 1) x (2 + d)
2 (x + 2s)

vd/2(x; 2s).

In Lemma A4, supx n−1 J∗4 (x; γ, d) ≤ c(s)n−2 for γ = ±1 is proved.
If γ = 0, then J3(x; 0, d) = Gd(x) (h2;s(∞)− limy→0 h2;s(y)) = 0.
Combining the above estimates proves Theorem 2.

9. Conclusions

Chebyshev–Edgeworth expansions are derived for the distributions of various statis-
tics from samples with random sample sizes. The construction of these asymptotic ex-
pansions is based on the given asymptotic expansions for the distributions of statistics
of samples with a fixed sample sizes as well as those of the distributions of the random
sample sizes.

The asymptotic laws are scale mixtures of the underlying standard normal or chi-
square distributions with gamma or inverse exponential mixing distributions. The results
hold for a whole family of asymptotically normal or chi-squared statistics since a formal
construction of asymptotic expansions are developed. In addition to the random sample
size, a normalization factor for the examined statistics also has a significant influence on
the limit distribution. As limit laws, Student, standard normal, Laplace, inverse Pareto,
generalized gamma, generalized Laplace and weighted sums of generalized gamma dis-
tributions occur. As statistica the random mean, the scale-mixed normalized Student
t-distribution and the Student’s t-statistic under non-normality with normal limit law, as
well as Hotelling’s generalized T2

0 and scale mixture of chi-squared statistics with chi-square
limit laws, are considered. The bounds for the corresponding residuals are presented in
terms of inequalities.
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Appendix A. Auxiliary Statements and Lemmas

In Section 3, we consider statistics satisfying (1) in Assumption 1 and in
Section 4 random sample sizes satisfying (2) in Assumption 2. The statistics Tm in (15),
(18) and (21) satisfy Assumption 1 with the normal limit distribution Φ(x) and in (26) and (27)
with chi-square limit distributions Gd(x) and G4(x), defined in (17), respectively.

Further, we estimate the functions fk(xyγ) and ∂
∂y

(
fk(xyγ)

yk/2

)
, k = 1, 2 that appear in

(1) of Assumption 1 and in the term Dn in (5). Since the functions fk(z) are products of a
polynomial Pk(z) and a density function p(z) with p(z) = ϕ(z) or p(z) = gr,r(z), it follows
for γ ∈ {±1/2,±1} that, if

fk(xyγ) = Pk(xyγ) p(xyγ) then
∂

∂y

(
Pk(xyγ) p(xyγ)

yk/2

)
=

Qk(xyγ) p(xyγ)

y1+k/2 , (A1)

with some polynomial Qk(z). For γ = 0, we have fk(xyγ) = fk(x) and Qk(x) = −(k/2)
fk(x). Hence, (A1) also holds for γ = 0.

For example, with f1(z) =
λ3
6 (z2 − 1)ϕ(z) occurring in (16) for the sample mean Xm

and f2(z) = (Az− Bz2) gd(z) occurring in (27) with d = 4 for scale mixture of chi-square
statistics, we obtain

∂

∂y

(
f1(x yγ)

y1/2

)
=

Q1(x yγ) ϕ(x yγ)

y3/2 and
∂

∂y

(
f2(x yγ)

y

)
=

Q2(x yγ) gd(x yγ)

y2

with Q1(z) = λ3 (1/2 + (2γ − 1/2) z2 − γ z4)/6 and Q2(z) = (Bz3 − (Bd − 2) z2+
A(d− 2)z)/4.

Remark A1. If Pk(0) 6= 0, i.e., the absolute term of the polynomial Pk(z) is not equal to zero, then
it is also the absolute term of Qk(z), i.e., Qk(0) 6= 0.

The functions ϕ(z) and e−rz in gr,r(z) allow obtaining the estimates for

c∗k = supz | fk(z)| < ∞ and c∗∗k = supz |Qk(z)| p(z) < ∞, k = 1, 2. (A2)

Appendix A.1. Lemmas A1 and A2

Lemma A1. Consider the statistics estimated in (15), (18), (21), (26) and (27). Let gn be a sequence
with 0 < gn ↑ ∞ as n → ∞ and γ ∈ {−1/2, 0, 1/2, 1}. Then, with some computable constant
0 < C∗(γ) < ∞, we obtain

Dn = supx

∫ ∞

1/gn

∣∣∣∣ ∂

∂y

(
F(xyγ) +

f1(xyγ)
√

gny
+

f2(xyγ)

ygn

)∣∣∣∣dy ≤ C∗(γ),

where F(x), f1(x) and f2(x) are defined in the approximation estimates (15), (18), (21), (26)
and (27).

Proof of Lemma A1. The statistics in (15), (18) and (21) satisfy Assumption 1 with the
normal limit distribution Φ(x). To estimate Dn = supx |Dn(x)|, we consider the cases
x 6= 0 and x = 0.

Let x 6= 0. Since ∂
∂y Φ(x yγ) = 0 for γ = 0 and ∂

∂y Φ(x yγ) = γ x yγ−1 ϕ(x yγ)dy has

constant sign(γ x) for γ = ±1/2 and y > 0, we find

∫ ∞

1/gn

∣∣∣∣ ∂

∂y
Φ(x yγ)

∣∣∣∣dy =

∣∣∣∣∫ ∞

1/gn
γ x yγ−1 ϕ(x yγ)dy

∣∣∣∣ =
{

1−Φ(x g−γ
n ) ≤ 1/2 for x > 0.

Φ(x g−γ
n ) ≤ 1/2 for x < 0.



Mathematics 2021, 9, 775 22 of 28

From (A1) and (A2), it follows that
∣∣∣∣ ∂
∂y

(
fk(x yγ)

(gn y)k/2

)∣∣∣∣ ≤ 2c∗∗k /k, which proves the first case.

Moreover, Dn(0) = |Q1(0)| since Q2(0) = 0 for the considered statistics.
Consider now the statistics estimated in (26) and (27) with limit chi-square distribu-

tions. We only need to examine x > 0 and γ ∈ {0,±1}. In the cases now under review, we
have f1(x) = 0 and f2(z) = (Az + Bz2)gd(z) with some real constants A and B. The proof
is completed with (A1) and (A2),∫ ∞

1/gn

∣∣∣∣ ∂
∂y Gd(xyγ)

∣∣∣∣dy =

∣∣∣∣∫ ∞
1/gn

∂
∂y Gd(xyγ)dy

∣∣∣∣ ≤ 1 and
∫ ∞

1/gn

∣∣∣∣ ∂
∂y

(
f2(xyγ)

gn y

)∣∣∣∣dy ≤ c∗∗2 .

Next, the integrals in (10) and (11) in Proposition 2 for the gamma limit distribu-
tions H(y) = Gr,r(y) and the inverse exponential limit distribution H(y) = exp{−s/y}
are estimated.

Lemma A2. (i) The conditions (6), (7) and (8) in Proposition 2 are satisfied for Gr,r(y) and
Ws(y) = e−s/y.

(ii) Let γ ∈ {0, ±1/2}. Consider f1(x) given in (16) and f2(z) is given in (16) or (18) for
statistics occurring in (15), (18) and (21) with limiting distribution Φ(x).

(iia) Let the mixing distribution be H(y) = Gr,r(y) with gn = r(n − 1) + 1, b =
min{r, 2} and h2(y) = h2;r(y) = gr,r(y)

(
(y− 1)(2− r) + 2Q1

(
gn y

))
, y > 0. Then, we

obtain with k = 1, 2

sup
x
|I1(x, n)| ≤ sup

x

∫ ∞

1/gn

∣∣∣∣ f1(x yγ)

(gny)1/2

∣∣∣∣dGr,r(y) ≤ c∗1 g−r
n for 0 < r < 1/2, γ ∈ {0, ±1/2}, (A3)

supx |I1(x, n)| ≤ c∗1 g−1/2
n ln gn for r = 1/2, γ = ± 1

2
, (A4)

sup
x
|I2(x, n)| ≤ sup

x

∫ ∞

1/gn

∣∣∣∣ f2(x yγ)

gny

∣∣∣∣dGr,r(y) ≤ c∗2 g−r
n for 0 < r < 1, γ ∈ {0, ±1/2}, (A5)

supx |I2(x, n)| ≤ c3 g−1
n for r = 1, γ = ±1/2, (A6)

supx

∣∣∣Ik(x, n)− g−k/2
n fk(x) ln gn

∣∣∣ ≤ c4g−k/2
n for r = k/2, γ = 0, (A7)

sup
x
|I2+k(x, n)| = sup

x

∣∣∣∣∣
∫ ∞

1/gn

fk(x yγ)

n gk/2
n y

dh2;r(y)

∣∣∣∣∣ ≤
{

c5(r)g−r
n , r > 1, r 6= 1 + k/2,

c6(r) g−1−k/2
n ln n, r = 1 + k/2.

(A8)

(iib) Now, consider the mixing distribution H(y) = Ws(y) = e−s/y with gn = n, b = 2
and h2(y) = h2;s(y) = s e−s/y (s− 1 + 2Q1(n y)

)
/
(
2 y2), y > 0. Then, apply it to I4(x, n)

in (11)

supx |I4(x, n)| = supx

∣∣∣∣∣
∫ ∞

1/n

f2(x yγ)

n2 y
dh2;s(y)

∣∣∣∣∣ ≤ c6(s)n−2, for s > 0, γ ∈ {0, ±1/2}. (A9)

(iii) Put γ ∈ {0, ±1}. Consider f2(x) = (Ax + Bx2)gd(x) for statistics occurring in (26)
and (27) satisfying Assumption 1 with the chi-square distribution Gd(x).

(iiia) The mixing distribution is H(y) = Gr,r(y) as in Case (ia) above. Then, for γ ∈ {0, ±1},

supx |I2(x, n)| ≤ supx

∫ ∞

1/gn

∣∣∣∣ f2(x yγ)

gny

∣∣∣∣dGr,r(y) ≤
c∗2 rr

(r− 1) Γ(r)
g−r

n for r < 1, (A10)

supx |I2(x, n)| ≤ c∗2 n−1 with γ = ±1/2,

supx

∣∣∣I2(x, n)− n−1 f2(x) ln n
∣∣∣ ≤ c∗2n−1 with γ = 0,

}
for r = 1, (A11)

supx |I4(x, n)| = supx

∣∣∣∣∫ ∞

1/gn

f2(x yγ)

n gn y
dh2;r(y)

∣∣∣∣ ≤
{

c3(r)g−min{r,2}
n , for r > 1, r 6= 2,

c4(r) g−2
n ln n, for r = 2.

(A12)
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(iiib) The mixing distribution is H(y) = Ws(y) = e−s/y with gn = n and b = 2 as in Case
(iib). Then,

supx |I4(x, n)| = sup
x

∣∣∣∣∣
∫ ∞

1/gn

f2(x yγ)

n2y
dh2;s(y)

∣∣∣∣∣ ≤ C5(r)n−2. for s > 0, γ ∈ {0, ±1/2}. (A13)

Proof of Lemma A2. (i) Insertion of Gr,r(y) with h2,r(y) and Ws(y) = e−s/y with h2,s(y)
and simple calculation result in the necessary estimates in (6)–(8). In the case of Ws(y) =
e−s/y, one even gets for all terms exponentially fast decrease.

(ii) The limit distribution of the considered statistics is standard normal Φ(x).
(iia) Let H(x) = Gr,r(x). Using (A2), the estimations (A3) and (A5) for r < k/2, with

k = 1, 2, are

supx |Ik(x, n)| ≤
c∗k rr

gk/2
n Γ(r)

∫ ∞

1/gn
yr−1−k/2dy ≤

c∗k rr

(k/2− r) Γ(r)
g−r

n .

Taking into account

0 ≤ ln gn −
∫ 1

1/gn

e−ry

y
dy =

∫ 1

1/gn

1− e−ry

y
dy ≤ r and

∫ ∞

1

e−ry

y
dy ≤ e−r/r for r > 0, (A14)

the bound (A4) follows from

|I1(x, n)| ≤
c∗1

(2 gn)1/2 Γ(1/2)

(∫ ∞

1

e−y/2

y
dy +

∫ 1

1/gn

e−y/2

y
dy

)
≤

c∗1(2e−1/2 + ln gn)

Γ(1/2) (2 gn)1/2 .

If r = 1 with d∗2 = supz{|z−1 f2(z)|ϕ(z/
√

2)}, we find | f2(z)| ≤ d∗2 |z| ϕ(z/
√

2) and
the bound (A6) follows from

|I2(x, n)| ≤ d∗2 |x|√
2 π n

∫ ∞

1/n
yγ−1e− (y+x2 y2 γ/4) dy with γ = ±1/2,

where for γ = 1/2 using |x| (1 + x2/4)−1/2 ≤ 2, we obtain

|I2(x, n)| ≤ d∗2 |x|√
2 π n

∫ ∞

1/n
y1/2−1e− (1+x2/4) y dy ≤ d∗2 |x|Γ(1/2)√

2 π (1 + x2/4)1/2
n−1 ≤

√
2 d∗2
n

and, in the case of γ = −1/2, the substitution z = x2/(4 y) for x 6= 0 leads to

I2(x, n) ≤ c∗2 |x|√
2 π n

∫ ∞

1/n
y−1−1/2 e−(y+x2/(4 y))dy ≤ 2 c∗2√

2 π n

∫ ∞

0
z−1/2 e−zdz ≤

√
2 d∗2
n

.

Finally, if γ = 0, then fk(x yγ) = fk(x) does not depend on y. Then, (A7) follows from (A1),
(A2), and (A14) for r = k/2.

Let r > 1. Integration by parts for Lebesgue–Stieltjes integrals Ik+2(x, n), k = 1, 2,
in (11) leads to

supx Ik+2(x, n) ≤ 1

n gk/2
n

(
c∗k |h2;r(1/gn)|+ supx

∫ ∞

1/gn

|Qk(xyγ)|
y1+k/2 |h2;r(y)|dy

)
(A15)

with bound c∗k given in (A2). Defining C∗r = rr

2r Γ(r) supy{e−r y (|y− 1||2− r|+ 1)} < ∞,

we find∫ ∞

1/gn

|h2;r(y)|
y1+k/2 dy ≤ C∗r

∫ ∞

1/gn
yr−2−k/2dy =

C∗r
(1 + k/2− r)

g−r+1+k/2
n for 1 < r < 1+ k/2
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and, with C∗∗r = rr−1

2 Γ(r) supy{(e−r y/2 (|y− 1| |2− r|+ 1)} < ∞, we obtain

∫ ∞

1/gn

|h2;r(y)|
y1+k/2 dy ≤ C∗∗r

∫ ∞

1/gn
yr−2−k/2e−r y/2dy ≤ C∗∗r Γ(r− 1− k/2)

(r/2)r−1−k/2 for r > 1 + k/2.

Hence, using gn ≤ r n for r > 1, we obtain (A8) and, for r > 1, r 6= 1 + k/2.
For r = 1 + k/2, the second integral in the line above is an exponential integral.

Therefore, with (A14), we find (A8) for r = 1 + k/2, too.
(iib) The mixing distribution is H(y) = Ws(y) = e−s/y with gn = n. Since b = 2, only

I4(x, n) has to be estimated. Integration by parts for I4(x, n) in (11) leads to (A15) with
k = 2, gn = n and h2,s(y) instead of h2,r(y). Hence, (A9) follows from∫ ∞

1/n

|h2;s(y)|
y2 dy ≤ s(s + 2)

∫ ∞

1/n
y−4e−s/ydy ≤ s + 2

s2

∫ s n

0
z2e−zdz ≤ (s + 2)Γ(3)

s2 . (A16)

(iii) The limit distribution of statistics in (26) and (27) is chi-square distribution Gu(x)
defined in (17). In the considered cases f1(x) = 0. Let γ ∈ {0, ±1}. Consider f2(x) =
(Ax + Bx2)gd(x) with chi-square density gd(x).

(iiia) Let H(y) = Gr,r(y). We have to estimate I2(x, n) for r ≤ 1 and I4(x, n) for r > 1.
The bound (A10) for 0 < r < 1 follows from (A2) and

supx |I2(x, n)| ≤ c∗2 rr

gn Γ(r)

∫ ∞

1/gn
yr−2e−rydy ≤ c∗2 rr

(r− 1) Γ(r)
g−r

n for γ ∈ {0, ±1}.

If r = 1 with C∗2 = supz

{
|A + Bz| 1

2d/2Γ(d/2)
e−z/4

}
< ∞, we find | f2(z)| ≤ C∗2 zd/2 e−z/4

and

|I2(x, n)| ≤ C∗2 xd/2

gn

∫ ∞

1/gn
y−1+d/2 e− (1+x/4) y dy ≤ C∗2 xd/2

gn (1 + x/4)d/2 ≤
4d/2 C∗2

gn
for γ = 1.

in the case of γ = −1 using variable transformation z = x/(4y) for x > 0 one has

|I2(x, n)| ≤ C∗2 xd/2

gn

∫ ∞

1/gn

e−x/(4y)

y1+d/2 dy ≤ C∗2 xd/2

gn (x/4)d/2

∫ ∞

0
z−1+d/2e−z dz ≤ C∗2 4d/2 Γ(d/2)

gn
.

If γ = 0 then f2(x yγ) = f2(x), noting (A14) and gn = n for r = 1, we prove (A11).
Let now r > 1. It remains to estimate I4(x, n). Using (A15) with k = 2,

remembering (A2), we obtain (A12) in the same way as for r > 1 with k = 2 in case
(iia) above.

(iiib) The limit distribution H(y) = Ws(y) = es/y with gn = n and b = 2. As in Case
(iib), taking into consideration (A16), we obtain (A13).

Appendix A.2. Lemmas A3 and A4

We show that the integrals J∗4 (x; γ) and J∗4 (x; γ, d) in the proofs of Theorems 1 and 2
have the order of the remaining terms. Therefore, the involved jump correcting function
Q1(y) = 1/2− (y− [y]) occurring in (32) and (38) has no effect on the second approxima-
tion. The function Q1(y) is periodic with period 1. The Fourier series expansion of Q1(y)
at all non-integer points y is

Q1(y) = 1/2− (y− [y]) = ∑∞
k=1

sin(2 π k y)
k π

y 6= [y] (A17)

(see formula 5.4.2.9 in [40] with a = 0).



Mathematics 2021, 9, 775 25 of 28

Lemma A3. Let J∗4 (x;±1) be defined by (76) and (78), respectively. Then, n−1 J∗4 (x; 1/2) ≤
C n−r for r > 1 and n−1 J∗4 (x;−1/2) ≤ C n−2.

Proof of Lemma A3. We begin by considering Q1(y) in J∗4 (x; 1/2) defined in (A17) fol-
lowing the estimate of J∗4 (x) in the proof of Theorem 2 in [11]. Inserting Fourier series
expansion of Q1(y) into the integral J∗4 (x; 1/2), interchanging the integral and sum and
applying formula (2.5.31.4) in [40] with α = r− 1/2, p = (r + x2/2) and b = 2πkgn, then

J∗4 (x; 1/2) =
xrr−1

(2π)3/2Γ(r)

∞

∑
k=1

1
k

∫ ∞

0
yr−3/2 e−(r+x2/2)y sin

(
2πkgny

)
dy

=
xrr−1Γ(r− 1/2)
(2π)3/2Γ(r)

∞

∑
k=1

sin
(
(r− 1/2) arctan

(
4πkgn/(x2 + 2r)

))
k
((

2πkgn
)2

+ (r + x2/2)2
)(r−1/2)/2

=
rr−1Γ(r− 1/2)

2π
√

2πΓ(r)

∞

∑
k=1

ak(x; n)
k

.

Now, we split the exponent (r− 1/2)/2 = (r− 1)/2 + 1/4 and obtain

|ak(x; n)| ≤ |x|((
2πkgn

)2
+
(
r + x2/2

)2
)(r−1)/2+1/4

≤ |x|
(2πkgn)r−1 (r + x2/2)1/2 ≤

√
2

(2π k (n− 1))r−1 .

Since r > 1 and n ≥ 2, the first statement in Lemma A3 follows:

supx n−1 |J∗4 (x; 1/2)| ≤ c(r) n−r ∑∞
k=1 k−r = c1(r) n−r .

To prove the second statement about J∗4 (x;−1/2), we insert again the Fourier series expan-
sion of Q1(y) given in (A17) into J∗4 (x;−1/2) and interchange the integral and sum

J∗4 (x;−1/2) =
x

2
√

2π
∑∞

k=1
1

π k

∫ ∞

0
y−1/2 e−(2y+x2/(2y) sin(2 π k gn y) dy .

Further, we use formula 2.5.37.4 in [40]∫ ∞

0
y−1/2 e−p y−q/y sin(b y)dy =

√
π√

p2 + b2
e− 2

√
q z+(z+ sin(2

√
q z−) + z− cos(2

√
q z−))

with 2 z2
± =

√
p2 + b2 ± p, p = 2 > 0, q = x2/2 > 0 and b = 2 π gn k > 0. Use of

the estimates

0 < z− ≤ z+, |x|z+e−|x|z+ ≤ e−1,
√

p2 + b2 ≥ b = 2πgnk and ∑∞
k=1 k−2 = π2/6

leads to the inequalities

supx
1
n
|J∗4 (x;−1/2)| ≤ supx

1
2
√

2π
∑∞

k=1

√
π 2 |x| z+

2π2 gn n k2 e−
√

2 |x| ≤ 1
e
√

2 12 gn n
= Cn−2 (A18)

and Lemma A3 is proven.

Lemma A4. Let J∗4 (x; γ, d) be defined by (79), then n−1 J∗4 (x; γ, d) ≤ C n−2 for γ = ±1.

Proof of Lemma A4. Using the Fourier series expansion (A17) of the periodic function
Q1(y), given in (33), and interchange integral and sum, we find

J∗4 (x; γ, d) = − s γ xd/2

2d/2 Γ(d/2) ∑∞
k=1

1
k π

∫ ∞

0
y(γ d−6)/2 e−xyγ/2−s/y sin(2π k n y)dy. (A19)
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We begin by estimating J∗4 (x; 1, 3), i.e., the exponent by y in (A19) is −3/2. Thus, we can
use formula 2.5.37.3 in [40]∫ ∞

0
y−3/2 e−p y−s/y sin(b y)dy =

√
π√
s

e− 2
√

s z+ sin(2
√

s z−) (A20)

where p = x/2 > 0, s > 0, b = 2π k n > 0 and 2 z2
± =

√
p2 + b2± p =

√
x2/4 + (2π k n)2±

x/2. Since

z+ =
1
2

((
x2/4 + 2πkn

)1/2
+ x/2

)1/2
≥ 1

4
x1/2 +

1
8
(2π)1/4(k1/4 + n1/4) (A21)

it results in

1
n
|J∗4 (x : 1, 3| ≤ (s x)3/2

n s 21/2 π
∑∞

k=1 exp
{
−(s x)1/2/2− (2π)1/4

(
k1/4 + n1/4

)
/4
}
≤ C(s)

n2 .

Let now γ = 1 and d = 1. The main difference compared with the previous estimate
of J∗4 (x; 1, 3) is that we are facing more technical trouble in order to estimate J∗4 (x; 1, 1). The
exponent by y in (A19) is −5/2 and we cannot find a closed formula similar to (A19) for
this case. To estimate J∗4 in the proof of Theorem 5 in [11], we show that differentiation with
respect to s under the integral sign in (A20) is allowed. Hence,∫ ∞

0
y−5/2 e−p y−s/y sin(b y)dy = (

√
π/2) e−2

√
s z+
(

s−3/2 sin(2
√

s z−)

+ 2 s−1 z+ sin(2
√

s z−) − 2 s−1 z− cos(2
√

s z−)
)

.

with the same coefficients p, s, b and z± as in (A20). The use of (A21) and the obvious
inequalities 0 < z− ≤ z+ and z+ ≥ 1

2 z+ + 1
8 x1/2 + 1

16 (2π)1/4(k1/4 leads to

1
n
|J∗4 (x; 1, 1)| ≤ (sx)1/2

n 21/2 π
e−(sx)1/2/4−(2π)1/4n1/4/8 ∑∞

k=1
1
k

e−(2π)1/4k1/4/8 ≤ C(s)
n2 .

Finally, let now γ = −1.

J∗4 (x;−1, d) =
s xd/2

2d/2 Γ(d/2) ∑∞
k=1

1
k π

∫ ∞

0
y−(d/2+3) e−(x/2+s)/y sin(2π k n y)dy.

Partial integration in the integral with A = d/2 + 3, B = x/2 + s and C = 2π k n leads to∫ ∞

0
y−A e−B/y sin(Cy)dy = −

∫ ∞

0

1
C

(
Ay−(A+1) + B y−(A+2)

)
e−B/y cos(C y)dy

and using (62) to∫ ∞

0

1
C

(
Ay−(A+1) + B y−(A+2)

)
e−B/ydy ≤ 1

C

(
A Γ(A)

BA +
B Γ(A + 1)

BA+1

)
=

Γ(A + 1)
C BA .

Therefore,

1
n
|J∗4 (x;−1, d)| ≤ s xd/2

n 2d/2 Γ(d/2) ∑∞
k=1

Γ(d/2 + 4)
k2 2 π2 n (x/2 + s)d/2+3 ≤

C(s)
n2 ,

and Lemma A4 is proven.
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